JPS60187322A - Purifying method of waste - Google Patents

Purifying method of waste

Info

Publication number
JPS60187322A
JPS60187322A JP59042566A JP4256684A JPS60187322A JP S60187322 A JPS60187322 A JP S60187322A JP 59042566 A JP59042566 A JP 59042566A JP 4256684 A JP4256684 A JP 4256684A JP S60187322 A JPS60187322 A JP S60187322A
Authority
JP
Japan
Prior art keywords
waste
photocatalyst
reactor
light
harmful substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59042566A
Other languages
Japanese (ja)
Other versions
JPH029850B2 (en
Inventor
Kenichiro Suzuki
賢一郎 鈴木
Taisuke Yoshimoto
吉本 泰介
Kenichi Honda
健一 本多
Akira Fujishima
昭 藤嶋
Ryo Baba
馬場 凉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP59042566A priority Critical patent/JPS60187322A/en
Publication of JPS60187322A publication Critical patent/JPS60187322A/en
Publication of JPH029850B2 publication Critical patent/JPH029850B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Processing Of Solid Wastes (AREA)
  • Physical Water Treatments (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To purify waste matter economically and easily by using a photocatalyst activated in accordance with light energy in a method for removing harmful substances contained in the waste matter. CONSTITUTION:The waste samples introduced from a sample inlet 51 are introduced to a reactor 31 via a circulator 52. The reactor consists of light permeable material and a photocatalyst 41 is set at the bottom part. A semiconductor such as TiO2 and ZnO and a molecular photocatalyst such as porphyrin are used as the photocatalyst. The waste introduced in the reactor is photodecomposed with the light which is emitted from a light source 61 and introduced through a lens 71 and removed and the purified substances are discharged from a sample outlet 53.

Description

【発明の詳細な説明】 本発明は、環境汚染物質等の廃棄物中の有害物質を太陽
エネルギー等の光エネルギーとその光エネルギーに対応
して活性化する光触媒とを利用して分解することにより
、上記廃棄物を浄化する方法に関する。
[Detailed Description of the Invention] The present invention decomposes harmful substances in waste such as environmental pollutants by using light energy such as solar energy and a photocatalyst that is activated in response to the light energy. , relates to a method for purifying the above waste.

各種工場から排出される廃液、廃ガスあるいは自動車等
の内燃機関等から排出される排気ガス等の廃棄物中には
、環境汚染物質、爆発性蒸発物質。
Environmental pollutants and explosive evaporative substances are found in waste materials such as waste fluids and gases discharged from various factories and exhaust gases discharged from internal combustion engines such as automobiles.

悪臭物質等の人体及び環境に悪影響を及ぼす有害物質が
含まれている。
Contains harmful substances such as foul-smelling substances that have an adverse effect on the human body and the environment.

これら有害物質を分解除去して、廃棄物を浄化する方法
は、従来から種々考えられており9例えば、(1)廃棄
物を水、酸、アIレヵリ、あるいは薬液によシ洗浄する
方法、(2)廃棄物中の有害物質を活性炭、イオン交換
樹脂等にょシ吸着・除去する方法、(3)廃棄物を直接
燃焼あるいは触媒燃焼によシ除去する方法、(4)廃棄
物中の有害物質をオゾン。塩素1次亜塩素酸ナトリウム
、過マンガン酸カリウム等を用いて酸化する方法等が知
られている。
Various methods have been considered for purifying waste by decomposing and removing these harmful substances.9 For example, (1) washing waste with water, acid, oil, or chemical solution; (2) A method of adsorbing and removing harmful substances in waste using activated carbon, ion exchange resin, etc.; (3) A method of removing waste by direct combustion or catalytic combustion; (4) A method of removing harmful substances in waste through direct combustion or catalytic combustion; Ozone substance. Methods of oxidizing chlorine using sodium hypochlorite, potassium permanganate, etc. are known.

しかし、これら従来の浄化方法では、処理工程での燃料
費、電力費、処理液等のランニングコストが高くつき、
処理装置・設備も複雑化、大型化する必要があシ、また
。前処理、後処理の煩わしさが大きく9種々の問題が存
在する。更に、処理する廃棄物の状態に合わせて浄化方
法を選んでいるのが現状である。
However, with these conventional purification methods, running costs such as fuel costs, electricity costs, and processing liquids during the treatment process are high.
Processing equipment and equipment also need to become more complex and larger. The pre-processing and post-processing are very troublesome and there are 9 various problems. Furthermore, the current situation is that purification methods are selected depending on the condition of the waste to be treated.

本発明の目的は、上記従来方法の欠点を解消し。The object of the present invention is to eliminate the drawbacks of the above-mentioned conventional methods.

光エネルギーに対応して活性化する光触媒を用いて、廃
棄物中の有害物質を光化学的に分解・除去することによ
シ、経済的に、かつ簡便に廃棄物を浄化する方法を提供
することにある。
To provide an economical and simple method for purifying waste by photochemically decomposing and removing harmful substances in waste using a photocatalyst activated in response to light energy. It is in.

すなわち1本発明の廃棄物の浄化方法は、廃棄物中の有
害物質を分解して、廃棄物を浄化する方法において2反
応器内に光触媒と処理すべき廃棄= 3 = 物とを入れると共に該反応器内に光を照射して。
That is, 1) the waste purification method of the present invention is a method for purifying waste by decomposing harmful substances in the waste; 2) placing a photocatalyst and waste to be treated in a reactor; Irradiate light into the reactor.

上記有害物質を光化学反応により分解することを特徴と
するものである。
It is characterized by decomposing the above-mentioned harmful substances by photochemical reaction.

本発明によれば、廃棄物中の各種有害物質を。According to the present invention, various harmful substances in waste can be removed.

光化学的に常温で分解・除去することができ、前記従来
技術のごとき加熱操作等が不要であシ、かつ、太陽光線
のような無尽蔵のエネルギーを光エネルギーとして光照
射に使用することができ、安価に廃棄物を浄化する方法
を提供することができる。
It can be decomposed and removed photochemically at room temperature, there is no need for heating operations as in the conventional technology, and inexhaustible energy such as sunlight can be used as light energy for light irradiation, A method for purifying waste at low cost can be provided.

また1本発明の処理工程は9反応器内に光触媒と処理す
べき廃棄物を入れ、光照射するのみであるから、操作及
び装置が非常に簡単であシ、廃棄物中の有害物質を種類
に関係なく9分解・除去することができる。
In addition, the treatment process of the present invention involves simply placing a photocatalyst and the waste to be treated in a reactor and irradiating it with light, so the operation and equipment are very simple. 9 can be decomposed and removed regardless of the

更に1本発明で用いる光触媒は、酸化触媒等の従来の触
媒に比して、熱劣化及び被毒元素による活性低下が少な
く、長寿命である。
Furthermore, the photocatalyst used in the present invention suffers less from thermal deterioration and decrease in activity due to poisoning elements and has a longer lifespan than conventional catalysts such as oxidation catalysts.

本発明の廃棄物中の有害物質の浄化のメカニズムは明確
ではないが、光触媒が対応する波長の光−4− エネルギーを受けることによシ、以下のような機構で廃
棄物が浄化されると推測される。
Although the mechanism of purification of harmful substances in waste according to the present invention is not clear, when the photocatalyst receives light energy of the corresponding wavelength, the waste is purified by the following mechanism. Guessed.

光触媒は、光照射により光エネルギーを吸収して励起さ
れることによシ、活性化し、酸化、還元反応を駆動する
ものである。この光触媒には、I酸化fp :ylj(
TiOt)、 、f 酸化亜鉛MZ n O)等の固体
光触媒と呼ばれる半導体及びpテニウムビピリジμ錯体
、ボμフィリン等の分子光触媒と呼はれる化合物が含ま
れる。例えば、光触媒としてn型半導体を用いる場合、
第1図の該半導体の電子状態を表わす機構図(図中、e
−は電子、p十は正孔。
A photocatalyst is activated by absorbing light energy and being excited by light irradiation, thereby driving oxidation and reduction reactions. This photocatalyst has I oxidation fp :ylj(
Semiconductors called solid photocatalysts such as TiOt), f zinc oxide MZnO) and compounds called molecular photocatalysts such as p-thenium bipyridiμ complex and boμfilin are included. For example, when using an n-type semiconductor as a photocatalyst,
A mechanical diagram showing the electronic state of the semiconductor in Figure 1 (in the figure, e
- is an electron, p10 is a hole.

hJは光エネルギーを表わす。)に示すように。hJ represents light energy. ) as shown.

該半導体が光エネルギーを受けて励起され、半導体表面
に電子、正孔が、それぞれ伝導帯1の底部。
The semiconductor is excited by receiving light energy, and electrons and holes are formed on the semiconductor surface at the bottom of the conduction band 1.

価電子帯2の上部に存在するようにな99強い還元、酸
化のエネルギーを保持することになる。この状態におい
て、廃棄物中の有害物質が該半導体表面に接触すると、
半導体の強い還元力、酸化力によシ、有害物質は分解さ
れ、無害物質へ改質されていくと考えられる。また、光
触媒が光エネルギーを吸収しても、励起された電子と正
孔の分離が悪く、再結合して9強い還元力、酸化力を有
さない場合においても吸収した光エネルギーが熱に変換
されて反応を高めることもできると考えられる。
Since it exists in the upper part of the valence band 2, it holds 99 strong reduction and oxidation energy. In this state, when harmful substances in the waste come into contact with the semiconductor surface,
It is thought that due to the strong reducing and oxidizing power of semiconductors, harmful substances are decomposed and reformed into harmless substances. In addition, even if a photocatalyst absorbs light energy, the excited electrons and holes are poorly separated and recombined.9 Even if the photocatalyst does not have strong reducing or oxidizing power, the absorbed light energy is converted into heat. It is thought that the reaction can also be enhanced by

本発明に用いる光触媒は、光の照射によって。The photocatalyst used in the present invention is produced by irradiation with light.

その触媒反応を促進させるものであわ、その種類は限定
されることはないが1例えば酸化チタン(T102 )
 +酸化鉄(Fe20m )、酸化タングステン(WO
j ’) 、酸化スズ(8no1 ) 、酸化ビスマス
(B 1 goz ) 、酸化ニッケ7v(NiO)、
酸化銅(OuzO)。
It accelerates the catalytic reaction, and its type is not limited. For example, titanium oxide (T102)
+ Iron oxide (Fe20m), tungsten oxide (WO
j'), tin oxide (8no1), bismuth oxide (B 1 goz), nickel oxide 7v (NiO),
Copper oxide (OuzO).

酸化亜鉛(ZnO)、チタン酸ストロンチウム(8rT
tOs)、酸化ケイ素(8tOz ) *硫化モリブデ
ン(MoS2)。
Zinc oxide (ZnO), strontium titanate (8rT
tOs), silicon oxide (8tOz) *Molybdenum sulfide (MoS2).

JJン化インジウム(InP )、リン化ガリウム(G
ap)。
JJIndium phosphide (InP), gallium phosphide (G
ap).

インジウム鉛(InPb)等のn型及びP型半導体。N-type and P-type semiconductors such as indium lead (InPb).

あるいは該半導体に白金(Pt)、ロジウム(Ru)。Alternatively, the semiconductor is platinum (Pt) or rhodium (Ru).

ニオブ(Nb )、銅(Ou)、スズ(8n)、酸化ル
テニウム(Rub、) 、酸化ニッケ1(NiO*の金
属または金属酸化物を担持した半導体の固体光触媒及び
ルテニウムビピリジル錯体等のμテニウム(Ru)錯体
、ポルフィリン類、クロロフィル等の分子光触媒が挙げ
られる。本発明においては、これら光触媒のうち1種ま
たは2種以上を使用する。
Semiconductor solid photocatalysts supporting metals or metal oxides such as niobium (Nb), copper (Ou), tin (8n), ruthenium oxide (Rub), nickel oxide (NiO*), and μthenium (such as ruthenium bipyridyl complexes) Examples include molecular photocatalysts such as Ru) complexes, porphyrins, and chlorophylls.In the present invention, one or more of these photocatalysts are used.

上記光触媒の調製法としては、固体光触媒の場合、市販
品の他金域の高温焼成、電解酸化、化学的蒸着法、真空
蒸着法、塗布法、共沈法、金属ハロゲン化物等の蒸発酸
化法等により調製する。また1分子光触媒の場合、該触
媒を水等の溶媒に溶解、あるいは半導体上に吸着付着さ
せ増感効果を持たせてもよい。なお1分子光触媒を溶媒
に溶解する際に、処理する廃棄物中の有害物質の成分。
In the case of solid photocatalysts, in the case of solid photocatalysts, in addition to commercially available products, high-temperature firing of metal, electrolytic oxidation, chemical vapor deposition, vacuum evaporation, coating, coprecipitation, evaporative oxidation of metal halides, etc. Prepared by etc. In the case of a single molecule photocatalyst, the catalyst may be dissolved in a solvent such as water or adsorbed onto a semiconductor to provide a sensitizing effect. In addition, components of harmful substances in the waste to be treated when dissolving a single molecule photocatalyst in a solvent.

濃度により、その濃度を調製するのが望ましい。It is desirable to adjust the concentration depending on the concentration.

前記半導体にP t、 Run2等の金属または金属酸
化物を担持させるのは、半導体の光触媒をさらに高活性
にするためであり、担持量として、該金属または金属酸
化物を上記半導体に対して001〜20wt%の範囲内
で担持させるのが望ましく。
The reason why a metal or metal oxide such as Pt or Run2 is supported on the semiconductor is to make the photocatalyst of the semiconductor even more active, and the supported amount of the metal or metal oxide is 001 It is preferable to carry it within a range of 20 wt%.

さらに優れた浄化活性は0.1〜5wt%の範囲内で担
持させる場合に得られる。なお、上記半導体と金属また
は金属酸化物の組み合せによっては。
Even better purification activity is obtained when the amount of the catalyst is supported within the range of 0.1 to 5 wt%. Note that depending on the combination of the semiconductor and metal or metal oxide.

 7 − 上記範囲に限定されるものではない。また、その成法を
用いるのがよい。
7 - Not limited to the above range. Also, it is better to use that method.

本発明において、浄化できる廃棄物としては。In the present invention, waste that can be purified includes:

各種工場、事業所の工程あるいは自動車等の内燃機関よ
シ排出される環境汚染物質、爆発性蒸発物質、悪臭物質
等がある。例えば、自動車等の内燃機関、工場または事
業所の塗装工程等の各工程から排出される炭化水素類、
アンモニア等の有害ガス、アルデヒド類、セロソルブ類
、アミン類、インドール類、メルカプタン類等の悪臭ガ
ス、更に切削工場等から排出される廃油を含んだ排液、
その他各種工場から排出される有機リン化合物、ヒ素化
合物等の有害物質を含む排液、バクテリア。
There are environmental pollutants, explosive evaporative substances, foul-smelling substances, etc. that are emitted from the processes of various factories and offices, or from internal combustion engines such as automobiles. For example, hydrocarbons emitted from various processes such as internal combustion engines of automobiles, painting processes of factories or business offices, etc.
Harmful gases such as ammonia, malodorous gases such as aldehydes, cellosolves, amines, indoles, and mercaptans, as well as waste fluids containing waste oil discharged from cutting factories, etc.
Bacteria and wastewater containing harmful substances such as organic phosphorus compounds and arsenic compounds discharged from various other factories.

酵母、かび等の微生物を含む排液、あるいは塩化水素、
硝酸等の廃酸、水酸化す)+Jウム、水酸化カリウム等
の廃アルカリ、汚でい等がある。また。
Waste water containing microorganisms such as yeast and mold, or hydrogen chloride,
There are waste acids such as nitric acid, waste alkalis such as hydroxide, potassium hydroxide, and dirt. Also.

廃棄物の形状としては、気体状、液体状、固体状−8− のものがあり、それら一種以上のもの2例えばコロイド
状のものもよい。なお、固体状の廃棄物は。
The waste may be in the form of gas, liquid, or solid, and more than one type of waste may be in the form of a colloid, for example, in the form of a colloid. In addition, solid waste.

処理工程で、光触媒と接触しやすいように水等の溶媒に
溶解または懸濁させて液相糸にするか、あるいは粉砕等
によシ微粒子状に浮遊させた気相系にて処理するのが望
ましい。
In the treatment process, it can be dissolved or suspended in a solvent such as water to make it easier to contact with the photocatalyst, or it can be treated in a gas phase system where it is suspended in the form of fine particles by pulverization etc. desirable.

前記光触媒を反応器内に配置し、必要に応じて攪拌を行
ない、該反応器内に気体状態あるいは液体状態で、廃棄
物を導入する。それと同時に光触媒に光を照射して、廃
棄物中の有害物質を光化学反応によって分解処理する。
The photocatalyst is placed in a reactor, stirred if necessary, and waste is introduced into the reactor in a gaseous or liquid state. At the same time, the photocatalyst is irradiated with light to decompose harmful substances in the waste through photochemical reactions.

この場合、使用する光照射の光エネルギーは。In this case, the light energy of the light irradiation used is.

反応器内の光触媒を励起させて、廃棄物中の有害物質を
分解する能力を持たせるものであシ、光触媒を励起させ
るのに対応した波長を有する光エネルギーであって、可
視波長ないし紫外波長を有する光を照射するのが望まし
い。該光エネルギー源としては、太陽光の自然光源、あ
るいは水銀灯よ多発する光、ハロゲンランプ等のフィラ
メントランプより生ずる光、ショートアークキャノン光
It excites the photocatalyst in the reactor to give it the ability to decompose harmful substances in waste, and it uses light energy with a wavelength corresponding to excitation of the photocatalyst, which is visible wavelength or ultraviolet wavelength. It is desirable to irradiate light with a The light energy source includes a natural light source such as sunlight, light emitted from a mercury lamp, light emitted from a filament lamp such as a halogen lamp, and short arc cannon light.

レーザー光線等の人工光源が挙げられる。また。Artificial light sources such as laser beams may be mentioned. Also.

太陽光源の補助光源として9人工光源を同時に使用して
もよい。
Nine artificial light sources may be used simultaneously as supplementary light sources to the solar light source.

上記光照射方法は、透明な反応器を用いてその外部よシ
照射する方法、あるいは反応器内に照射光源を配置し1
反応器の内部よシ照射する方法がある。さらに反応器の
外部及び内部双方より同時に照射して、照射効率を高め
ることもできる。また、光の強さを高めるために、フレ
ネルレンズ。
The above light irradiation method includes a method of using a transparent reactor and irradiating the outside thereof, or a method of irradiating the outside of the reactor, or a method of placing an irradiation light source inside the reactor.
There is a method of irradiating the inside of the reactor. Furthermore, irradiation efficiency can be increased by simultaneously irradiating from both the outside and inside of the reactor. Also, a Fresnel lens to increase the intensity of light.

ガラスレンズ等によシ、集光してもよく、更に。The light may be collected by a glass lens or the like.

オプティカルファイバーで光エネルギーを輸送してもよ
い。
Optical fibers may also transport light energy.

また、上記透明反応器は、光触媒が効率よく光照射され
るように、入射光が反射、吸収することなく、透過する
ものが望ましく9例えば、ガラス。
In addition, the transparent reactor is preferably one that allows incident light to pass through without being reflected or absorbed so that the photocatalyst is efficiently irradiated with light.9 For example, it is made of glass.

石英、プラスチック等の可視波長ないし紫外波長の光の
透過性が大きい材料から成るものがよい。
It is preferable to use a material such as quartz or plastic that is highly transparent to visible or ultraviolet wavelength light.

また、該反応器の形態は、四分方式わるいは流通反応方
式等を使用し、さらに回分方式と流通反応方式を組み合
わせたものも使用することができる。
Further, the reactor may be of a four-part system or a flow reaction system, and a combination of a batch system and a flow reaction system may also be used.

なお、流通方式の場合には、1回流通方式、循環方式の
どちらでも使用することができる。
In addition, in the case of a distribution method, either a one-time distribution method or a circulation method can be used.

上記光触媒の形状としては、粉末状、コロイド状、液状
、板状等があυ、該先光触媒反応器内にソノマまの状態
で、あるいはガラスクロス等にコートして固定させるの
がよい。また板状の光触媒をショートサーキット電極板
状にすることもできる。該光触媒が粉末の場合には、そ
の粒径は1000μm以下の範囲内のものを使用するの
が望ましく。
The photocatalyst may be in the form of a powder, colloid, liquid, plate, etc., and is preferably fixed in the photocatalyst reactor in the form of a sonoma or by coating it on glass cloth or the like. Moreover, a plate-shaped photocatalyst can also be made into a short circuit electrode plate. When the photocatalyst is a powder, it is preferable to use one whose particle size is within the range of 1000 μm or less.

この範囲内のものは1表面積が大きく、浄化効率が高い
。更に優れた浄化効率は該粒径が0.01〜50μmの
範囲内の場合に得られる。
Those within this range have a large surface area and high purification efficiency. Even better purification efficiency is obtained when the particle size is within the range of 0.01 to 50 μm.

また1反応系が液相系の場合には、光触媒を懸濁させ、
気相系の場合には気体中に光触媒を浮遊させてもよい。
In addition, if one reaction system is a liquid phase system, suspending the photocatalyst,
In the case of a gas phase system, the photocatalyst may be suspended in the gas.

この光触媒と共に反応器内に導入する処理すべき廃業物
は、気相系あるいは液相系の反応系で反応器に入れるの
が望ましい。該廃棄物が気体状の場合、そのままの状態
、あるいは水等の溶媒に溶解させて液相系で導入するの
がよく、液体状の場合、そのままの状態で反応器に導入
するのがよい。
The industrial waste to be treated is preferably introduced into the reactor together with the photocatalyst in a gas phase or liquid phase reaction system. When the waste is in a gaseous state, it is preferably introduced as it is or in a liquid phase system by dissolving it in a solvent such as water, and when it is in a liquid state, it is preferably introduced into the reactor as it is.

更に、該廃棄物が固体状の場合には、水等の溶媒に溶解
または懸濁させて液相系にするか、あるいは粉砕等によ
り微粒子状にして浮遊させて気相糸で導入するのがよい
Furthermore, if the waste is in solid form, it is best to dissolve or suspend it in a solvent such as water to make it into a liquid phase system, or to make it into fine particles by pulverization, suspend it, and introduce it through a vapor phase thread. good.

以上の工程により、廃棄物中の有害物質は、光触媒の光
化学反応により分解され、最終的には。
Through the above steps, harmful substances in the waste are decomposed by the photochemical reaction of the photocatalyst, and finally.

二酸化炭素((30g )、水素(■2)等の無害物質
へ改質し、除去することができる。
It can be removed by reforming it into harmless substances such as carbon dioxide (30g) and hydrogen (2).

以下9本発明の詳細な説明する。Hereinafter, nine aspects of the present invention will be described in detail.

実施例1゜ 第2図に9本実施例で用いる有害物質の分解除去装置の
概略説明図を示す。即ち、光透過性材料であるガラスか
ら成る反応器31の底部に光触媒41を設置し、試料入
口51よシ廃棄物試料を導入し、循環器52を経て2反
応器に導入されるようになっている。光源61よシ発す
る光は、レンズ71を通υ9反応器に入射するようにな
っている。処理された廃棄物は試料出口53よシ除去さ
れる閉鎖循環系装置である(なお9図中のり、)−11
− は光エネμギーを表わす。)。
Embodiment 1 FIG. 2 shows a schematic diagram of a device for decomposing and removing harmful substances used in this embodiment. That is, a photocatalyst 41 is installed at the bottom of a reactor 31 made of glass, which is a light-transmitting material, and a waste sample is introduced through a sample inlet 51, and is introduced into two reactors via a circulator 52. ing. Light emitted from the light source 61 passes through a lens 71 and enters the υ9 reactor. It is a closed circulation system device in which the treated waste is removed through the sample outlet 53 (note the glue in Figure 9)-11
− represents light energy μ. ).

光触媒としては1粒径0103〜3μmの結晶構主成分
で悪臭を発し1作業環境を悪化させるエチルセロソルブ
を用いた。
As a photocatalyst, ethyl cellosolve, which has a crystalline structure with a particle size of 0.103 to 3 μm as a main component, emits a bad odor and deteriorates the working environment, was used.

上記Tie、触媒5fを反応器31内に粉末状で設置し
、上記閉鎖循環系装置を窒素ガスでパージした後、試料
入口51よシエチμセロソμブ10pgを注入して、室
温で蒸気とした。その時のエチルセロソルブの濃度は5
0 ppmであった。その後。
After installing the Tie catalyst 5f in powder form in the reactor 31 and purging the closed circulation system device with nitrogen gas, 10 pg of Tie-Cellosobu was injected through the sample inlet 51 and turned into vapor at room temperature. . At that time, the concentration of ethyl cellosolve was 5
It was 0 ppm. after that.

循環速度21/minで、エチルセロソルブの蒸気を循
環させ、500Wの水銀灯から発する光を反応器り1に
照射した。
Ethyl cellosolve vapor was circulated at a circulation rate of 21/min, and the reactor 1 was irradiated with light emitted from a 500 W mercury lamp.

上記処理後の蒸気を試料出口53から取シ出し。The steam after the above treatment is taken out from the sample outlet 53.

ガスクロマトグラフによシ分析した。その結果をエチル
セロソルブの除去率の経時変化を表わす第3図に示す。
It was analyzed by gas chromatography. The results are shown in FIG. 3, which shows the change over time in the removal rate of ethyl cellosolve.

第3図より明らかなように、照射時間と共に、エチルセ
ロソルブの除去率は増加しておシ1本発明の方法によシ
、有害物質であるエチ= 12 − ルセロソルブを除去できることが分る。
As is clear from FIG. 3, the removal rate of ethyl cellosolve increases as the irradiation time increases, indicating that the method of the present invention can remove the harmful substance ethyl cellosolve.

実施例2゜ 第4図に9本実施例で用いる回分方式の有害物質分解除
去装置の概略説明図(なお1図中のり、)は光エネルギ
ーを表わす。)を示す。即ち。
Embodiment 2 FIG. 4 shows a schematic diagram of a batch-type harmful substance decomposition and removal apparatus used in this embodiment (note that the symbol in FIG. 1 represents light energy). ) is shown. That is.

先ず光透過性石英ガラスから成る反応器32内に先触[
42を懸濁させた廃棄物8を入れた。次いで、マグネテ
イックスターラ54を用い、攪拌子55によシ9反反応
器31内攪拌させると同時に。
[
Waste 8 in which 42 was suspended was added. Next, a magnetic stirrer 54 is used to stir the inside of the reactor 31 using a stirring bar 55 at the same time.

1、!ll+KWのキセノン灯62から発せられた光を
レンズ72を経て1反応器32内に照射した。
1,! Light emitted from a xenon lamp 62 of 11+KW was irradiated into one reactor 32 through a lens 72.

上記廃棄物中の有害物質としては、悪臭規制法に指定さ
れる悪臭8物質の1成分であるアセトアルデヒドの水溶
液(濃度200’ppm) 50mlを用いた。また、
光触媒としては1粒径1〜5Q71mのTie、粉末(
アナターゼ型結晶構造)を3g用い定%源としては+1
.5kwのキセノン灯を用いた。
As the hazardous substance in the waste, 50 ml of an aqueous solution (concentration 200'ppm) of acetaldehyde, which is one of the eight malodorous substances specified in the Offensive Odor Control Law, was used. Also,
As a photocatalyst, Tie powder with a particle size of 1 to 5Q71m (
+1 as a constant% source using 3g of anatase type crystal structure)
.. A 5kW xenon lamp was used.

上記処理後の溶液を反応器から取り出し、ガスクロマト
グラフによシ、アセトアルデヒドの濃度を分析した。そ
の結果をアセトアルデヒドの除去率の経時変化を表わす
第5図に示す。第5図より明らかなように、照射時間と
共に、アセトアルデヒドの除去率は増加しておシ1本発
明方法によシ有害物質を除去できることが分る。
The solution after the above treatment was taken out from the reactor, and the concentration of acetaldehyde was analyzed by gas chromatography. The results are shown in FIG. 5, which shows the change over time in the removal rate of acetaldehyde. As is clear from FIG. 5, the removal rate of acetaldehyde increases with the irradiation time, indicating that harmful substances can be removed by the method of the present invention.

実施例6゜ 光触媒として、実施例1と同様なTie、粉末にエタノ
ールを犠牲試薬にして塩化白金酸(nzPtCl、・6
H,O)を用い光電析法によシ白金(Pt)を約1wt
%担持して調製した。廃棄物中の有害物質及び有害物質
の分解除去装置は実施例1と同様なものを使用した。
Example 6 As a photocatalyst, chloroplatinic acid (nzPtCl, .6
Approximately 1 wt of platinum (Pt) was deposited by photoelectrodeposition using H, O).
% loading. The same equipment as in Example 1 was used as a device for decomposing and removing hazardous substances and hazardous substances in waste.

上記Pt担持Tie、触媒1gを反応器31内に粉末状
で設置し、上記装置を窒素ガスでパージした後、試料人
口51よりエチルセロソルブ50μgを注入して室温で
蒸気とした。その時のエチルセロソルブの濃度は250
 ppmであった。その後。
The above Pt-supported Tie and 1 g of the catalyst were placed in the reactor 31 in powder form, and after purging the above device with nitrogen gas, 50 μg of ethyl cellosolve was injected from the sample population 51 and turned into vapor at room temperature. The concentration of ethyl cellosolve at that time was 250
It was ppm. after that.

循環速度21 /minでエチルセロソルブの蒸気を循
環させ、500W水銀灯から発する光を反応器31に照
射した。上記処理後の蒸気を試料出口53− 15 − から取り出しガスクロマトグラフによシ分析した。
Ethyl cellosolve vapor was circulated at a circulation rate of 21/min, and the reactor 31 was irradiated with light emitted from a 500 W mercury lamp. The vapor after the above treatment was taken out from the sample outlet 53-15- and analyzed using a gas chromatograph.

その結果より、照射時間と共に、エチルセロソルブの除
去率は増加しておシ2本発明の方法によシ。
The results showed that the removal rate of ethyl cellosolve increased with the irradiation time, and the removal rate of ethyl cellosolve increased with the method of the present invention.

有害物質を除去できることが分る。It turns out that harmful substances can be removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は9本発明にかかる光触媒の電子状態を表わす機
構図、第2図は1本発明の実施例1及び3の有害物質除
去装置の概略説明図、第4図は本発明の実施例2の有害
物質除去装置の概略説明図。 第5図、第5図は、それぞれ実施例1,2′の本発明方
法による有害物質除去率曲線を示す図である。 1・・・伝導帯 2・・・価電子帯 31.32・・・反応器、41.42・・・光触媒51
・・・試料入口、53・・・試料出口。 61・・・水銀灯光源、62・・・ キセノン灯光源出
願人 株式会社 豊田中央研究所 (外6名) 16− 第7図 第2図 t5i、4、射峙M (hr) 第4図 b
Fig. 1 is a mechanical diagram showing the electronic state of the photocatalyst according to the present invention, Fig. 2 is a schematic explanatory diagram of the harmful substance removal device of Examples 1 and 3 of the present invention, and Fig. 4 is an example of the present invention. FIG. 2 is a schematic explanatory diagram of No. 2 harmful substance removal device. FIGS. 5 and 5 are graphs showing harmful substance removal rate curves according to the method of the present invention in Examples 1 and 2', respectively. 1... Conduction band 2... Valence band 31.32... Reactor, 41.42... Photocatalyst 51
...sample inlet, 53...sample outlet. 61... Mercury lamp light source, 62... Xenon lamp light source Applicant Toyota Central Research Institute Co., Ltd. (6 others) 16- Figure 7 Figure 2 t5i, 4, Firing position M (hr) Figure 4 b

Claims (1)

【特許請求の範囲】 (1)廃棄物中の有害物質を分解して、廃棄物を浄化す
る方法において1反応器内に光触媒と処理すべき廃棄物
とを入れると共に該反応器内に光を照射して、上記有害
物質を光化学反応により分解することを特徴とする廃棄
物の浄化方法。 等の金属または金属酸化物を担持した半導体の固体光触
媒、lvテニウムビビリジル錯体、ポリフィリン類等の
分子光触媒のうちの1種または2種以上である特許請求
の範囲第(1)項記載の廃棄物の浄化方法。 (3)反応器内へ照射する光は、可視波長ないし紫外波
長を有する光である特許請求の範囲第(1)項記載の廃
棄物の浄化方法。 (4)廃棄物は、気体、液体又は固体のうちの一種以上
である特許請求の範囲第(1)項記載の廃棄物の浄化方
法。
[Claims] (1) In a method for purifying waste by decomposing harmful substances in waste, a photocatalyst and waste to be treated are placed in one reactor, and light is emitted into the reactor. A method for purifying waste, which comprises irradiating the substance to decompose the harmful substance through a photochemical reaction. The photocatalyst according to claim (1) is one or more of semiconductor solid photocatalysts supporting metals or metal oxides such as, lvthenium biviridyl complexes, and molecular photocatalysts such as porphyrins. Waste purification methods. (3) The waste purification method according to claim (1), wherein the light irradiated into the reactor is light having a visible wavelength to an ultraviolet wavelength. (4) The waste purification method according to claim (1), wherein the waste is one or more of gas, liquid, and solid.
JP59042566A 1984-03-06 1984-03-06 Purifying method of waste Granted JPS60187322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59042566A JPS60187322A (en) 1984-03-06 1984-03-06 Purifying method of waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59042566A JPS60187322A (en) 1984-03-06 1984-03-06 Purifying method of waste

Publications (2)

Publication Number Publication Date
JPS60187322A true JPS60187322A (en) 1985-09-24
JPH029850B2 JPH029850B2 (en) 1990-03-05

Family

ID=12639605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59042566A Granted JPS60187322A (en) 1984-03-06 1984-03-06 Purifying method of waste

Country Status (1)

Country Link
JP (1) JPS60187322A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003414A1 (en) * 1984-12-05 1986-06-19 Kabushiki Kaisha Violet Deodorizing method based upon oxidation and decomposition using ultraviolet rays and an apparatus therefor
JPS6266861A (en) * 1985-09-19 1987-03-26 松永 是 Sterilizing reactor
JPS6380833A (en) * 1986-09-25 1988-04-11 Toyota Central Res & Dev Lab Inc Method and apparatus for purifying malodor in compartment
JPS63111929A (en) * 1986-10-28 1988-05-17 Ebara Res Co Ltd Decomposing and removing method for nitrous oxide contained in gaseous mixture
JPH01189322A (en) * 1988-01-22 1989-07-28 Hitachi Ltd Deodorizing device
JPH01218635A (en) * 1988-02-29 1989-08-31 Hitachi Ltd Deodorizing agent, its manufacturing method, deodorizing method, deodorizing apparatus and refrigeration cycle apparatus with said deodorizing apparatus
JPH01262944A (en) * 1988-04-11 1989-10-19 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorization catalyst
JPH02160021A (en) * 1988-12-13 1990-06-20 Matsushita Electric Ind Co Ltd Deodorizing method with photocatalyst
JPH02273514A (en) * 1989-04-14 1990-11-08 Nippon Zeon Co Ltd Agent for removing oxidizable harmful substance and its removal method
JPH02284629A (en) * 1989-04-26 1990-11-22 Matsushita Electric Ind Co Ltd Method for regenerating photocatalyst and deodorizing device with photocatalyst
JPH02298393A (en) * 1989-05-15 1990-12-10 Raizaa Kogyo Kk Photo-oxidation treatment method and apparatus
EP0476724A2 (en) * 1988-01-22 1992-03-25 Hitachi, Ltd. Refrigerator with apparatus for removing unpleasant odours
JPH04174679A (en) * 1990-11-06 1992-06-22 Nippon Zeon Co Ltd Optically reactive harmful substance removing agent and harmful substance removal method using same
JPH0751646A (en) * 1993-08-12 1995-02-28 Ishihara Sangyo Kaisha Ltd Method for cleaning off contaminant on solid matter surface
US5580461A (en) * 1991-01-10 1996-12-03 Trojan Technologies, Inc. Process for treatment of a fluid
JPH09271731A (en) * 1996-04-08 1997-10-21 Toto Ltd Removing method of objective material
US5759948A (en) * 1994-02-07 1998-06-02 Ishihara Sangyo Kaisha Ltd. Titanium oxide for photocatalyst and method of producing the same
WO2002090008A1 (en) * 2001-05-01 2002-11-14 Center For Advanced Science And Technology Incubation, Ltd. Structure cleaning method and anticorrosion method, and structure using them
WO2005095279A1 (en) * 2004-03-31 2005-10-13 Nisshinbo Industries, Inc. Method for photolyzing organic matter and method for treating wastewater
JP2006088140A (en) * 2004-03-23 2006-04-06 Casio Comput Co Ltd Photocatalytic decomposition device, power generator and electronic appliance
JP2017176899A (en) * 2016-03-28 2017-10-05 国立大学法人信州大学 Decomposition treatment method of oil
CN107377004A (en) * 2017-07-28 2017-11-24 盐城市龙强机械制造有限公司 A kind of baking finish for car paint house catalyst for treating waste gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767003A (en) * 1980-10-14 1982-04-23 Toshiba Corp Feeding apparatus for hydrogen
JPS57140303A (en) * 1981-02-23 1982-08-30 Toru Yamamoto Decomposing method for water
JPS594436A (en) * 1982-06-29 1984-01-11 Toshiba Corp Photochemical reaction method using solar light

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767003A (en) * 1980-10-14 1982-04-23 Toshiba Corp Feeding apparatus for hydrogen
JPS57140303A (en) * 1981-02-23 1982-08-30 Toru Yamamoto Decomposing method for water
JPS594436A (en) * 1982-06-29 1984-01-11 Toshiba Corp Photochemical reaction method using solar light

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003414A1 (en) * 1984-12-05 1986-06-19 Kabushiki Kaisha Violet Deodorizing method based upon oxidation and decomposition using ultraviolet rays and an apparatus therefor
JPS6266861A (en) * 1985-09-19 1987-03-26 松永 是 Sterilizing reactor
JPH0550294B2 (en) * 1985-09-19 1993-07-28 Tadashi Matsunaga
JPS6380833A (en) * 1986-09-25 1988-04-11 Toyota Central Res & Dev Lab Inc Method and apparatus for purifying malodor in compartment
JPH0446609B2 (en) * 1986-09-25 1992-07-30 Toyoda Chuo Kenkyusho Kk
JPH0653212B2 (en) * 1986-10-28 1994-07-20 株式会社荏原総合研究所 Method for decomposing and removing nitrous oxide in gas mixture
JPS63111929A (en) * 1986-10-28 1988-05-17 Ebara Res Co Ltd Decomposing and removing method for nitrous oxide contained in gaseous mixture
JPH01189322A (en) * 1988-01-22 1989-07-28 Hitachi Ltd Deodorizing device
JP2574840B2 (en) * 1988-01-22 1997-01-22 株式会社日立製作所 Deodorizing device
EP0476724A2 (en) * 1988-01-22 1992-03-25 Hitachi, Ltd. Refrigerator with apparatus for removing unpleasant odours
JPH06102155B2 (en) * 1988-02-29 1994-12-14 株式会社日立製作所 Deodorant, deodorant manufacturing method, deodorizing method, deodorizing device, and refrigeration cycle device equipped with this deodorizing device
JPH01218635A (en) * 1988-02-29 1989-08-31 Hitachi Ltd Deodorizing agent, its manufacturing method, deodorizing method, deodorizing apparatus and refrigeration cycle apparatus with said deodorizing apparatus
JPH01262944A (en) * 1988-04-11 1989-10-19 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorization catalyst
JPH0555184B2 (en) * 1988-04-11 1993-08-16 Nippon Catalytic Chem Ind
JPH02160021A (en) * 1988-12-13 1990-06-20 Matsushita Electric Ind Co Ltd Deodorizing method with photocatalyst
JPH02273514A (en) * 1989-04-14 1990-11-08 Nippon Zeon Co Ltd Agent for removing oxidizable harmful substance and its removal method
JPH0644976B2 (en) * 1989-04-26 1994-06-15 松下電器産業株式会社 Photocatalyst regeneration method and photocatalyst deodorizing device
JPH02284629A (en) * 1989-04-26 1990-11-22 Matsushita Electric Ind Co Ltd Method for regenerating photocatalyst and deodorizing device with photocatalyst
JPH02298393A (en) * 1989-05-15 1990-12-10 Raizaa Kogyo Kk Photo-oxidation treatment method and apparatus
JPH04174679A (en) * 1990-11-06 1992-06-22 Nippon Zeon Co Ltd Optically reactive harmful substance removing agent and harmful substance removal method using same
JP2618287B2 (en) * 1990-11-06 1997-06-11 日本ゼオン株式会社 Photoreactive harmful substance remover and harmful substance removal method using the same
US5580461A (en) * 1991-01-10 1996-12-03 Trojan Technologies, Inc. Process for treatment of a fluid
JPH0751646A (en) * 1993-08-12 1995-02-28 Ishihara Sangyo Kaisha Ltd Method for cleaning off contaminant on solid matter surface
US5759948A (en) * 1994-02-07 1998-06-02 Ishihara Sangyo Kaisha Ltd. Titanium oxide for photocatalyst and method of producing the same
JPH09271731A (en) * 1996-04-08 1997-10-21 Toto Ltd Removing method of objective material
WO2002090008A1 (en) * 2001-05-01 2002-11-14 Center For Advanced Science And Technology Incubation, Ltd. Structure cleaning method and anticorrosion method, and structure using them
JP2006088140A (en) * 2004-03-23 2006-04-06 Casio Comput Co Ltd Photocatalytic decomposition device, power generator and electronic appliance
JP4696606B2 (en) * 2004-03-23 2011-06-08 カシオ計算機株式会社 Electronics
WO2005095279A1 (en) * 2004-03-31 2005-10-13 Nisshinbo Industries, Inc. Method for photolyzing organic matter and method for treating wastewater
JP2005279615A (en) * 2004-03-31 2005-10-13 Toshio Fuchigami Photolytic degradation method of organic matter and method for treating waste water
US7488425B2 (en) 2004-03-31 2009-02-10 Toshio Fuchigami Method for photolyzing organic matter and method for treating wastewater
JP2017176899A (en) * 2016-03-28 2017-10-05 国立大学法人信州大学 Decomposition treatment method of oil
CN107377004A (en) * 2017-07-28 2017-11-24 盐城市龙强机械制造有限公司 A kind of baking finish for car paint house catalyst for treating waste gas

Also Published As

Publication number Publication date
JPH029850B2 (en) 1990-03-05

Similar Documents

Publication Publication Date Title
JPS60187322A (en) Purifying method of waste
Schreck et al. Photocatalytic gas phase reactions
Choi Pure and modified TiO 2 photocatalysts and their environmental applications
EP0818239B1 (en) Photocatalyst, method of producing the photocatalyst, and photocatalytic reaction method
US5449443A (en) Photocatalytic reactor with flexible supports
Pelizzetti et al. Metal oxides as photocatalysts for environmental detoxification
Hoffmann et al. Environmental applications of semiconductor photocatalysis
Lee et al. Platinum and palladium in semiconductor photocatalytic systems
Domínguez-Espíndola et al. A critical review on advances in TiO2-based photocatalytic systems for CO2 reduction
Tompkins et al. Evaluation of photocatalysis for gas-phase air cleaning-Part 1: Process, technical, and sizing considerations
JP4505688B2 (en) Novel photocatalyst and method for producing the same
Bahnemann et al. Photocatalytic detoxification of polluted aquifers: novel catalysts and solar applications
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
JPH02501541A (en) Liquid washing method and device
WO2007053585A2 (en) Method and apparatus for producing reactive oxidizing species
Zeltner et al. Shedding light on photocatalysis
JP3504165B2 (en) Photocatalytic reaction device and photocatalytic reaction method
WO2006106784A1 (en) Method for processing hydrogen sulfide, method for producing hydrogen and photocatalyst reactor
JP3612552B2 (en) Photoreaction catalyst
JP3440295B2 (en) Novel semiconductor photocatalyst and photocatalytic reaction method using the same
JP2000225321A (en) Catalyst for deodorization and deodorization apparatus using same catalyst
JPS63305922A (en) Method for treating waste ozone
JP2004089953A (en) Method of continuously decomposing and removing organic substance contained in gas
JPH0532321B2 (en)
JP3933604B2 (en) Decomposition method of organic halogen compounds