JPH0787891B2 - Removing agent and method for removing oxidizable harmful substances - Google Patents

Removing agent and method for removing oxidizable harmful substances

Info

Publication number
JPH0787891B2
JPH0787891B2 JP1095887A JP9588789A JPH0787891B2 JP H0787891 B2 JPH0787891 B2 JP H0787891B2 JP 1095887 A JP1095887 A JP 1095887A JP 9588789 A JP9588789 A JP 9588789A JP H0787891 B2 JPH0787891 B2 JP H0787891B2
Authority
JP
Japan
Prior art keywords
clay
harmful substances
present
molded body
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1095887A
Other languages
Japanese (ja)
Other versions
JPH02273514A (en
Inventor
謙一 関口
恒久 植田
伊男 夏梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP1095887A priority Critical patent/JPH0787891B2/en
Publication of JPH02273514A publication Critical patent/JPH02273514A/en
Publication of JPH0787891B2 publication Critical patent/JPH0787891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は気体中の悪臭成分あるいは刺激性成分及び青果
物や花卉類などの保存に有害な成長促進成分などの被酸
化性有害物質を除去する方法及び該有害物質の除去剤に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention removes odorous or irritating components in gas and oxidizable harmful substances such as growth promoting components harmful to preservation of fruits and vegetables and flowers. The present invention relates to a method and a remover for the harmful substance.

[従来の技術] 近年、生活レベルの向上や食物嗜好の高級化に伴い、工
業的に発生する悪臭や刺激性成分のみならず、家庭や飲
食店における廃棄物の調理時に発生する悪臭や刺激性成
分が問題となってきている。
[Prior Art] In recent years, with the improvement of living standards and the increasing taste of food, not only the odors and irritating ingredients that are industrially generated but also the odors and irritants that are generated at the time of cooking wastes at home and restaurants. The ingredients are becoming a problem.

一方、青果物や花卉類などについても、常に新鮮な又は
最適の熟成度の青果物や季節的あるいは物理的に珍しい
青果物や花卉類においては流通過程において熟成が進行
するのは商品価値を低下させるので好ましくない。
On the other hand, for fruits and vegetables, etc., it is preferable that fruits and vegetables with a fresh or optimum ripening degree or seasonally or physically rare fruits and flowers always undergo ripening in the distribution process because it lowers the commercial value. Absent.

これらの有害物質の主成分は、悪臭成分としては、硫
化水素、アンモニア、メルカプタン、アミン及びアルデ
ヒドなどがあり、刺激性成分としては、ホルムアルデ
ヒド、アクロレインなどのアルデヒド類やオゾンなどが
あり、青果物や花卉類の保存に関しては、植物成長ホ
ルモンであるエチレンなどがある。
The main components of these harmful substances are malodorous components such as hydrogen sulfide, ammonia, mercaptans, amines and aldehydes, and the irritating components include aldehydes such as formaldehyde and acrolein and ozone, and fruits and vegetables. As for the preservation of species, there is ethylene, which is a plant growth hormone.

これらの有害成分を除去するためには、従来は有害成
分を活性炭、アルミナ、シリカゲル、ゼオライトなどの
多孔性物質に吸着させる方法、酸性(塩基性)の有害
成分を塩基性(酸性)物質で中和する方法、有害成分
を過マンガン酸カリウムや二酸化塩素などで化学的に酸
化する方法などが知られている。
In order to remove these harmful components, the conventional method is to adsorb the harmful components to porous materials such as activated carbon, alumina, silica gel, zeolite, etc., and to remove acidic (basic) harmful components with basic (acidic) substances. It is known to use a method of oxidization, a method of chemically oxidizing harmful components with potassium permanganate, chlorine dioxide or the like.

しかしながら、これらの方法は必ずしも満足できるもの
でない。即ち、の方法にはアンモニアなどの塩基性物
質やエチレンの吸着能が十分でなく、また、吸着容量が
限られているという問題があり、の方法には用いる化
合物によって除去できる有害成分が限られるという欠点
があり、の方法には除去速度が遅いという欠点があ
る。
However, these methods are not always satisfactory. That is, the method of (1) has a problem that the adsorption capacity of basic substances such as ammonia and ethylene is not sufficient and the adsorption capacity is limited, and the method of (2) limits the harmful components that can be removed depending on the compound used. The method has the drawback that the removal rate is slow.

また、これらの有害物質除去剤をフィルター化して使用
している例も多いが、どの例も吸着能力や酸化能力が再
活性化されないため、どうしても除去能力に短時間に飽
和点が現れる欠点がある。
Also, there are many cases where these harmful substance removing agents are used after being filtered, but in any case, since the adsorption capacity and the oxidation capacity are not reactivated, there is a drawback that the removal capacity inevitably shows a saturation point in a short time. .

さらに、フィルター化の際には有害物質除去剤をラテッ
クス、有機系粘着剤、水ガラスなどのバインダーで不織
布やハニカム状支持体などに固定するのが一般的である
が、これらのバインダーが有害物質除去剤の表面を覆っ
てしまい、除去能力を十分に発揮できない欠点がある。
Further, when forming a filter, it is common to fix the harmful substance remover to a non-woven fabric or a honeycomb support with a binder such as latex, organic pressure-sensitive adhesive or water glass. There is a drawback that the surface of the removing agent is covered and the removing ability cannot be fully exhibited.

[発明が解決しようとする課題] 本発明の目的は、気体中に含まれる硫化水素、アンモニ
ア、メルカプタン、アミン及びアルデヒドなどの悪臭成
分やホルムアルデヒド、アクロレイン、オゾンなどの刺
激性成分並びにエチレンなどの植物成長ホルモンなどの
被酸化性有害物質を同時に迅速に効率よく除去し、しか
も、使用により除去活性が落ちない方法及び該有害物質
の除去剤を提供することにある [課題を解決するための手段] 本発明者らは、この目的を達成すべく鋭意研究を行った
結果、特定の化合物を含有した粘土成形体に紫外線を照
射しながら、これに気体中に含まれる被酸化性有害物質
を接触又は通過させることにより、これらの被酸化性有
害物質が効率よく除去され、しかも長時間使用してもこ
れらの化合物の被酸化性有害物質に対する除去活性が落
ちないことを見い出し、この知見に基づいて本発明を完
成するに至った。
[Problems to be Solved by the Invention] An object of the present invention is to provide malodorous components such as hydrogen sulfide, ammonia, mercaptan, amines and aldehydes contained in gas, irritating components such as formaldehyde, acrolein and ozone, and plants such as ethylene. It is intended to provide a method for rapidly and efficiently removing oxidizable harmful substances such as growth hormone and at the same time, a removal activity of the harmful substances and a removing agent for the harmful substances [Means for solving the problems] As a result of intensive studies to achieve this object, the inventors of the present invention, while irradiating a clay molded body containing a specific compound with ultraviolet rays, contact it with an oxidizable harmful substance contained in a gas or By passing these, these oxidizable harmful substances can be efficiently removed, and even if they are used for a long time, these compounds can be oxidized harmful substances. It found that removal activity does not fall against, and have completed the present invention based on this finding.

すなわち、本発明は、0.5〜5eVの禁止帯幅を有する半導
体を含有する粘土成形体に、被酸化性有害物質を含有す
る気体を接触させ、紫外線を照射することを特徴とする
該気体中の被酸化性有害物質の除去方法及びこれに用い
る除去剤を提供するものである。
That is, the present invention, a clay molded body containing a semiconductor having a band gap of 0.5 ~ 5eV, a gas containing an oxidizable harmful substance is brought into contact, and ultraviolet rays are radiated. The present invention provides a method for removing oxidizable harmful substances and a removing agent used for the method.

本発明において用いられる0.5〜5eVの禁止帯幅を有する
半導体とは、光触媒反応を生じる半導体であり、好まし
くは1〜3eVの禁止帯幅を持つものである。
The semiconductor having a bandgap of 0.5 to 5 eV used in the present invention is a semiconductor which causes a photocatalytic reaction, and preferably has a bandgap of 1 to 3 eV.

特定の半導体はその禁止帯幅以上のエネルギーの光を照
射することにより、価電子帯から伝導帯への電子励起が
生じ、価電子帯に正孔、伝導帯に電子が生成する。
When a specific semiconductor is irradiated with light having an energy higher than the band gap, electronic excitation occurs from the valence band to the conduction band, and holes are generated in the valence band and electrons are generated in the conduction band.

そしてこれらの正孔及び電子が半導体表面に拡散等によ
り現れ、気相、液相での光触媒反応を行うことが知られ
ている。
It is known that these holes and electrons appear on the semiconductor surface by diffusion or the like and carry out a photocatalytic reaction in a gas phase or a liquid phase.

本発明に用いる半導体としては、上記の作用を有するも
のは特に制限なく使用することができ、例えば、二酸化
スズ、酸化亜鉛、三酸化タングステン、二酸化チタン、
チタン酸バリウム、酸化第二鉄などの金属酸化物;例え
ば硫化亜鉛、硫化カドミウム、硫化鉛、セレン化亜鉛、
セレン化カドミウムなどの金属カルコゲナイド;例えば
シリコン、ゲルマニウムなどの第IV族元素;例えばガリ
ウムリン、ガリウムヒ素、インジウムリンなどのIII−
V族化合物半導体;例えばポリアセチレン、ポリピロー
ル、ポリチオフェン、ポリアニリン、ポリビニルカルバ
ゾールなどの有機半導体その他の半導体を使用すること
ができる。
As the semiconductor used in the present invention, those having the above-mentioned effects can be used without particular limitation, and examples thereof include tin dioxide, zinc oxide, tungsten trioxide, titanium dioxide,
Metal oxides such as barium titanate and ferric oxide; for example, zinc sulfide, cadmium sulfide, lead sulfide, zinc selenide,
Metal chalcogenides such as cadmium selenide; Group IV elements such as silicon and germanium; III- such as gallium phosphide, gallium arsenide and indium phosphide
Group V compound semiconductors; for example, organic semiconductors such as polyacetylene, polypyrrole, polythiophene, polyaniline, and polyvinylcarbazole, and other semiconductors can be used.

また、以上挙げた半導体にヒ素、リン、アルミニウム、
ホウ素、ナトリウム、ハロゲンなどの不純物をドープし
たものも同様に使用することができる。
In addition, arsenic, phosphorus, aluminum,
Those doped with impurities such as boron, sodium and halogen can also be used in the same manner.

本発明に用いる半導体として、酸化亜鉛、三酸化タング
ステン、二酸化チタン、酸化セリウムなどの金属酸化物
及びその混晶物がとくに好適である。
As the semiconductor used in the present invention, metal oxides such as zinc oxide, tungsten trioxide, titanium dioxide and cerium oxide, and mixed crystals thereof are particularly suitable.

また、これらの半導体表面に白金などの貴金属を担持す
ることにより、触媒効果の向上をはかることができる。
Further, by supporting a noble metal such as platinum on the surface of these semiconductors, the catalytic effect can be improved.

さらに、活性炭や酸化白土などの吸着剤を併用してもよ
い。
Furthermore, an adsorbent such as activated carbon or oxide clay may be used together.

本発明において用いられる粘土成形体の粘土としては、
例えば、耐火物、陶磁器、製紙工業、ゴム工業などで使
用されている粘土を使用でき、適当量の水を混ぜて捏ね
ると可塑性を示し、乾燥すると剛性を示すものであれば
どのようなものでも使用することができる。
As the clay of the clay molded body used in the present invention,
For example, clay that is used in refractories, ceramics, paper industry, rubber industry, etc. can be used, and any material that exhibits plasticity when kneaded with an appropriate amount of water and shows rigidity when dried is used. Can be used.

本発明に用いる粘土は、例えば、カオリン、スメクタイ
ト、イライト、リョクデイ石、アロフェンなどの含水ケ
イ酸塩からなる粘土鉱物を一種類以上含み、粒径がコロ
イド状から微砂状に亙るものを好適に使用することがで
きる。
The clay used in the present invention includes, for example, one or more kinds of clay minerals composed of hydrous silicates such as kaolin, smectite, illite, ryokdeite, and allophane, and those having a particle size ranging from colloidal to fine sand are suitable. Can be used.

これらの中で、少ない水で可塑性が出ることから、カオ
リン、イライト、リョクデイ石を多く含む粘土を好適に
使用することができる。
Among them, clay containing a large amount of kaolin, illite, and ryokdei stone can be preferably used because the plasticity can be obtained with a small amount of water.

また、他の脱臭剤や吸着剤などを半導体と共に粘土に混
ぜて使用することができる。
Further, other deodorants, adsorbents and the like can be mixed with clay and used together with the semiconductor.

粘土成形体を用いる利点としては、ラテックス、有機系
粘着剤、水ガラスなどの他のバインダーや石膏、セメン
トなどの水和凝集体を支持体として用いると異なり、活
性点を失活させることがないので、半導体本来の有害物
質除去能力を落とさず、むしろ逆に相当向上させること
にある。
The advantage of using a clay molded product is that it does not deactivate the active sites, unlike using a binder such as latex, an organic pressure-sensitive adhesive, or water glass, or a hydrated aggregate such as gypsum or cement as a support. Therefore, the semiconductor's original ability to remove harmful substances should not be compromised, but rather should be improved considerably.

このような顕著な好ましい作用が起こるのは、粘土成形
体の場合には、他のバインダー等を用いる場合のように
バインダー自体や水などが半導体表面を覆うことがない
ことや同一半導体量では半導体を粉末のまま使用する場
合よりもより広範囲に分散でき、光の照射面積を大きく
できるためと推定することができる。
Such a remarkable preferable action occurs in the case of a clay molded body in which the binder itself or water does not cover the semiconductor surface as in the case of using other binders or the like, and when the same semiconductor amount is used, It can be presumed that the powder can be dispersed over a wider range and the light irradiation area can be increased as compared with the case where powder is used as it is.

本発明において用いられる粘土成形体中の半導体の含量
割合は性能上からは大きければ大きいほど良い。しか
し、粘土本来の可塑性や成形性を維持するためには、半
導体の含量は80%以下が好ましく、特に機械的強度を持
たせるためには70%以下が好ましい。
From the viewpoint of performance, the larger the content ratio of the semiconductor in the clay molded body used in the present invention, the better. However, in order to maintain the original plasticity and moldability of clay, the content of semiconductor is preferably 80% or less, and particularly preferably 70% or less for imparting mechanical strength.

本発明において用いられる半導体を添加した粘土成形体
は、光源の周囲に支持体を備えてこれに接着するかある
いは、ネジ、ボルトなどで固定する。また、粘土成形体
そのものを、直接光源の周囲に設置することもできる。
The semiconductor-added clay molding used in the present invention is provided with a support around the light source and adhered thereto, or fixed with screws, bolts or the like. Further, the clay molded body itself can be installed directly around the light source.

本発明の粘土形成体は、フィルターとして気流中の有害
物質を除去することができる。
The clay forming body of the present invention can remove harmful substances in an air stream as a filter.

本発明の粘土成形体より構成されるフィルターの形状と
しては、多孔質平膜型、ハニカム型、フィルター構造体
内充填型などが挙げられるが、これらに限定されない。
Examples of the shape of the filter formed from the clay molded body of the present invention include, but are not limited to, a porous flat membrane type, a honeycomb type, and a filter structure filling type.

本発明において用いられる紫外線は、波長が400〜200nm
の近紫外線が反応効率の点から好ましいが、この範囲以
外の200nm以下の真空紫外線が含まれていても差し支え
ない。
The ultraviolet ray used in the present invention has a wavelength of 400 to 200 nm.
The near-ultraviolet ray is preferable from the viewpoint of reaction efficiency, but vacuum ultraviolet rays having a wavelength of 200 nm or less other than this range may be contained.

これらの紫外線は、超高圧水銀灯、キセノン灯、低圧水
銀灯を単独あるいは併用することによって発生させうる
が、放電管内に水銀と希ガス以外のガリウム、タリウム
などの第三成分を共存させて目的に合致した波長分布特
性を有するように改良された光源を使用してもよい。も
ちろん、紫外線以外の光線、例えば、可視光線を含むも
のも使用することができる。
These ultraviolet rays can be generated by using an ultra-high pressure mercury lamp, a xenon lamp, and a low-pressure mercury lamp alone or in combination, but the third component such as gallium and thallium other than mercury and rare gas coexists in the discharge tube to meet the purpose. A light source modified to have the above wavelength distribution characteristics may be used. Of course, light rays other than ultraviolet rays, for example, rays including visible rays can also be used.

本発明において紫外線の照射に用いられる紫外線ランプ
は、粘土成形体のなるべく近くであって、気体や液体の
流入方向及び/又は流出方向に設置することができる。
また、粘土成形体内部に設置されてもよい。ランプ表面
の汚れを防ぐため、特に好ましくは、流出方向に向けて
設置することができる。
The ultraviolet lamp used for the irradiation of ultraviolet rays in the present invention can be installed as close as possible to the clay molded body and in the inflow direction and / or the outflow direction of the gas or liquid.
It may also be installed inside the clay compact. In order to prevent the lamp surface from being contaminated, it is particularly preferable that the lamp can be installed so as to face the outflow direction.

本発明の方法は、特定の反応器に被処理気体を導入して
バッチ方式又は連続方式法で実施してもよいし、循環装
置等に設置して連続処理してもよい。
The method of the present invention may be carried out by introducing a gas to be treated into a specific reactor by a batch method or a continuous method, or may be installed in a circulation device or the like for continuous treatment.

本発明において用いられる反応器は開放系でも密閉系で
もよく、反応器にファンを用いて送風する通風系でもよ
い。
The reactor used in the present invention may be an open system or a closed system, or may be a ventilation system in which a fan is used to blow air into the reactor.

半導体の使用量は、本発明において用いられる粘土成形
体又は該粘土成形体より構成させるフィルターとその前
後に通路の寸法形状、対象となる被酸化性有害物質の種
類、組成、混合比及び光源の種類と電力使用量によって
異なり、特に制限されない。
The amount of the semiconductor used is the clay molded body used in the present invention or the filter formed from the clay molded body and the size and shape of the passage before and after the clay molded body, the type, composition, mixing ratio and the light source of the target oxidizable harmful substance. It depends on the type and power consumption, and is not particularly limited.

本発明の粘土成形体による酸化除去反応は硫黄酸化物、
窒素酸化物、炭化水素化合物、ハロゲン化合物など種々
の有害物質や水や有機溶媒などの媒体が共存していても
妨害されないで除去反応が起こるので極めて性能が安定
している有害物質の除去方法となる。
The oxidation removal reaction by the clay molded body of the present invention is sulfur oxide,
Even if various harmful substances such as nitrogen oxides, hydrocarbon compounds, halogen compounds, and media such as water and organic solvents coexist, the removal reaction will occur without being disturbed, so a method of removing harmful substances with extremely stable performance. Become.

[実施例] 以下、本発明を実施例によりさらに詳細に説明する。な
お、実施例中の部及び%は重量基準である。
[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples. The parts and% in the examples are based on weight.

実施例1、比較例1 第1表に示す量の二酸化チタンと笠岡粘土に水10gを徐
々に加えながら、ミキサーにより混練し、十分可塑性が
でた状態で孔径3〜4mmの市販のミートチョッパーを用
いて粘土混練物のペレットを調製した。
Example 1, Comparative Example 1 Titanium dioxide and Kasaoka clay in the amounts shown in Table 1 were gradually added with 10 g of water and kneaded with a mixer to obtain a commercially available meat chopper having a pore size of 3 to 4 mm while being sufficiently plastic. It was used to prepare pellets of clay kneaded material.

さらにこのペレットを120℃で1時間乾燥した後、孔径
約1mmのフルイにより選別し、フルイに残ったものを試
料とした。
Further, after drying the pellets at 120 ° C. for 1 hour, they were sorted by a sieve having a pore diameter of about 1 mm, and the residue remaining in the sieve was used as a sample.

得られた試料5gを80mlのパイレックスガラス製三角フラ
スコ内に投入し、85ppmの濃度のエチレンを含む空気で
三角フラスコ内を置換した後、シリコンゴム栓で密栓し
た。次に三角フラスコから20cmの距離に設置された超高
圧水銀灯(照度10mW/cm、主波長365nm)により三角フラ
スコを照射し、容器内のエチレンの濃度の経時変化をガ
スクロマトグラフィーで追跡した。
5 g of the obtained sample was placed in an 80 ml Pyrex glass Erlenmeyer flask, the inside of the Erlenmeyer flask was replaced with air containing ethylene at a concentration of 85 ppm, and the container was sealed with a silicone rubber stopper. Next, the Erlenmeyer flask was irradiated with an ultra-high pressure mercury lamp (illuminance 10 mW / cm, main wavelength 365 nm) installed at a distance of 20 cm from the Erlenmeyer flask, and the time-dependent change in the concentration of ethylene in the container was traced by gas chromatography.

結果を第1表に示した。The results are shown in Table 1.

第1表の結果から、本発明の粘土成形体は、二酸化チタ
ン又は粘土成形体を単独で使用する場合に比べてエチレ
ン除去性能に優れることが分かる。
From the results shown in Table 1, it can be seen that the clay molded body of the present invention is superior in ethylene removal performance as compared with the case where titanium dioxide or the clay molded body is used alone.

実施例2〜5 第2表に示す半導体を笠岡粘土と1対1で混練して調製
した試料を、実施例1と同じ方法により、空気中の有害
成分の種類を表示のものに変えて除去実験を行った。結
果を第2表に示した。
Examples 2 to 5 Samples prepared by kneading the semiconductors shown in Table 2 with Kasaoka clay in a one-to-one manner were removed by the same method as in Example 1, except that the types of harmful components in the air were changed to those shown. An experiment was conducted. The results are shown in Table 2.

比較例2〜5 実施例2〜5に対応して、半導体のない状態で、同様の
操作により性能評価実験を行い、結果を第2表に示し
た。
Comparative Examples 2-5 Corresponding to Examples 2-5, performance evaluation experiments were conducted by the same operation in the absence of semiconductor, and the results are shown in Table 2.

第2表の結果から、半導体の種類を変えても、本発明の
粘土成形体が各種有害物質に対して顕著な除去効果を示
すことが分かる。
From the results shown in Table 2, it can be seen that the clay molded body of the present invention shows a remarkable removing effect against various harmful substances even if the type of semiconductor is changed.

実施例6 等量の二酸化チタンと粘土とから実施例1と同様に調製
した粘土ペレット10gを内径14mmで長さ10cmのパイレッ
クスガラス製ガラス管内に充填し、この管の両端に細い
ガラス管を貫通させたシリコンゴム製ゴム栓で挿入しフ
ィルターを作成した。第3表の初濃度の有害成分を含む
空気を気体発生器やボンベなどにより発生させ、一方の
細いガラス管から流入させ他方から流出させた。そして
フィルターの入口と出口の空気中の有害成分の濃度をガ
スクロマトグラフィーで測定した。
Example 6 10 g of clay pellets prepared in the same manner as in Example 1 from equal amounts of titanium dioxide and clay were filled in a Pyrex glass glass tube having an inner diameter of 14 mm and a length of 10 cm, and a thin glass tube was penetrated at both ends of the tube. A filter was created by inserting with the rubber plug made of silicon rubber. Air containing harmful components in the initial concentration shown in Table 3 was generated by a gas generator or a cylinder, and flowed in from one thin glass tube and flowed out from the other. Then, the concentrations of harmful components in the air at the inlet and the outlet of the filter were measured by gas chromatography.

その際フィルター部分はガラス管から20cmの距離に設置
された超高圧水銀灯(照度10mW/cm、主波長364nm)によ
り紫外線を照射した。
At that time, the filter portion was irradiated with ultraviolet rays by an ultra-high pressure mercury lamp (illuminance 10 mW / cm, main wavelength 364 nm) installed at a distance of 20 cm from the glass tube.

第3表の結果から、本発明の粘土成形体を充填したフィ
ルターを通過させることにより、各種の有害物質を効率
よく除去できることが分かる。
From the results shown in Table 3, it can be seen that various harmful substances can be efficiently removed by passing through the filter filled with the clay molded body of the present invention.

実施例7〜8、比較例6〜7 成形方法あるいは担持方法による除去能力の違いを比較
するために第4表に示すように、 二酸化チタンと笠岡粘土を1対1で混練して調製した
粘土ペレット 市販の二酸化チタン粉末(日本エアロジル社製) 二酸化チタンハニカム成形体(京セラ社製) 二酸化チタン担持石膏 二酸化チタン担持セメント 市販の多孔質ポリウレタン(ブリジストン社製) 担持なし の場合について、実施例1と同様に80mlの三角フラスコ
を用いたエチレン、メチルメルカプタンの除去実験を行
った。結果を第4表に示した。
Examples 7 to 8 and Comparative Examples 6 to 7 Clays prepared by kneading titanium dioxide and Kasaoka clay in a one-to-one ratio as shown in Table 4 in order to compare the difference in removal capacity depending on the molding method or the supporting method. Pellets Commercially available titanium dioxide powder (manufactured by Nippon Aerosil Co., Ltd.) Titanium dioxide honeycomb molded body (manufactured by Kyocera Corporation) Titanium dioxide-supported gypsum Titanium dioxide-supported cement Commercially available porous polyurethane (manufactured by Bridgestone Co., Ltd.) Similarly, an experiment for removing ethylene and methyl mercaptan was carried out using an 80 ml Erlenmeyer flask. The results are shown in Table 4.

なお、石膏及びセメントは、予め、所定の寸法(断面3
×3cm2、長さ4cm)の水を加えて成形し、その表面がま
だ柔らかいうちに二酸化チタンを所定量担持し、自然乾
燥させて試料とした。
In addition, plaster and cement have predetermined dimensions (cross section 3
(3 cm 2 × 4 cm length) was added and molded, and a predetermined amount of titanium dioxide was carried while the surface was still soft, and naturally dried to obtain a sample.

多孔質ウレタンは多孔質ポリウレタンハニカムにウレタ
ン系粘着剤(旭電化社)を用いて二酸化チタンを所定量
担持し、3×5×0.5cm3に切断し、試料とした。
The porous urethane was used as a sample by supporting a predetermined amount of titanium dioxide on a porous polyurethane honeycomb using a urethane-based adhesive (Asahi Denka Co., Ltd.) and cutting it into 3 × 5 × 0.5 cm 3 .

第4表の結果から、本発明の粘土成形体が、二酸化チタ
ンを他の担体に担持させた場合よりも、有害物質の除去
性能に優れていることが分かる。
From the results in Table 4, it can be seen that the clay molded product of the present invention is superior in removal performance of harmful substances as compared with the case where titanium dioxide is supported on another carrier.

実施例9及び比較例9 実施例2で実験に用いた二酸化チタン担持粘土ペレット
を実施例1と同様80mlの三角フラスコに入れ、市販のオ
ゾン発生装置で発生させたオゾンを100ppm前後になるよ
う添加した後、紫外線照射を開始し、ガステック社製検
知管NO18Lでオゾン濃度の経時変化を調べた。その結果
を第5表に示した。
Example 9 and Comparative Example 9 The titanium dioxide-supporting clay pellets used in the experiment of Example 2 were put into an 80 ml Erlenmeyer flask as in Example 1, and ozone generated by a commercially available ozone generator was added to be about 100 ppm. After that, ultraviolet irradiation was started, and the time-dependent change in ozone concentration was examined using a detector tube NO18L manufactured by Gastec. The results are shown in Table 5.

その際、検知管の測定範囲が狭い(0.1ppm〜3ppm)の
で、16倍に希釈して測定した。
At that time, since the measuring range of the detector tube was narrow (0.1ppm to 3ppm), it was diluted 16 times for measurement.

なお、比較実験も表示の除去剤を用いてオゾンに対する
性能評価を同様に行った。
In the comparative experiment as well, the performance evaluation against ozone was similarly performed using the indicated removing agent.

第5表の結果から、本発明の粘土成形体がオゾン除去に
対しても優れた性能を有することが分かる。
From the results shown in Table 5, it can be seen that the clay molded product of the present invention has excellent performance in removing ozone.

実施例10 実施例2Aで用いたのと同じ粘土成形体5gをパイラックス
ガラス製三角フラスコに投入し、三角フラスコ内を1000
0ppmのエチレンを含む空気で連続的に置換する。フラス
コ内のエチレン濃度が10000ppmで安定したのち、実施例
1と同様にして紫外線照射を開始したところ、エチレン
濃度が減少しはじめ、2時間後に半減した。
Example 10 5 g of the same clay molded body used in Example 2A was placed in an Erlenmeyer flask made of Pyrax glass, and the inside of the Erlenmeyer flask was set to 1000.
Continuously replace with air containing 0 ppm ethylene. After the ethylene concentration in the flask became stable at 10000 ppm, UV irradiation was started in the same manner as in Example 1, and the ethylene concentration began to decrease and became half after 2 hours.

これに対して、活性炭ハニカム成形体について同様の実
験を行ったところ、はじめに数百ppmの濃度低下がみら
れたが1時間後にほぼ一定値に達し、それ以上濃度低下
しなかった。
On the other hand, when a similar experiment was carried out on the activated carbon honeycomb molded body, a concentration drop of several hundred ppm was first observed, but it reached a substantially constant value after 1 hour, and the concentration did not drop further.

さらに、過マンガン酸カリウムについても同様の実験を
行ったが、殆どエチレン濃度は減少しなかった。
Further, the same experiment was carried out for potassium permanganate, but the ethylene concentration hardly decreased.

これらの結果から、本発明の粘土成形体は、紫外線照射
により有害物質除去活性が再生されることが分かる。
From these results, it is understood that the clay molded body of the present invention has the harmful substance removing activity regenerated by the irradiation of ultraviolet rays.

[発明の効果] 本発明によれば、従来技術に比較して、硫化水素、アン
モニア、メルカプタン、アミン及びアルデヒドなどの悪
臭成分やホルムアルデヒド、アクロレインなどの刺激性
成分並びに青果物及び花卉類の保存に有害なエチレンな
どを含む気体を有害物質の種類に関係なく同時に迅速に
効率よく除去することができ、しかも除去活性が落ちな
い。本発明の方法は、安全性が高く、適用できる有害物
質の範囲が広く、その上、硫黄酸化物、窒素酸化物、炭
化水素化合物、含ハロゲン化合物など種々の有害物質や
水や有機溶媒などの媒体が共存していても妨害されない
で除去反応が起こるので極めて性能が安定していて、シ
ステム化が簡単な利点がある。
[Advantages of the Invention] According to the present invention, compared with the prior art, it is more harmful to the storage of malodorous components such as hydrogen sulfide, ammonia, mercaptan, amines and aldehydes, irritating components such as formaldehyde and acrolein, and fruits and vegetables. It is possible to remove gas containing ethylene and other substances at the same time quickly and efficiently regardless of the kind of harmful substances, and the removal activity does not deteriorate. The method of the present invention is highly safe and has a wide range of applicable harmful substances.In addition, various harmful substances such as sulfur oxides, nitrogen oxides, hydrocarbon compounds and halogen-containing compounds, water and organic solvents, etc. Even if the medium coexists, the removal reaction takes place without being disturbed, so that the performance is extremely stable and there is an advantage that systemization is simple.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−187322(JP,A) 特開 昭63−80833(JP,A) 特開 昭64−11622(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-187322 (JP, A) JP-A-63-80833 (JP, A) JP-A-64-11622 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】0.5〜5eVの禁止帯幅を有する半導体を添加
した粘土成形体に、被酸化性有害物質を含有する気体を
接触させ、紫外線を照射することを特徴とする該気体中
の被酸化性有害物質の除去方法。
1. A clay molded body containing a semiconductor having a band gap of 0.5 to 5 eV is brought into contact with a gas containing an oxidizable harmful substance and irradiated with ultraviolet rays. Method for removing oxidative harmful substances.
【請求項2】0.5〜5eVの禁止帯幅を有する半導体の粉末
と粘土とからなる成形体である被酸化性有害物質除去
剤。
2. An agent for removing oxidizable harmful substances, which is a molded body composed of a semiconductor powder having a band gap of 0.5 to 5 eV and clay.
JP1095887A 1989-04-14 1989-04-14 Removing agent and method for removing oxidizable harmful substances Expired - Fee Related JPH0787891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1095887A JPH0787891B2 (en) 1989-04-14 1989-04-14 Removing agent and method for removing oxidizable harmful substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1095887A JPH0787891B2 (en) 1989-04-14 1989-04-14 Removing agent and method for removing oxidizable harmful substances

Publications (2)

Publication Number Publication Date
JPH02273514A JPH02273514A (en) 1990-11-08
JPH0787891B2 true JPH0787891B2 (en) 1995-09-27

Family

ID=14149827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1095887A Expired - Fee Related JPH0787891B2 (en) 1989-04-14 1989-04-14 Removing agent and method for removing oxidizable harmful substances

Country Status (1)

Country Link
JP (1) JPH0787891B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106139881A (en) * 2016-07-28 2016-11-23 赵先芝 It is a kind of except aldehyde antibacterial purifying air is except aldehyde pearl

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU676299B2 (en) 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same
JPH09231821A (en) * 1995-12-22 1997-09-05 Toto Ltd Luminaire and method for maintaining illuminance
JP4629700B2 (en) * 2007-05-25 2011-02-09 石原産業株式会社 Set of photocatalyst and coating composition for forming the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187322A (en) * 1984-03-06 1985-09-24 Toyota Central Res & Dev Lab Inc Purifying method of waste
JPS6380833A (en) * 1986-09-25 1988-04-11 Toyota Central Res & Dev Lab Inc Method and apparatus for purifying malodor in compartment
JPS6411622A (en) * 1987-07-02 1989-01-17 Nippon Berufuroo Kk Air cleaner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106139881A (en) * 2016-07-28 2016-11-23 赵先芝 It is a kind of except aldehyde antibacterial purifying air is except aldehyde pearl

Also Published As

Publication number Publication date
JPH02273514A (en) 1990-11-08

Similar Documents

Publication Publication Date Title
CN1064861C (en) Sorbent compositions
JPWO2005089941A1 (en) Novel photocatalyst and method for producing the same
JP3217101B2 (en) Method for producing air purifier
JPH0787891B2 (en) Removing agent and method for removing oxidizable harmful substances
JPH07171403A (en) Poisoning resistant deodorization photocatalyst
KR101548599B1 (en) Room temperature adsorption decomposer and method of manufacture for sewer odor remove
JPH09206558A (en) Device for removing harmful material in gas
JP2001232206A (en) Porous photocatalyst and method of manufacturing the same
JP3247611B2 (en) Hazardous substance remover and harmful substance removal method using the same
JPH0790148B2 (en) Hazardous substance removal filter and manufacturing method thereof
JP3118558B2 (en) Water treatment catalyst and water treatment method
CN101837300B (en) Photocatalysis coupled catalyst based on ozone and preparation method thereof
JP3276297B2 (en) Photocatalyst
KR100333590B1 (en) Deodorizer and method for deodorizing in light-regeneration mode
JP3521748B2 (en) Air purification filter and air purifier
JP3546766B2 (en) Deodorizing catalyst
JP3884503B2 (en) Hazardous substance removing agent and method of removing harmful substance using the same
JPS6115732B2 (en)
JP2002263449A (en) Activated carbon filter
JPH07155611A (en) Catalyst and method for removing malodorous substance
KR102557943B1 (en) Physical and Chemical Deodorization System and Method using Gaseous Chlorine Dioxide Adsorption on Silica Gel and UV Irradiation as well as Adsorption-Desorption on-Shifts Process
JP4182210B2 (en) Process for producing titanium oxide composite coated with silicate
KR20060033749A (en) Air purifying device comprising gas-liquid two phase fluidized bed reactor
JP3131480B2 (en) Air purifier and method for producing the same
JP4460270B2 (en) Photocatalyst composition and method for producing the same.

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees