JP4123862B2 - Method for determining the level of hot water in the mold using a thermocouple level meter - Google Patents
Method for determining the level of hot water in the mold using a thermocouple level meter Download PDFInfo
- Publication number
- JP4123862B2 JP4123862B2 JP2002229967A JP2002229967A JP4123862B2 JP 4123862 B2 JP4123862 B2 JP 4123862B2 JP 2002229967 A JP2002229967 A JP 2002229967A JP 2002229967 A JP2002229967 A JP 2002229967A JP 4123862 B2 JP4123862 B2 JP 4123862B2
- Authority
- JP
- Japan
- Prior art keywords
- thermocouple
- level
- mold
- determining
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Continuous Casting (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は、熱電対式レベル計によるモールド内湯面レベル判定方法、特に連続鋳造時のモールド内湯面レベルを検出する際に適用して好適な、熱電対式レベル計によるモールド内湯面レベル判定方法に関する。
【0002】
【従来の技術】
熱電対式レベル計によるモールド内湯面レベルを検出する技術は、従来より種々提案されている。例えば、特開平2−192862号公報には、(1)熱電対間の起電力差及び熱電対間距離から算出される起電力勾配の最大なる区間を起電力分布から検出し、湯面レベルを演算する最大起電力勾配法、(2)任意周期毎に各熱電対素子の点における温度の時間変化率を演算し、該時間変化率の最大値を示す素子を検出し、それを基に湯面レベルを演算する最大起電力変化率法、(3)熱電対起電力の時間変化から湯面の上昇、下降、静止といった湯面の状態を検知し、それぞれの湯面の状態に応じて熱電対起電力を使って湯面を演算する湯面状態法、が紹介されている。
【0003】
これらの湯面レベル測定方法では、いずれも縦方向に所定の間隔でモールド壁に埋設された複数の熱電対の熱起電力に基づいて温度変化等を検出している。即ち、これらの複数の熱電対からなる熱電対式レベル計では、使用している全ての熱電対について、温度特性及びモールド銅板との接触状態が均一で差がなく、しかも同一の温度変化に際して出力される熱起電力の変化率と最高値は共にバラツキが小さいことが前提となっている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来の熱電対式レベル計による湯面レベル測定方法には、以下の問題点があった。
【0005】
(i)モールド内壁を構成するモールド銅板は、必要に応じて表面の改削を行なった後、平滑化のためにメッキを施すことにより再利用することが行なわれているため、モールド毎に銅板の厚みが異なる。従って、仮に均質の熱電対が入手できたとしても、その先端が埋設されている銅板内部の測定位置における温度はモールド毎に異なってしまうため、判定基準として使用する閾値をモールド毎に変える必要があった。
【0006】
【課題を解決するための手段】
(ii)仮にモールド銅板の厚さも熱電対の特性も共に均一であったとしても、鋳造初期の湯上がり状態に応じて、銅板の場所によって温度変化が異なることがあるため、特定位置の熱電対だけ温度変化や最大温度が大きい場合があることから、前記(1)〜(3)の方法のように最大温度勾配、最大起電力変化率、湯面状態に着目して湯面到達を判断するには困難を生じる場合があった。
【0007】
(iii)実際には、モールド銅板の厚さ、熱電対の特性、熱電対とモールド銅板の接触状態はいずれも均一でないために、前記従来の方法によっては特定の熱電対の温度変化や最大温度が突出して大きい場合があるため、特定の熱電対近傍から湯面が上昇せず、湯面レベルの到達を判断できない場合があった。
【0008】
本発明は、前記従来の問題点を解決するべくなされたもので、モールド銅板の厚さや熱電対の特性等が均一でなくとも、モールド内湯面レベルを確実に判定することができる熱電対式レベル計によるモールド内湯面レベル判定方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明は、熱電対式レベル計によるモールド内湯面レベル判定方法において、鋳造用モールドに熱電対が設置された熱電対式レベル計により、モールド内の湯面レベルを判定する際、注目熱電対によりサンプリングされた測定温度について、単位時間当たりの温度変化が所定の閾値を超え、且つ、過去の測定温度の平均値との差が過去の測定温度の標準偏差に基づいて決定される誤差範囲を超えた場合に、該熱電対の設置位置に湯面レベルが到達したと判定するようにしたことにより、前記課題を解決したものである。
【0011】
本発明は、又、熱電対式レベル計によるモールド内湯面レベル判定方法において、鋳造用モールドに複数の熱電対が縦方向に間隔を置いて設置された熱電対式レベル計により、モールド内の湯面レベルを判定する際、注目熱電対によりサンプリングされた測定温度について、単位時間当たりの温度変化が所定の閾値を超え、且つ、過去の測定温度の平均値との差が過去の測定温度の標準偏差に基づいて決定される誤差範囲を超えた場合に、該熱電対の設置位置に湯面レベルが到達したと判定する方法と、任意の隣接する上段、中段、下段の熱電対により、それぞれ同時にサンプリングされた測定温度について、単位時間当たりの温度変化が、上段と下段の熱電対より、中段の熱電対の方が大きくなった場合に、該中段の熱電対の設置位置に湯面レベルが到達したと判定する方法とを、併用するようにしたことにより、同様に前記課題を解決したものである。
【0012】
本発明は、又、前記熱電対式レベル計によるモールド内湯面レベル判定方法のいずれかにおいて、更に、個別の熱電対毎に過去の鋳造時に得られた測定温度の最大値の平均値、及び、単位時間当たりの温度変化の最大値の平均値の少なくとも一方を予め求めておき、対象とする熱電対によりサンプリングされた測定温度の最大値及び単位時間当りの温度変化の最大値の少なくとも一方との比を取り、その比が基準値に達したことにより、該熱電対の設置位置に湯面レベルが到達したと判定する方法を併用するようにしたことにより、更に確実に前記課題を解決したものである。
【0013】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態について詳細に説明する。
【0014】
図1は、本発明に係る第1実施形態のモールド内湯面レベル判定方法に適用される、熱電対式レベル計の要部を示す、ブロック図を含む概略部分断面図である。
【0015】
この図1には、モールド10の一部である短辺壁12片側の上端部近傍が示されており、この短辺壁12は外壁のバックフレーム14と内壁のモールド銅板16とからなる2層構造を有している。このモールド10内には、湯面レベルが上端近傍に位置する溶鋼18が貯留されていると共に、短辺壁12に接している溶鋼18には下から徐々に成長する凝固シェル20が形成されている。
【0016】
上記短辺壁12の上端からの距離がLammからLbmmの間には、所定の間隔で複数の熱電対22が埋設され、それぞれの先端が前記モールド銅板16の内部の所定深さ位置に接触するようになっており、これら縦(上下)方向に間隔をおいて埋設されている複数の熱電対22により溶鋼18の湯面レベルを測定する熱電対式レベル計24が形成されている。そして、このレベル計24を構成する各熱電対22の熱起電力は、それぞれ変換器盤26を介して溶鋼レベル演算器(コンピュータ)28に入力され、該演算器28において後述する湯面レベル判定のための演算が実行されるようになっている。
【0017】
本実施形態においては、上記熱電対式レベル計24により、湯面レベルの位置を判定する際、注目する熱電対によりサンプリングされた測定温度について、単位時間当たりの温度変化が、所定の閾値を超え、且つ、過去の複数サンプリング点における測定温度の平均値との差が、誤差範囲(ばらつきの範囲)を超えた場合に、該熱電対の設置位置に湯面レベルが到達したと判定する。但し、この判定に使用する“超える”の概念は“同一”を含めてもよく、又、後述する湯面降下の場合のように、一方向に値が大きくなる場合も含まれる。
【0018】
即ち、湯面上昇時であれば、特定の熱電対に注目し、得られた測定温度の経時変化を時間軸に対して表わすと図2の示すようになる。この図に示されるように、1つの熱電対に上昇する湯面レベルが近づいてくる、図中a〜dの各点の場合は、最初はモールド壁を介する下部からの熱伝導のみによる昇温であるため、測定温度はある程度のバラツキを伴って緩慢に上昇するが、湯面が到達したA時点で急激に上昇し、その状態がe〜h点まで続いた後、湯面が通過するとi、j点のように少し下がる変化をする。
【0019】
そこで、a〜jの各点で示したような一定のサンプリング間隔(例えば50msecや100msec等の時間間隔)で熱電対による測定温度をサンプリングしていき、各測定温度について、例えばサンプリング間隔と同一の単位時間当たりの温度変化を求め、次式の上昇判定式により、該熱電対の設置位置に湯面レベルが到達したと判定する。
【0020】
ΔT≧Ha、且つ、T−μ≧σ×Wa…(1)
(ここで、T:最新モールド銅板温度、ΔT:最新モールド銅板温度変化、μ:過去Nサンプルの平均温度、σ:過去Nサンプルの標準偏差、Ha:上昇用閾値、Wa:上昇用検定幅)
【0021】
この(1)式で、Ha、Waは予め実験的に決定しておく。又、平均温度μ、標準偏差σは、それぞれ
【数1】
(ここで、ti:過去のモールド銅板温度、N:サンプル数、i:サンプリング回数(i=1が最新サンプリング))
により算出する。その際、Nは、例えば10にすることができる。
【0022】
上記(1)〜(3)式による判定は、前述したように、湯面到達位置の熱電対によって測定された温度変化(上昇)は、該熱電対によって測定された湯面到達より以前の温度変化よりも大きく、且つ、過去の一定サンプリング回数の温度平均と比較して、温度のばらつき以上に高い温度に達するという考え方に基づいている。なお、計算に際しては、今回と前回の測定温度の差分値(サンプリング間隔を単位時間とする今回の温度変化)を取る前に、過去の複数点のサンプリング値(測定温度)との間の移動平均あるいは指数平滑を求めて、ノイズを除去してから演算を行なってもよい。
【0023】
又、本実施形態では、次式
ΔT≦Hb、且つ、T−μ≦σ×Wb…(4)
(ここで、Hb:下降用閾値、Wb:下降用検定幅)
により、湯面下降時の到達位置を判定することもできる。この場合、ΔT、Wbは負の値である。
【0024】
以上詳述した本実施形態によれば、任意の熱電対について、湯面到達を確実に判定することができる。即ち、モールド銅板の厚みが異なっていても、サンプリングされた各測定温度について、単位時間当たりの温度変化と、過去の平均値からの誤差範囲としての標準偏差(バラツキ)とを考慮することにより、銅板の厚みに関係なく湯面レベルの到達を安定して判定することができる。
【0025】
又、毎回の鋳造初期の湯上がり状態に応じて、モールド銅板の場所によって温度変化が異なる場合についても、サンプリングされた測定温度について、鋳造毎の単位時間当たりの温度変化と過去の標準偏差を考慮することにより、温度上昇のばらつきを吸収することができる。
【0026】
更に、モールド銅板の厚さ、熱電対の特性、熱電対とモールド銅板の接触状態が均一でない場合にも、安定して湯面到達を判定することができる。
【0027】
次に、本発明に係る第2実施形態のモールド内湯面レベル判定方法について説明する。
【0028】
この第2実施形態では、連続鋳造設備におけるモールドに複数の熱電対が縦方向に間隔を置いて設置された熱電対式レベル計により、モールド内の湯面レベルの位置を判定する際、任意の隣接する上段、中段、下段の3つの熱電対により、それぞれ同時にサンプリングされた測定温度について、単位時間当たりの温度変化を算出し、その温度変化が上段と下段の熱電対より、中段の熱電対の方が大きい場合に、該中段の熱電対の設置位置に湯面レベルが到達したと判定する。
【0029】
図3は、前記図1に示したモールドの上端部分と熱電対式レベル計24とを拡大した断面図であり、縦方向にiからi+4段目まで所定の間隔ΔLをおいて複数の熱電対が設置されている。ここでは、iからi+2段目までの3つの熱電対に注目し、湯面レベル上昇時に測定される温度について考える。
【0030】
図4(A)には、湯面レベルが符号Pを付して示す点線に従って上昇した場合のi〜i+2段目の各熱電対により得られる測定温度の、前記図2に示したものと実質的に同一の経時変化を示し、同図(B)〜(D)にはサンプリング毎に得られる測定温度について、前記第1実施形態と同様に単位時間当たりの温度変化ΔTを算出し、プロットした曲線(微分曲線に相当する)を各熱電対についてそれぞれ示す。
【0031】
この図に示される場合では、各熱電対による測定温度及び温度変化はいずれも、間隔ΔLに相当する時間遅れを伴って実質的に同一の変化をしている。i段目(下段)の熱電対による単位時間当たりの温度変化(図中、差分値)では、湯面レベルが到達したA時点で急激に変化している。
【0032】
図2を参照して説明したように、モールド銅板の単位時間当りの温度変化(変化率)は、湯面到達時が最も大きい。一方、到達位置の下段の通過部分では、凝固シェル20が形成されるとともに、そのモールド内面からの剥離が起こったりすることによって測定温度が若干低下する。逆に、到達位置の上段の、湯面が近づきつつある銅板位置は、変化率が増大し始める。このような温度変化の特徴により、i〜i+2段目までの3つの熱電対による差分値を、横に並べてプロットすると図5に示すようになる。i+1段目(中段)の熱電対に湯面が到達した時点(図5(B))の特徴を示すように、上段と下段の熱電対における単位時間当りの温度変化(差分値)より大きいことが分かる。そこで、本実施形態では、このように上段に比べて大きく上昇し、下段に比べて若干高い温度変化をしている中段の熱電対の設置位置を湯面到達位置と判定する。なお、計算する際、差分値は移動平均や指数平滑等を用いてノイズ的な温度変化を除去するようにしてもよい。
【0033】
以上詳述した本実施形態によれば、任意の隣接する3つの熱電対による測定温度に基づいて、湯面レベルの到達位置を確実に測定することができる。
【0034】
本発明に係る第3実施形態は、前記第1実施形態と第2実施形態のモールド内湯面レベル判定方法を併用し、両者が同時に成立したときに、湯面レベル到達と判定するものである。これにより、一段と判定精度を向上することができる。
【0035】
本発明に係る第4実施形態は、個別の熱電対毎に過去の鋳造時に得られた測定温度の最大値の平均値、及び、過去の鋳造時に得られた単位時間当たりの温度変化の最大値の平均値の少なくとも一方を予め求めておき、前記第1実施形態〜第3実施形態のいずれかにおいて、注目する熱電対によりサンプリングされた測定温度の最大値及び単位時間当りの温度変化の最大値の少なくとも一方との比を取り、その比が一定の基準値に達したことにより、該熱電対の設置位置に湯面レベルが到達したと判定する方法を併用するものである。これにより、更に判定精度の向上を図ることができる。
【0036】
以上、本発明について具体的に説明したが、本発明は、前記実施形態に示したものに限られるものでなく、その要旨を逸脱しない範囲で種々変更可能である。
【0037】
【発明の効果】
以上説明したとおり、本発明によれば、モールド銅板や熱電対の特性等が均一でなくとも、モールド内湯面レベルを確実に判定することができる。
【図面の簡単な説明】
【図1】本発明に係る一実施形態のモールド内湯面レベル判定方法に適用される熱電対式レベル計の要部を示すブロック図を含む部分断面図
【図2】湯面上昇時の熱電対による測定温度の経時変化を示す線図
【図3】熱電対式レベル計を拡大して示す部分断面図
【図4】湯面上昇時の熱電対による測定温度の経時変化と、単位時間当たりの温度変化との関係を示す線図
【図5】湯面上昇に伴う隣接する熱電対による単位時間当たりの温度変化の推移を示す線図
【符号の説明】
10…モールド
12…モールド短辺壁
14…バックフレーム
16…モールド銅板
18…溶鋼
20…凝固シェル
22…熱電対
24…熱電対式レベル計[0001]
[Technical field to which the invention belongs]
TECHNICAL FIELD The present invention relates to a method for determining a molten metal level in a mold using a thermocouple level meter, and more particularly to a method for determining a molten metal level in a mold using a thermocouple level meter, which is suitable for detecting a molten metal level in a mold during continuous casting. .
[0002]
[Prior art]
Various techniques for detecting the level in the mold using a thermocouple level meter have been proposed. For example, in Japanese Patent Laid-Open No. 2-192862, (1) a section where the electromotive force gradient calculated from the electromotive force difference between thermocouples and the distance between thermocouples is maximum is detected from the electromotive force distribution, and the surface level is determined. The maximum electromotive force gradient method to be calculated, (2) the time change rate of temperature at each thermocouple element point is calculated every arbitrary period, the element showing the maximum value of the time change rate is detected, and hot water is detected based on the detected element. Maximum electromotive force change rate method for calculating the surface level, (3) The state of the molten metal surface such as rising, descending, and resting of the molten metal surface is detected from the time variation of the thermocouple electromotive force, and the thermoelectric power according to the state of each molten metal surface A hot water surface state method for calculating the hot water surface using counter electromotive force is introduced.
[0003]
In these hot water level measurement methods, temperature changes and the like are detected based on the thermoelectromotive forces of a plurality of thermocouples embedded in the mold wall at predetermined intervals in the vertical direction. That is, in the thermocouple type level meter consisting of a plurality of these thermocouples, the temperature characteristics and the contact state with the molded copper plate are uniform for all the thermocouples used and there is no difference, and the output is performed when the same temperature changes. Both the rate of change of the thermoelectromotive force and the maximum value are premised on small variations.
[0004]
[Problems to be solved by the invention]
However, the conventional method for measuring a molten metal level using a thermocouple level meter has the following problems.
[0005]
(I) Since the mold copper plate constituting the inner wall of the mold is reused by performing plating for smoothing after surface refurbishment as necessary, the copper plate for each mold The thickness is different. Therefore, even if a homogeneous thermocouple is available, the temperature at the measurement position inside the copper plate in which the tip is embedded differs for each mold, so it is necessary to change the threshold used as a criterion for each mold. there were.
[0006]
[Means for Solving the Problems]
The thickness of the (ii) if the mold copper plate even though also both uniform characteristics of the thermocouple, in accordance with the casting early after a bath state, since the temperature change depending on the location of the copper plate may be different, only the thermocouple at a specific position Since the temperature change or the maximum temperature may be large, the arrival of the molten metal surface is determined by paying attention to the maximum temperature gradient, the maximum electromotive force change rate, and the molten metal surface state as in the methods (1) to (3). Could cause difficulties.
[0007]
(Iii) Actually, since the thickness of the mold copper plate, the characteristics of the thermocouple, and the contact state between the thermocouple and the mold copper plate are not uniform, the temperature change or maximum temperature of a specific thermocouple depends on the conventional method. In some cases, the hot water level does not rise from the vicinity of a specific thermocouple, and it may not be possible to determine whether the hot water level has been reached.
[0008]
The present invention has been made to solve the above-mentioned conventional problems, and even if the thickness of the mold copper plate and the characteristics of the thermocouple are not uniform, the thermocouple level that can reliably determine the level in the mold. It is an object of the present invention to provide a method for determining the level in the mold using a meter.
[0009]
[Means for Solving the Problems]
The present invention relates to a method for determining a level in a mold using a thermocouple level meter. When determining a level in a mold by a thermocouple level meter in which a thermocouple is installed in a casting mold, For the sampled measurement temperature, the temperature change per unit time exceeds the predetermined threshold, and the difference from the average value of the past measurement temperature exceeds the error range determined based on the standard deviation of the past measurement temperature. In this case, the problem is solved by determining that the hot water level has reached the position where the thermocouple is installed.
[0011]
The present invention also relates to a method for determining the level of a molten metal surface in a mold using a thermocouple type level meter, and a thermocouple level meter in which a plurality of thermocouples are installed in a casting mold at intervals in the vertical direction. When determining the surface level, for the measured temperature sampled by the thermocouple of interest, the temperature change per unit time exceeds a predetermined threshold, and the difference from the average value of the past measured temperature is the standard of the past measured temperature. When the error range determined based on the deviation is exceeded, the method of determining that the molten metal level has reached the thermocouple installation position and any adjacent upper, middle, and lower thermocouples are simultaneously used. Regarding the sampled measured temperature, when the temperature change per unit time is larger in the middle thermocouple than in the upper and lower thermocouples, the hot water is placed at the installation position of the middle thermocouple. A method for determining the level reached by the so combined is obtained by solving the above problems as well.
[0012]
The present invention, in any one of the mold level level determination method by the thermocouple level meter, further, the average of the maximum value of the measured temperature obtained at the time of past casting for each individual thermocouple, and At least one of the average values of the maximum temperature change per unit time is obtained in advance, and the maximum value of the measured temperature sampled by the target thermocouple and the maximum value of the temperature change per unit time A method for determining that the molten metal level has reached the installation position of the thermocouple when the ratio has reached a reference value is used in combination, thereby further reliably solving the above problems. It is.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0014]
FIG. 1 is a schematic partial cross-sectional view including a block diagram showing a main part of a thermocouple type level meter applied to the method for determining the level in the mold of the first embodiment according to the present invention.
[0015]
FIG. 1 shows the vicinity of the upper end of one side of a short side wall 12 which is a part of the mold 10, and this short side wall 12 is composed of two layers comprising a back frame 14 on the outer wall and a mold copper plate 16 on the inner wall. It has a structure. In the mold 10,
[0016]
When the distance from the upper end of the short side wall 12 is between Lamm and Lbmm, a plurality of
[0017]
In the present embodiment, when determining the position of the molten metal surface level by the thermocouple
[0018]
That is, when the molten metal surface rises, attention is paid to a specific thermocouple, and the obtained time-dependent change of the measured temperature is represented on the time axis as shown in FIG. As shown in this figure, the temperature level rising to one thermocouple is approaching. In each of the points a to d in the figure, the temperature is increased only by heat conduction from the lower part through the mold wall at first. Therefore, the measured temperature rises slowly with some variation, but rapidly rises at the point A when the hot water surface reaches, and after the state continues to points e to h , the hot water surface passes through i. , Change slightly lowering like point j.
[0019]
Therefore, the measurement temperature by the thermocouple is sampled at a constant sampling interval (for example, a time interval such as 50 msec or 100 msec) as shown by the points a to j, and each measurement temperature is the same as the sampling interval, for example. The temperature change per unit time is obtained, and it is determined that the hot water surface level has reached the installation position of the thermocouple by the following rising determination formula.
[0020]
ΔT ≧ Ha and T−μ ≧ σ × Wa (1)
(Where, T: latest mold copper plate temperature, ΔT: latest mold copper plate temperature change, μ: average temperature of past N samples, σ: standard deviation of past N samples, Ha: rising threshold, Wa: rising test width)
[0021]
In this equation (1), Ha and Wa are experimentally determined in advance. The average temperature μ and standard deviation σ are expressed as follows:
(Where, t i : past mold copper plate temperature, N: number of samples, i: number of samplings (i = 1 is the latest sampling))
Calculated by In this case, N can be set to 10, for example.
[0022]
As described above, the determination by the above formulas (1) to (3) indicates that the temperature change (increase) measured by the thermocouple at the molten metal arrival position is the temperature before the molten metal arrival measured by the thermocouple. It is based on the idea that it reaches a temperature that is greater than the change and that is higher than the temperature variation compared to the temperature average of the past certain sampling times. In the calculation, before taking the difference between the current measured temperature and the previous measured temperature (current temperature change with the sampling interval as the unit time), the moving average between the past sampled values (measured temperature) is taken. Alternatively, the exponential smoothing may be obtained and the calculation may be performed after removing noise.
[0023]
In this embodiment, the following expression ΔT ≦ Hb and T−μ ≦ σ × Wb (4)
(Here, Hb: threshold for descent, Wb: test width for descent)
Thus, it is possible to determine the arrival position when the molten metal surface is lowered. In this case, ΔT and Wb are negative values.
[0024]
According to the present embodiment described in detail above, it is possible to reliably determine the arrival of the molten metal surface for an arbitrary thermocouple. That is, even if the thickness of the molded copper plate is different, for each sampled measurement temperature, by taking into account the temperature change per unit time and the standard deviation (variation) as an error range from the past average value, Regardless of the thickness of the copper plate, the arrival of the hot water surface level can be determined stably.
[0025]
Also, in the case where the temperature change differs depending on the location of the mold copper plate according to the state of hot water at the beginning of each casting, the temperature change per unit time and the past standard deviation for each sampled temperature are taken into account. Thus, variations in temperature rise can be absorbed.
[0026]
Furthermore, even when the thickness of the molded copper plate, the characteristics of the thermocouple, and the contact state between the thermocouple and the molded copper plate are not uniform, the arrival of the molten metal surface can be determined stably.
[0027]
Next, a method for determining the mold level in the mold according to the second embodiment of the present invention will be described.
[0028]
In this second embodiment, when determining the position of the hot water surface level in the mold by a thermocouple type level meter in which a plurality of thermocouples are installed in the mold in the continuous casting facility at intervals in the vertical direction, an arbitrary level is determined. The temperature change per unit time is calculated for the measured temperatures sampled simultaneously by three adjacent upper, middle, and lower thermocouples, and the temperature change is calculated from the upper and lower thermocouples. If it is larger, it is determined that the hot water surface level has reached the installation position of the middle thermocouple.
[0029]
FIG. 3 is an enlarged cross-sectional view of the upper end portion of the mold and the
[0030]
FIG. 4 (A) shows the measured temperatures obtained by the thermocouples at i to i + 2 stages in the case where the molten metal level rises according to the dotted line indicated by the symbol P, which is substantially the same as that shown in FIG. The same time-dependent change was shown, and in FIGS. 5B to 5D, the temperature change ΔT per unit time was calculated and plotted for the measured temperature obtained for each sampling as in the first embodiment. A curve (corresponding to a differential curve) is shown for each thermocouple.
[0031]
In the case shown in this figure, both the measured temperature and the temperature change by each thermocouple have substantially the same change with a time delay corresponding to the interval ΔL. In the temperature change per unit time (difference value in the figure) by the i-th stage (lower stage) thermocouple, it changes rapidly at the point A when the hot water level reaches.
[0032]
As described with reference to FIG. 2, the temperature change (change rate) per unit time of the molded copper plate is the largest when reaching the molten metal surface. On the other hand, the solidified shell 20 is formed at the lower passing portion of the reaching position, and the measurement temperature is slightly lowered due to peeling from the inner surface of the mold. Conversely, the rate of change of the copper plate position at the upper stage of the reaching position where the molten metal surface is approaching begins to increase. Due to such characteristics of temperature change, the difference values by the three thermocouples from i to i + 2nd stage are plotted side by side as shown in FIG. As shown in the characteristics at the time when the molten metal surface reaches the (i + 1) th stage (middle stage) thermocouple (FIG. 5B), it must be larger than the temperature change (difference value) per unit time in the upper and lower stage thermocouples. I understand. Therefore, in the present embodiment, the installation position of the middle thermocouple that is greatly increased as compared with the upper stage and slightly changed in temperature as compared with the lower stage is determined as the hot water surface arrival position. In the calculation, the difference value may be removed from a noisy temperature change using moving average, exponential smoothing, or the like.
[0033]
According to the present embodiment described in detail above, it is possible to reliably measure the reaching position of the molten metal level based on the measured temperatures of any three adjacent thermocouples.
[0034]
The third embodiment according to the present invention uses the in-mold hot water surface level determination method of the first embodiment and the second embodiment in combination, and determines that the hot water surface level has been reached when both are established at the same time. Thereby, the determination accuracy can be further improved.
[0035]
In the fourth embodiment according to the present invention, the average value of the maximum measured temperature obtained during past casting for each individual thermocouple, and the maximum value of temperature change per unit time obtained during past casting. In any one of the first to third embodiments, the maximum value of the measured temperature sampled by the focused thermocouple and the maximum value of the temperature change per unit time are obtained in advance. A method is also used in which a ratio with at least one of the above is taken and when the ratio has reached a certain reference value, it is determined that the molten metal level has reached the thermocouple installation position. As a result, the determination accuracy can be further improved.
[0036]
Although the present invention has been specifically described above, the present invention is not limited to that shown in the above embodiment, and various modifications can be made without departing from the scope of the invention.
[0037]
【The invention's effect】
As described above, according to the present invention, even if the characteristics of the mold copper plate and the thermocouple are not uniform, it is possible to reliably determine the mold level in the mold.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view including a block diagram showing a main part of a thermocouple type level meter applied to a method for determining a molten metal surface level according to an embodiment of the present invention. Fig. 3 is a partial cross-sectional view showing an enlarged thermocouple type level meter. Fig. 4 is a partial cross-sectional view showing the thermocouple level meter. Diagram showing the relationship with temperature change [Fig. 5] Diagram showing the change in temperature change per unit time by adjacent thermocouples as the molten metal rises [Description of symbols]
DESCRIPTION OF SYMBOLS 10 ... Mold 12 ... Mold short side wall 14 ... Back frame 16 ...
Claims (3)
注目熱電対によりサンプリングされた測定温度について、単位時間当たりの温度変化が所定の閾値を超え、且つ、過去の測定温度の平均値との差が過去の測定温度の標準偏差に基づいて決定される誤差範囲を超えた場合に、該熱電対の設置位置に湯面レベルが到達したと判定することを特徴とする熱電対式レベル計によるモールド内湯面レベル判定方法。When determining the hot water level in the mold with a thermocouple level meter in which a thermocouple is installed in the casting mold,
For the measured temperature sampled by the thermocouple of interest, the temperature change per unit time exceeds a predetermined threshold, and the difference from the average value of the past measured temperature is determined based on the standard deviation of the past measured temperature When the error range is exceeded, it is determined that the molten metal surface level has reached the position where the thermocouple is installed.
注目熱電対によりサンプリングされた測定温度について、単位時間当たりの温度変化が所定の閾値を超え、且つ、過去の測定温度の平均値との差が過去の測定温度の標準偏差に基づいて決定される誤差範囲を超えた場合に、該熱電対の設置位置に湯面レベルが到達したと判定する方法と、
任意の隣接する上段、中段、下段の熱電対により、それぞれ同時にサンプリングされた測定温度について、単位時間当たりの温度変化が、上段と下段の熱電対より、中段の熱電対の方が大きくなった場合に、該中段の熱電対の設置位置に湯面レベルが到達したと判定する方法とを、併用することを特徴とする熱電対式レベル計によるモールド内湯面レベル判定方法。When determining the level of hot water in the mold by a thermocouple level meter in which a plurality of thermocouples are installed in the casting mold at intervals in the vertical direction,
For the measured temperature sampled by the thermocouple of interest, the temperature change per unit time exceeds a predetermined threshold, and the difference from the average value of the past measured temperature is determined based on the standard deviation of the past measured temperature When the error range is exceeded, a method for determining that the molten metal level has reached the thermocouple installation position;
When the measured temperature sampled simultaneously by any adjacent upper, middle, and lower thermocouples, the change in temperature per unit time is greater for the middle thermocouple than for the upper and lower thermocouples. And a method of determining that the molten metal level has reached the position where the intermediate thermocouple is installed, and a method of determining the molten metal surface level using a thermocouple type level meter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002229967A JP4123862B2 (en) | 2002-08-07 | 2002-08-07 | Method for determining the level of hot water in the mold using a thermocouple level meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002229967A JP4123862B2 (en) | 2002-08-07 | 2002-08-07 | Method for determining the level of hot water in the mold using a thermocouple level meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004066303A JP2004066303A (en) | 2004-03-04 |
JP4123862B2 true JP4123862B2 (en) | 2008-07-23 |
Family
ID=32016182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002229967A Expired - Fee Related JP4123862B2 (en) | 2002-08-07 | 2002-08-07 | Method for determining the level of hot water in the mold using a thermocouple level meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4123862B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1769864A1 (en) * | 2005-09-29 | 2007-04-04 | Concast Ag | Process and device for determining the molten metal level in a continuous casting mould |
BE1020791A3 (en) | 2012-07-13 | 2014-05-06 | Ct Rech Metallurgiques Asbl | METHOD AND DEVICE FOR MEASURING THE LEVELS OF CAST IRON AND DAIRY IN A HIGH-FURNACE |
KR101456453B1 (en) | 2012-07-24 | 2014-10-31 | 주식회사 포스코 | Apparatus for forecasting a slab quality and method of thereof |
EP3222370B1 (en) | 2014-11-19 | 2020-08-26 | Posco | Meniscus flow control device and meniscus flow control method using same |
-
2002
- 2002-08-07 JP JP2002229967A patent/JP4123862B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004066303A (en) | 2004-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3386051B2 (en) | Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity | |
Mozumder et al. | Delay of wetting propagation during jet impingement quenching for a high temperature surface | |
EP3100802B1 (en) | Method, device and program for determining casting state in continuous casting | |
CN102151814B (en) | Bonding alarm method and system during continuous casting production | |
Tkatch et al. | Direct measurements of the cooling rates in the single roller rapid solidification technique | |
JP4123862B2 (en) | Method for determining the level of hot water in the mold using a thermocouple level meter | |
JP2003181609A (en) | Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting | |
JP2020011255A (en) | Casting state determination device, casting state determination method, and program | |
JP4105839B2 (en) | In-mold casting abnormality detection method in continuous casting | |
JPS58148061A (en) | Method for predicting breakout in continuous casting | |
JP3230513B2 (en) | Method of estimating molten steel flow velocity in continuous casting mold, quality control method in continuous casting of steel, and continuous casting method of steel | |
JP4112783B2 (en) | Breakout detection method in continuous casting equipment | |
JP2012066278A (en) | Method and device for predicting quality of cast slab surface layer | |
JP4681127B2 (en) | Hot water surface height detection apparatus, method, and computer-readable storage medium | |
CN105445322A (en) | Method for measuring interface heat transfer coefficient under pressurization condition | |
JP3537625B2 (en) | Method and apparatus for measuring solidified shell thickness in continuous casting | |
JP2664572B2 (en) | Temperature prediction method for unsolidified part of slab in continuous casting | |
JP5347727B2 (en) | Continuous casting machine and slab surface vertical crack occurrence prediction method | |
JP5915589B2 (en) | Temperature measurement method for continuous casting mold | |
JP3617423B2 (en) | Method for estimating constrained breakout | |
JPWO2023145786A5 (en) | ||
JP5482418B2 (en) | Breakout prediction method | |
JP4214818B2 (en) | Abnormality detection method for temperature sensor for predicting constrained breakout | |
JP7014203B2 (en) | Estimating method of crater end position of cast slab in continuous casting and its equipment | |
JP2019098388A (en) | Method and device for temperature estimation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080415 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080428 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |