JP3617423B2 - Method for estimating constrained breakout - Google Patents

Method for estimating constrained breakout Download PDF

Info

Publication number
JP3617423B2
JP3617423B2 JP2000223283A JP2000223283A JP3617423B2 JP 3617423 B2 JP3617423 B2 JP 3617423B2 JP 2000223283 A JP2000223283 A JP 2000223283A JP 2000223283 A JP2000223283 A JP 2000223283A JP 3617423 B2 JP3617423 B2 JP 3617423B2
Authority
JP
Japan
Prior art keywords
value
temperature measurement
thermocouple
temperature
breakout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000223283A
Other languages
Japanese (ja)
Other versions
JP2002035909A (en
Inventor
栄司 俵
正輝 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000223283A priority Critical patent/JP3617423B2/en
Publication of JP2002035909A publication Critical patent/JP2002035909A/en
Application granted granted Critical
Publication of JP3617423B2 publication Critical patent/JP3617423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続鋳造の鋳型に取り付けられた複数の熱電対による測温値の変化が所定の条件を満たしたときに異常と判定し、該判定結果に基づいて拘束性ブレークアウトの発生を推定する方法に関する。
【0002】
【従来の技術】
拘束性ブレークアウトとは、連続鋳造時に例えばモールドパウダーの鋳型・鋳片間への流入不良による潤滑不良等が原因で鋳型・鋳片間に焼付きが発生し、鋳片を下方に引き抜いた時に焼付部分の凝固シェルが破断してこの破断部が鋳型の下端から露出したところで鋳型内の溶鋼が外部に漏れ出すことをいう。
【0003】
ところで、連続鋳造時にこの拘束性ブレークアウトが発生すると、鋳造中断や設備損傷を引き起して生産性を低下させることになるため、従来においては、鋳型内面に複数の熱電対を埋設して該熱電対による測温値の変化の異常を検出し、該検出結果に基づいて拘束性ブレークアウトの発生を推定して警報等を発し、鋳込速度を遅くする等の対策を施している。
【0004】
拘束性ブレークアウトの発生を推定する方法の具体例としては、例えば、図8に示すように、鋳型1内面に複数の熱電対列a及びbを上下二段に埋設して温度を周期的にサンプリングし、上段列のいずれかの熱電対aの測温値の変化が異常と判定され、且つ、異常と判定された上段列の熱電対aに対応する部位の下段列の熱電対bの測温値の変化が異常と判断されたときに、拘束性ブレークアウトの発生を推定するものがある。このときの各熱電対の測温値変化の異常判定は、通常、周期的にサンプリングしている各熱電対毎の測温値の最新値をT、前回値をTi−1 、しきい値をΔTとした場合に、T−Ti−1 ≧ΔTの条件を満たしたときとしている。
【0005】
【発明が解決しようとする課題】
しかしながら、このようにT−Ti−1 ≧ΔTの条件を満たしたときに測温値変化の異常を判定する場合、各熱電対毎の応答性にばらつきがあるため、異常の判定を行うしきい値ΔTを応答性の鈍感な熱電対に合わせる必要があり、その結果、応答性の敏感な熱電対において誤検知(過検知)を生じてしまい、しかも、しきい値ΔTは固定値であるため、鋳造条件の変化や鋳片のディプレッション等による鋳型内面(銅板)の温度変化が大きい場合にも誤検知を生じるという不都合がある。
【0006】
なお、複数の熱電対に対して応答性に応じたしきい値を個別に設定し、且つ、このしきい値を鋳造状況に応じて時々刻々と変更し続けるようにすると、上述した不都合を解消することが可能になるが、このようなしきい値の設定は煩雑すぎて現実的でない。
本発明はこのような技術的背景に鑑みてなされたものであり、温度測定器による測温値変化の異常判定を正確且つ容易に行えるようにして拘束性ブレークアウト推定の信頼度を高めることができる拘束性ブレークアウトの推定方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る拘束性ブレークアウトの推定方法は、連続鋳造の鋳型に取り付けられた複数の温度測定器による測温値の変化が所定の条件を満たしたときに異常と判定し、該判定結果に基づいて拘束性ブレークアウトの発生を推定する方法であって、周期的にサンプリングしている温度測定器の測温値の最新値をTi 、前回値をTi-1 、しきい値をΔT、温度測定器の過去一定期間の測温値の標準偏差σを変数とした関数をF(σ)とした場合に、Ti ≧F(σ)及びTi −Ti-1 ≧ΔTの両方の条件を満たしたときに、測温値の変化が異常であると判定することを特徴とする。
ここに、F(σ)=T (avg) +kσである。
但し、 T (avg) :最新測温値T i 以前の前回値T i-1 を含む過去の一定期間の測温値 の平均値
σ:最新測温値T i 以前の前回値T i-1 を含む過去の一定期間の測温値の標準 偏差
k:測温値とブレークアウト痕等の関係から経験的に定まる定数
【0008】
【発明の実施の形態】
以下、本発明の実施の形態の一例を図を参照して説明する。図1は本発明の実施の形態の一例である拘束性ブレークアウトの推定方法を説明するための説明図、図2は応答性の敏感な熱電対及び応答性の鈍感な熱電対の各測温値と時間との関係を示すグラフ図、図3は応答性の敏感な熱電対及び応答性の鈍感な熱電対の各F(σ)値と時間との関係を示すグラフ図、図4はコントローラの作動を説明するためのフローチャート図、図5は本発明法を用いた場合の応答性の敏感な熱電対及び応答性の鈍感な熱電対における異常判定を示すグラフ図、図6は従来法を用いた場合の応答性の敏感な熱電対及び応答性の鈍感な熱電対における異常判定を示すグラフ図、図7は本発明例及び従来例の過検知による警報回数の比較を示すグラフ図である。
【0009】
図1において符号1は連続鋳造用鋳型、2はこの鋳型1の内面(銅板)に上下二段に複数箇所埋設された熱電対(温度測定器)であり、各熱電対2による測温値Tはコントローラ3によって所定の周期でサンプリングされて所定のプログラムによる処理が実行される。
コントローラ3は、F(σ)演算手段4、異常判定手段5及び警報発生手段6を備える。なお、説明の便宜上、異常判定手段5から先に説明する。
【0010】
異常判定手段5は、個々の熱電対2毎に測温値の変化が異常であるか否かを判定するものであり、次式(1)及び(2)の両方の条件を満たしたときに測温値の変化が異常であると判定する。
≧F(σ) …(1)
−Ti−1 ≧ΔT …(2)
但し、F(σ):F(σ)演算手段4によって与えられる値でTに対するしきい値(変動値)
:最新測温値
i−1 :前回測温値
ΔT :しきい値(固定値:熱電対の最小測温単位の2〜3倍程度)F(σ)演算手段4は、最新測温値T以前の過去の一定期間(例えば10点)の測温値の標準偏差σを変数とした関数F(σ)を各熱電対2毎且つサンプリング周期毎に算出するものであり、次式(3)により算出される。
【0011】
F(σ)=T(avg) +kσ…(3)
但し、T(avg) :最新測温値Ti 以前の前回値T i-1 を含む過去の一定期間(例えば1 0点)の測温値の平均値(例えば図2においてA点が最新測温値Ti とすると、Bの範囲10点の測温値の平均)
σ :最新測温値Ti 以前の前回値T i-1 を含む過去の一定期間(例えば1 0点)の測温値の標準偏差(例えば図2においてA点が最新測温値T i とすると、Bの範囲10点の測温値の標準偏差)
k :測温値とブレークアウト痕等の関係から経験的に定まる定数で、この 実施の形態ではk=3に設定する。
【0012】
なお、図3に、応答性の異なる二つの熱電対2について、各測温値を基にF(σ)演算手段4によって演算されたF(σ)の値を示す。図から明らかなように、F(σ)は熱電対2の応答性に応じて変更され、しかも、サンプリング周期毎に更新されて鋳込状況に応じて変動しているのが判る。
警報発生手段6は、上段のいずれかの熱電対2の測温値の変化が異常判定手段5によって異常と判定され、且つ、異常と判定された上段の熱電対2に対応する部位の下段の熱電対2の測温値の変化が異常判定手段5によって異常と判定されたときに、拘束性ブレークアウトの発生を推定し、警報をモニタ画面等に表示したり、警報音を発生させる。
【0013】
次に、図4を参照してコントローラ3の作動を説明する。なお、図4において、ステップS2がF(σ)演算手段4、ステップS3〜ステップS5が異常判定手段5、ステップS6〜ステップS8が警報発生手段6にそれぞれ相当する。
まず、ステップS1で各熱電対2による測温値Tを周期的にサンプリングし、ステップS2で最新測温値T以前の過去の一定期間(例えば10点)の測温値の標準偏差σを変数とした関数F(σ)を各熱電対2毎且つサンプリング周期毎に上記式(3)により算出し、ステップS3に移行する。
【0014】
ステップS3では、個々の熱電対2毎に最新測温値Tと関数F(σ)が比較され、上記(1)式を満たす場合はステップS4に移行する。
ステップS4では、(最新測温値T−前回測温値Ti−1 )としきい値ΔTが比較され、上記(2)式を満たす場合は、測温値の変化が異常と判定される(ステップS5)。
【0015】
ステップS6では、ステップS5の異常判定が上段の熱電対2についてなされたか否かが判断され、異常判定が上段の熱電対2についてなされた場合はステップS7に移行する。
ステップS7では、ステップS5の異常判定がステップS6で判断された上段の熱電対2に対応する部位の下段の熱電対2についてなされたか否かを判断し、異常判定が前記上段の熱電対2に対応する部位の下段の熱電対2についてなされた場合は拘束性ブレークアウトが発生するものとしてステップS8に移行する。
【0016】
ステップS8では、モニタ画面や音声等の出力装置に警報信号を出力し、この警報を認識した時点で鋳込速度を遅くする等の対策を施す。
上記の説明から明らかなように、この実施の形態では、従来用いていたしきい値ΔTに加えて、最近測温値Tに対して熱電対2の応答性に応じたしきい値、即ち、個々の熱電対2の測温値のばらつきを反映したしきい値F(σ)を計算により設定しているため、応答性の敏感な熱電対2による過検知及び応答性の鈍感な熱電対2における異常判定の見逃しを良好に防止することができ、しかも、しきい値F(σ)は熱電対2毎に変更されるだけでなく、サンプリング周期毎に再計算されて更新されるため、鋳造条件の変化や鋳片のディプレッション等による鋳型内面(銅板)の温度変化が大きい場合の誤検知を防止することができ、この結果、熱電対2による測温値変化の異常判定を正確且つ容易に行うことができ、拘束性ブレークアウト推定の信頼度を高めることができる。
【0017】
なお、上記実施の形態では、上段のいずれかの熱電対2の測温値の変化が異常判定手段5によって異常と判定され、且つ、異常と判定された上段の熱電対2に対応する部位の下段の熱電対2の測温値の変化が異常判定手段5によって異常と判定されたときに、拘束性ブレークアウトの発生を推定するようにしているが、必ずしもこれに限定する必要はなく、他の異常判定結果に基づいて、拘束性ブレークアウトの発生を推定するようにしてもよい。
【0018】
また、上記実施の形態では、鋳型1の内面(銅板)に上下二段に複数の熱電対2を埋設した場合を例に採ったが、これに限定されず、一段のみ或いは上下三段以上に熱電対2を埋設するようにしてもよい。
【0019】
【実施例】
一個の熱電対について、同一の連続鋳造機において異常判定法以外は同一条件とし、本発明例を用いた場合の異常判定の回数を図5に、本発明法を用いる前、即ち、T−Ti−1 ≧ΔTの条件を満たしたときに異常と判定する場合の異常判定の回数を図6に示す(従来例)。また、図7に、本発明例及び従来例の過検知によるブレークアウト警報の発生回数/月の比較を示す。図から明らかなように、本発明例の方が従来例に比べて過検知によるブレークアウト警報回数が大幅に減少しており、拘束性ブレークアウト推定の信頼度が高まったことが判る。
【0020】
【発明の効果】
上記の説明から明らかなように、本発明によれば、温度測定器による測温値変化の異常判定を正確且つ容易に行えることができるので、拘束性ブレークアウト推定の信頼度を高めることができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例である拘束性ブレークアウトの推定方法を説明するための説明図である。
【図2】応答性の敏感な熱電対及び応答性の鈍感な熱電対の各測温値と時間との関係を示すグラフ図である。
【図3】応答性の敏感な熱電対及び応答性の鈍感な熱電対の各F(σ)値と時間との関係を示すグラフ図である。
【図4】コントローラの作動を説明するためのフローチャート図である。
【図5】本発明法を用いた場合の応答性の敏感な熱電対及び応答性の鈍感な熱電対における異常判定を示すグラフ図である
【図6】従来法を用いた場合の応答性の敏感な熱電対及び応答性の鈍感な熱電対における異常判定を示すグラフ図である
【図7】本発明例及び従来例の過検知による警報回数の比較を示すグラフ図である。
【図8】従来の拘束性ブレークアウトの推定方法を説明するための説明図である。
【符号の説明】
1…連続鋳造用鋳型
2…熱電対(温度測定器)
3…コントローラ
4…F(σ)演算手段
5…異常判定手段
6…警報発生手段
[0001]
BACKGROUND OF THE INVENTION
The present invention determines that an abnormality occurs when changes in temperature measurement values by a plurality of thermocouples attached to a continuous casting mold satisfy a predetermined condition, and estimates the occurrence of a restrictive breakout based on the determination result. On how to do.
[0002]
[Prior art]
A constraining breakout is when seizure occurs between the mold and slab due to poor lubrication due to poor flow of mold powder between the mold and slab during continuous casting, and the slab is pulled downward. It means that the molten steel in the mold leaks to the outside when the solidified shell of the baked portion is broken and the broken portion is exposed from the lower end of the mold.
[0003]
By the way, if this constraining breakout occurs during continuous casting, the casting will be interrupted and the equipment will be damaged, resulting in a decrease in productivity. Measures are taken such as detecting abnormalities in changes in temperature measurement values due to thermocouples, estimating the occurrence of restrictive breakout based on the detection results, issuing an alarm, etc., and slowing down the casting speed.
[0004]
As a specific example of the method of estimating the occurrence of the constraining breakout, for example, as shown in FIG. 8, a plurality of thermocouple arrays a and b are embedded in the upper and lower two stages on the inner surface of the mold 1 to periodically change the temperature. sampled, change in temperature measurement values of one of the thermocouple a n of the top row is determined to be abnormal, and a thermocouple in the lower row of the portion corresponding to the thermocouple abnormality determined as the top row a n b Some estimate the occurrence of a restrictive breakout when it is determined that the change in the temperature measurement value of n is abnormal. At this time, the abnormality determination of the temperature measurement value change of each thermocouple is normally determined by T i , the latest value of the temperature measurement value for each thermocouple sampling periodically, T i-1 , and the threshold value. When the value is ΔT, the condition of T i −T i−1 ≧ ΔT is satisfied.
[0005]
[Problems to be solved by the invention]
However, when the abnormality of the temperature measurement value change is determined when the condition of T i −T i−1 ≧ ΔT is satisfied in this way, the abnormality is determined because the responsiveness varies for each thermocouple. It is necessary to match the threshold value ΔT to a thermocouple with insensitive response, and as a result, erroneous detection (overdetection) occurs in a sensitive thermocouple, and the threshold value ΔT is a fixed value. For this reason, there is an inconvenience that erroneous detection occurs even when the temperature change of the inner surface of the mold (copper plate) due to a change in casting conditions, depletion of a slab, or the like is large.
[0006]
In addition, if the threshold value corresponding to the responsiveness is individually set for a plurality of thermocouples, and the threshold value is continuously changed according to the casting situation, the above-mentioned inconvenience is solved. However, setting such a threshold is too complicated and impractical.
The present invention has been made in view of such a technical background, and can improve the reliability of the constraining breakout estimation by making it possible to accurately and easily perform an abnormality determination of a temperature measurement value change by a temperature measuring device. An object of the present invention is to provide a method for estimating a constraining breakout that can be performed.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the method of estimating a constraining breakout according to the present invention is abnormal when a change in temperature measured by a plurality of temperature measuring devices attached to a continuous casting mold satisfies a predetermined condition. determined that, the determination result in a method for estimating the occurrence of restricted breakout based, the latest value of the temperature measurement values of the temperature measuring device which periodically samples T i, the previous value T i −1 , where T i ≧ F (σ) and T i −, where ΔT is a threshold value, and F (σ) is a function with the standard deviation σ of the temperature measurement value of the temperature measuring device for a certain period of time as a variable. When both conditions of T i-1 ≧ ΔT are satisfied, it is determined that the change in the measured temperature value is abnormal.
Here, F (σ) = T (avg) + kσ.
However, T (avg) : Average value of temperature measurement values in the past certain period including the previous value T i-1 before the latest temperature measurement value T i
σ: Standard deviation of temperature measurement values in the past certain period including the previous value T i-1 before the latest temperature measurement value T i
k: a constant determined empirically from the relationship between the measured temperature value and the breakout mark, etc.
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram for explaining a method for estimating a constraining breakout as an example of an embodiment of the present invention, and FIG. 2 is a temperature measurement for each of a responsive sensitive thermocouple and a responsive insensitive thermocouple. FIG. 3 is a graph showing the relationship between values and time, FIG. 3 is a graph showing the relationship between each F (σ) value of a responsive sensitive thermocouple and a responsive insensitive thermocouple, and FIG. 4 is a controller. FIG. 5 is a flow chart for explaining the operation of FIG. 5, FIG. 5 is a graph showing abnormality determination in a sensitive thermocouple and a sensitive thermocouple when using the method of the present invention, and FIG. FIG. 7 is a graph showing a comparison of the number of alarms due to overdetection in the present invention example and the conventional example. FIG. 7 is a graph showing an abnormality determination in a sensitive thermocouple having a responsiveness and a thermocouple having an insensitive response. .
[0009]
In FIG. 1, reference numeral 1 is a continuous casting mold, 2 is a thermocouple (temperature measuring device) embedded in a plurality of upper and lower stages on the inner surface (copper plate) of the mold 1, and a temperature measurement value T by each thermocouple 2. Are sampled by the controller 3 at a predetermined cycle, and processing by a predetermined program is executed.
The controller 3 includes F (σ) calculation means 4, abnormality determination means 5 and alarm generation means 6. For convenience of explanation, the abnormality determination unit 5 will be described first.
[0010]
The abnormality determination means 5 determines whether or not the change in the measured temperature value is abnormal for each thermocouple 2, and when both conditions of the following expressions (1) and (2) are satisfied: It is determined that the change in temperature measurement value is abnormal.
T i ≧ F (σ) (1)
T i −T i−1 ≧ ΔT (2)
However, F (σ): F (σ) is a value given by the calculation means 4 and a threshold value (variation value) for T i .
T i : Latest temperature measurement value T i-1 : Previous temperature measurement value ΔT: Threshold value (fixed value: about 2 to 3 times the minimum temperature measurement unit of thermocouple) F (σ) calculating means 4 is intended to calculate the temperature value T i previous past predetermined period (e.g., 10) function the standard deviation sigma and the variable temperature measurement values of F a (sigma) for each thermocouple every two and a sampling period, the following Calculated by equation (3).
[0011]
F (σ) = T (avg) + kσ (3)
However, T (avg): the average value of the measured values in the past fixed period (for example, 10 points) including the previous value T i-1 before the latest measured value T i (for example, point A in FIG. 2 is the latest measured value). If temperature value T i , average of temperature measurement values of 10 points in B range)
σ: Standard deviation of temperature measurement values in a past fixed period (for example, 10 points) including the previous value T i-1 before the latest temperature measurement value T i (for example, point A in FIG. 2 is the latest temperature measurement value T i ). Then, the standard deviation of the temperature measurement values of 10 points in B range)
k: a constant determined empirically from the relationship between the temperature measurement value and the breakout mark, and in this embodiment, it is set to k = 3.
[0012]
FIG. 3 shows the value of F (σ) calculated by the F (σ) calculating means 4 based on each temperature measurement value for two thermocouples 2 having different responsiveness. As can be seen from the figure, F (σ) is changed according to the responsiveness of the thermocouple 2 and is updated every sampling period and fluctuates according to the casting condition.
The alarm generating means 6 has a change in the measured temperature value of any one of the upper thermocouples 2 determined to be abnormal by the abnormality determining means 5 and a lower part of the part corresponding to the upper thermocouple 2 determined to be abnormal. When a change in the measured temperature value of the thermocouple 2 is determined to be abnormal by the abnormality determining means 5, the occurrence of a restrictive breakout is estimated, an alarm is displayed on a monitor screen or an alarm sound is generated.
[0013]
Next, the operation of the controller 3 will be described with reference to FIG. In FIG. 4, step S2 corresponds to the F (σ) calculating means 4, steps S3 to S5 correspond to the abnormality determining means 5, and steps S6 to S8 correspond to the alarm generating means 6, respectively.
First, the temperature measurement value T by each thermocouple 2 was periodically sampled in step S1, the standard deviation of the temperature measurement values of the latest temperature measurement value T i previous past predetermined period (e.g., 10) sigma in step S2 The function F (σ) as a variable is calculated by the above formula (3) for each thermocouple 2 and for each sampling period, and the process proceeds to step S3.
[0014]
In step S3, the latest temperature measurement value Ti and the function F (σ) are compared for each thermocouple 2, and if the above equation (1) is satisfied, the process proceeds to step S4.
In step S4, (latest measured temperature value T i -previous measured temperature value T i-1 ) and a threshold value ΔT are compared, and if the above equation (2) is satisfied, it is determined that the change in measured temperature value is abnormal. (Step S5).
[0015]
In step S6, it is determined whether or not the abnormality determination in step S5 has been made for the upper thermocouple 2. If the abnormality determination has been made for the upper thermocouple 2, the process proceeds to step S7.
In step S7, it is determined whether or not the abnormality determination in step S5 has been performed on the lower thermocouple 2 in the region corresponding to the upper thermocouple 2 determined in step S6, and the abnormality determination is performed on the upper thermocouple 2. If it is made for the lower thermocouple 2 of the corresponding part, the process proceeds to step S8 on the assumption that a restrictive breakout occurs.
[0016]
In step S8, an alarm signal is output to an output device such as a monitor screen or a voice, and measures such as slowing down the casting speed when the alarm is recognized are taken.
As is clear from the above description, in this embodiment, in addition to the conventionally used threshold value ΔT, a threshold value corresponding to the response of the thermocouple 2 to the recently measured temperature value T i , that is, Since the threshold value F (σ) reflecting the variation in the measured temperature value of each thermocouple 2 is set by calculation, overdetection by the sensitive thermocouple 2 and the insensitive thermocouple 2 are insensitive. In addition, the threshold value F (σ) is not only changed for each thermocouple 2 but also recalculated and updated every sampling period. It is possible to prevent false detection when there is a large temperature change on the mold inner surface (copper plate) due to changes in conditions or depletion of the slab. As a result, it is possible to accurately and easily determine abnormalities in temperature measurement changes by the thermocouple 2. Can be done, restraint breakout Certain reliability can be increased.
[0017]
In the above embodiment, the change in the measured temperature value of any one of the upper thermocouples 2 is determined to be abnormal by the abnormality determining means 5 and the part corresponding to the upper thermocouple 2 determined to be abnormal is determined. When the change in the temperature measurement value of the lower thermocouple 2 is determined to be abnormal by the abnormality determination means 5, the occurrence of the restrictive breakout is estimated, but this is not necessarily limited to this. The occurrence of a restrictive breakout may be estimated based on the abnormality determination result.
[0018]
Moreover, in the said embodiment, although the case where the several thermocouple 2 was embed | buried in the upper and lower two steps in the inner surface (copper plate) of the casting_mold | template 1 was taken as an example, it is not limited to this, It is only one step or three or more steps above and below The thermocouple 2 may be embedded.
[0019]
【Example】
For one thermocouple, the same conditions other than the abnormality judgment method are used in the same continuous casting machine, and the number of times of abnormality judgment when using the example of the present invention is shown in FIG. 5, before using the method of the present invention, that is, T i − FIG. 6 shows the number of abnormality determinations when it is determined that there is an abnormality when the condition of T i-1 ≧ ΔT is satisfied (conventional example). FIG. 7 shows a comparison of the number of occurrences / month of breakout alarms due to overdetection of the present invention example and the conventional example. As is apparent from the figure, the number of breakout alarms due to overdetection is significantly reduced in the example of the present invention compared to the conventional example, and the reliability of the constraining breakout estimation is increased.
[0020]
【The invention's effect】
As is clear from the above description, according to the present invention, the abnormality determination of the temperature measurement value change by the temperature measuring device can be performed accurately and easily, so that the reliability of the constraining breakout estimation can be increased. The effect is obtained.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram for explaining a constraining breakout estimation method which is an example of an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between each measured temperature value and time of a thermocouple having a sensitive response and a thermocouple having an insensitive response;
FIG. 3 is a graph showing the relationship between each F (σ) value and time of a thermocouple having a sensitive response and a thermocouple having an insensitive response.
FIG. 4 is a flowchart for explaining the operation of the controller.
FIG. 5 is a graph showing abnormality determination in a thermocouple having a responsive sensitivity and a thermocouple having an insensitive response when the method of the present invention is used. FIG. 6 is a graph showing the responsiveness when using a conventional method. It is a graph which shows the abnormality determination in a sensitive thermocouple and a responsive insensitive thermocouple. [FIG. 7] It is a graph which shows the comparison of the alarm frequency by the overdetection of the example of this invention, and a prior art example.
FIG. 8 is an explanatory diagram for explaining a conventional method for estimating a constraining breakout.
[Explanation of symbols]
1 ... mold for continuous casting 2 ... thermocouple (temperature measuring device)
3 ... Controller 4 ... F (σ) computing means 5 ... Abnormality judging means 6 ... Alarm generating means

Claims (1)

連続鋳造の鋳型に取り付けられた複数の温度測定器による測温値の変化が所定の条件を満たしたときに異常と判定し、該判定結果に基づいて拘束性ブレークアウトの発生を推定する方法であって、
周期的にサンプリングしている温度測定器の測温値の最新値をTi 、前回値をTi-1 、しきい値をΔT、温度測定器の過去一定期間の測温値の標準偏差σを変数とした関数をF(σ)とした場合に、Ti ≧F(σ)及びTi −Ti-1 ≧ΔTの両方の条件を満たしたときに、測温値の変化が異常であると判定することを特徴とする拘束性ブレークアウトの推定方法。
ここに、F(σ)=T (avg) +kσである。
但し、 T (avg) :最新測温値T i 以前の前回値T i-1 を含む過去の一定期間の測温値 の平均値
σ:最新測温値T i 以前の前回値T i-1 を含む過去の一定期間の測温値の標準 偏差
k:測温値とブレークアウト痕等の関係から経験的に定まる定数
In a method for determining the occurrence of a constraining breakout based on the determination result based on the determination result when a change in temperature measured by a plurality of temperature measuring devices attached to a continuous casting mold satisfies a predetermined condition. There,
The latest value of the temperature measurement value of the temperature measuring device that is periodically sampled is T i , the previous value is T i-1 , the threshold value is ΔT, and the standard deviation σ of the temperature measurement value of the temperature measurement device for a certain period in the past. When F (σ) is a function having a variable as a variable, a change in temperature measurement value is abnormal when both conditions of T i ≧ F (σ) and T i −T i−1 ≧ ΔT are satisfied. A method for estimating a constraining breakout, characterized in that it is determined to be.
Here, F (σ) = T (avg) + kσ.
However, T (avg) : Average value of temperature measurement values in the past certain period including the previous value T i-1 before the latest temperature measurement value T i
σ: Standard deviation of temperature measurement values in the past certain period including the previous value T i-1 before the latest temperature measurement value T i
k: Constant determined empirically from the relationship between temperature measurement value and breakout mark
JP2000223283A 2000-07-25 2000-07-25 Method for estimating constrained breakout Expired - Fee Related JP3617423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000223283A JP3617423B2 (en) 2000-07-25 2000-07-25 Method for estimating constrained breakout

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000223283A JP3617423B2 (en) 2000-07-25 2000-07-25 Method for estimating constrained breakout

Publications (2)

Publication Number Publication Date
JP2002035909A JP2002035909A (en) 2002-02-05
JP3617423B2 true JP3617423B2 (en) 2005-02-02

Family

ID=18717398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000223283A Expired - Fee Related JP3617423B2 (en) 2000-07-25 2000-07-25 Method for estimating constrained breakout

Country Status (1)

Country Link
JP (1) JP3617423B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5154997B2 (en) * 2008-03-31 2013-02-27 Jfeスチール株式会社 Breakout prediction method in continuous casting.
JP5375622B2 (en) * 2010-01-14 2013-12-25 新日鐵住金株式会社 Breakout prediction method for continuous casting
JP7126100B2 (en) * 2019-03-06 2022-08-26 Jfeスチール株式会社 Continuous casting method for slab casting
CN113579190B (en) * 2021-06-24 2022-10-28 邯郸钢铁集团有限责任公司 Slab continuous casting breakout prediction method based on regional characteristics

Also Published As

Publication number Publication date
JP2002035909A (en) 2002-02-05

Similar Documents

Publication Publication Date Title
CN102151814B (en) Bonding alarm method and system during continuous casting production
JP6950860B1 (en) Breakout prediction method, continuous casting machine operation method, and breakout prediction device
JP3617423B2 (en) Method for estimating constrained breakout
JP5673100B2 (en) Breakout prediction method
JP7115240B2 (en) Breakout prediction method in continuous casting
JP2001239353A (en) Detecting method of abnormal casting condition inside mold in continuous casting
JP2012066278A (en) Method and device for predicting quality of cast slab surface layer
JP2003001386A (en) Estimation method for temperature distribution, flow rate distribution and flow rate vector distribution inside continuous casting mold, and their visualization apparatus
JPH0360852A (en) Method for detecting surface defect on cast slab in on-line
JP2002035908A (en) Method of detecting breakout in continuous casting equipment
JP3537625B2 (en) Method and apparatus for measuring solidified shell thickness in continuous casting
JP4214818B2 (en) Abnormality detection method for temperature sensor for predicting constrained breakout
JPH02151356A (en) Detection of surface fault on cast slab on-line
JPH0751263B2 (en) Breakout prediction method in continuous casting mold
JPS62192243A (en) Detection of casting slab longitudinal cracking in continuous casting
JP2587474B2 (en) Plant abnormality sign detection device
JP7384323B1 (en) Continuous casting start timing determination method, continuous casting equipment operating method, slab manufacturing method, determination device, continuous casting start determination system, and display terminal device
JPH0556224B2 (en)
JPH02165856A (en) Method for discriminating abnormality of temperature measuring element in continuous casting apparatus
JP2004066303A (en) Method for determining molten metal surface level in mold with thermocouple type level indicator
KR101058896B1 (en) Melt Level Estimation System
JPH03180261A (en) Method for predicting breakout
JPH0446658A (en) Device for predicting breakout in continuous casting apparatus
WO2021256063A1 (en) Breakout prediction method, method for operating continuous casting apparatus, and breakout prediction device
JP3493965B2 (en) Mold for continuous casting

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees