JPH0786638A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH0786638A
JPH0786638A JP23004293A JP23004293A JPH0786638A JP H0786638 A JPH0786638 A JP H0786638A JP 23004293 A JP23004293 A JP 23004293A JP 23004293 A JP23004293 A JP 23004293A JP H0786638 A JPH0786638 A JP H0786638A
Authority
JP
Japan
Prior art keywords
light
layer
semiconductor
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23004293A
Other languages
Japanese (ja)
Other versions
JP3152812B2 (en
Inventor
Hideto Sugawara
秀人 菅原
Kazuhiko Itaya
和彦 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23004293A priority Critical patent/JP3152812B2/en
Publication of JPH0786638A publication Critical patent/JPH0786638A/en
Application granted granted Critical
Publication of JP3152812B2 publication Critical patent/JP3152812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To provide a high luminance LED that makes it possible to form a semiconductor multilayer reflecting film having a high reflection factor and a wide reflection band for the improvement of light extraction efficiency, and enables the reduction of heterochromatic wavelength stray light. CONSTITUTION:ALED consists of a n-type GaAs substrate 101, a n-type semiconductor multilayer reflecting film, composed of a semiconductor thin film, formed on the substrate 101; and an InGaAlP double heterostructure section formed on the semiconductor multilayer reflecting film, composed of an active layer 105 sandwiched by a n-type cladding layer 104 and a p-type cladding layer 106, wherein light is extracted through the opposite surface to the substrate 101. The semiconductor multilayer reflecting film is formed with a first Bragg reflector 102 on the substrate 101 side, having wide reflection band characteristics and absorption losses; and a second Bragg reflector 103 on the double hetero-structure side, having a high reflection factor and transparent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体発光装置に係わ
り、特にInGaAlP系半導体材料を使用した半導体
発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device using an InGaAlP semiconductor material.

【0002】[0002]

【従来の技術】近年、光通信や光情報処理機器における
表示装置等の光源として、発光ダイオード(LED)が
広く用いられている。一般にLEDでは、発光強度及び
応答速度が重要な特性であり、特に表示用LEDには高
輝度発光が要求される。
2. Description of the Related Art In recent years, a light emitting diode (LED) has been widely used as a light source for a display device in optical communication and optical information processing equipment. Generally, in an LED, the emission intensity and the response speed are important characteristics, and in particular, the display LED is required to emit light with high brightness.

【0003】InGaAlP系材料は、窒化物を除く I
II−V族化合物半導体混晶中で最大の直接遷移型バンド
ギャップを有し、0.5〜0.6μm帯の発光素子材料
として注目されている。特にGaAsを基板とし、これ
に格子整合するInGaAlPによる発光部を持つpn
接合型LEDは、従来のGaPやGaAsP等の間接遷
移型の材料を用いたものに比べ、赤から緑色の高輝度発
光が可能である。しかし、GaAs基板はこの波長帯域
に対して吸収損失を与えるため、活性層から基板側に出
射される光は基板で全て吸収され、外部に取り出すこと
ができない。
InGaAlP materials exclude nitrides I
It has the largest direct transition type band gap in the II-V group compound semiconductor mixed crystal, and is attracting attention as a light emitting device material in the 0.5 to 0.6 μm band. In particular, a pn substrate with GaAs and a light emitting part made of InGaAlP that lattice-matches the substrate.
The junction LED is capable of high-luminance light emission from red to green as compared with a conventional LED using an indirect transition type material such as GaP or GaAsP. However, since the GaAs substrate gives absorption loss to this wavelength band, all the light emitted from the active layer to the substrate side is absorbed by the substrate and cannot be extracted to the outside.

【0004】図7に、InGaAlP発光部を有する従
来のLEDの素子構造断面を示す。図中1はn−GaA
s基板、2はn−InGaAlPクラッド層、3はIn
GaAlP活性層、4はp−InGaAlPクラッド
層、5はn−InGaAlP電流阻止層、6はp−Ga
AlAs電流拡散層、7はp−GaAsコンタクト層、
8はAuZnからなるp側電極、9はAuGeからなる
n側電極である。
FIG. 7 shows a cross section of the structure of a conventional LED having an InGaAlP light emitting portion. In the figure, 1 is n-GaA
s substrate, 2 is n-InGaAlP clad layer, 3 is In
GaAlP active layer, 4 p-InGaAlP clad layer, 5 n-InGaAlP current blocking layer, 6 p-Ga
AlAs current diffusion layer, 7 is a p-GaAs contact layer,
Reference numeral 8 is a p-side electrode made of AuZn, and 9 is an n-side electrode made of AuGe.

【0005】InGaAlP活性層3のエネルギーギャ
ップは、クラッド層2,4のそれより小さくなるように
混晶組成が設定されており、光及びキャリアを活性層3
に閉じ込めるダブルヘテロ構造をなしている。また、p
−GaAlAs電流拡散層6の組成は、InGaAlP
活性層3からの発光波長に対し略透明になるように設定
されている。
The mixed crystal composition is set so that the energy gap of the InGaAlP active layer 3 is smaller than that of the clad layers 2 and 4, and the light and carriers are used as the active layer 3.
It has a double hetero structure that is confined in. Also, p
-The composition of the GaAlAs current diffusion layer 6 is InGaAlP.
It is set to be substantially transparent to the wavelength of light emitted from the active layer 3.

【0006】図7の構造において、活性層3を厚さ0.
2μmのアンドープのIn 0.5(Ga1-x Alx0.5
P(x=0.4)とした場合、その導電型はn型であ
り、キャリア濃度は1〜5×1016cm-3程度であっ
た。このとき、発光波長は565nm(緑)、発光効率
はDC20mAで0.15%程度であった。また、x=
0.3としたとき、発光波長は585nm(黄)、発光
効率はDC20mAで0.6%程度と低く、GaP,G
aAsP系に対する特性的なメリットは必ずしも見られ
なかった。一方、x=0.2としたとき、発光波長は6
20nm(だいだい色)、発光効率はDC20mAで
3.0%程度であり、発光波長に対し吸収体となるGa
As基板1を特に除去することなくGaAlAs系を上
回る発光効率が得られた。
In the structure of FIG. 7, the active layer 3 has a thickness of 0.
2 μm undoped In 0.5 (Ga 1-x Al x ) 0.5
When P (x = 0.4), the conductivity type was n-type, and the carrier concentration was about 1 to 5 × 10 16 cm −3 . At this time, the emission wavelength was 565 nm (green), and the emission efficiency was about 0.15% at DC 20 mA. Also, x =
At 0.3, the emission wavelength is 585 nm (yellow), and the emission efficiency is as low as about 0.6% at DC 20 mA.
The characteristic merit over the aAsP system was not always found. On the other hand, when x = 0.2, the emission wavelength is 6
20 nm (daily color), the luminous efficiency is about 3.0% at 20 mA DC, and Ga becomes an absorber for the emission wavelength.
The luminous efficiency higher than that of the GaAlAs system was obtained without removing the As substrate 1.

【0007】このように、直接遷移型バンドギャップを
有するInGaAlPを用いたLEDにあっても、短波
長領域(緑色発光)での発光効率は必ずしも十分高いと
は言えなかった。
As described above, even in the LED using InGaAlP having a direct transition type band gap, the luminous efficiency in the short wavelength region (green emission) was not always sufficiently high.

【0008】LEDの発光効率は内部量子効率及び光取
り出し効率によって決まるが、このうち光取り出し効率
は素子構造に大きく影響される。前記したように活性層
から基板側に出射される光はGaAs基板によって吸収
されて、素子外部へ取り出すことができない。特に、発
光効率の低い短波長領域においては、これを改善する意
味は大きい。基板における光の吸収の対策として、活性
層と基板との間に半導体多層膜による反射膜(ブラッグ
型反射鏡)を設けることが試みられている(特願平2−
217079号)。
The light emission efficiency of the LED is determined by the internal quantum efficiency and the light extraction efficiency, of which the light extraction efficiency is greatly influenced by the device structure. As described above, the light emitted from the active layer to the substrate side is absorbed by the GaAs substrate and cannot be extracted to the outside of the device. In particular, in the short wavelength region where the luminous efficiency is low, there is great significance to improve this. As a measure against the absorption of light in the substrate, it has been attempted to provide a reflective film (Bragg type reflecting mirror) formed of a semiconductor multilayer film between the active layer and the substrate (Japanese Patent Application No. 2-
No. 217079).

【0009】この半導体多層膜による反射膜の効果を十
分得るには反射率を高くし、また作製許容度を大きくす
るために反射帯域を広くする必要があった。しかしなが
ら、この2つの特性を兼ね備えることは、構成材料の特
性や構造などの面から極めて難しかった。また、ダブル
ヘテロ構造InGaAlPのLEDでは、表面発光波長
に対して10〜15nm長波長側の端面光が迷光とな
り、黄色発光に対しては赤色光、緑色発光に対しては黄
色といった光が混在していた。即ち、ダブルヘテロ構造
InGaAlPのLEDは2色発光しており、これが表
示用としては実用上大きな問題となっていた。
In order to sufficiently obtain the effect of the reflective film formed by this semiconductor multilayer film, it was necessary to increase the reflectance and widen the reflection band in order to increase the manufacturing tolerance. However, it has been extremely difficult to combine these two characteristics in terms of the characteristics and structure of the constituent materials. Further, in the LED of the double hetero structure InGaAlP, the end face light on the long wavelength side of 10 to 15 nm with respect to the surface emission wavelength becomes stray light, and red light for yellow emission and yellow light for green emission are mixed. Was there. That is, the LED of the double heterostructure InGaAlP emits two colors, which has been a serious problem in practical use for display.

【0010】[0010]

【発明が解決しようとする課題】このように従来、In
GaAlPからなる発光部を持つ半導体発光装置におい
ては、活性層から基板側へ出射された光を半導体多層反
射膜を用いて素子外部へ取り出す手法が使われている
が、反射率が高く作製許容度を大きくする広反射帯域を
得ることが困難であり、さらに端面からの迷光が存在す
るという問題点があった。
As described above, the In
In a semiconductor light emitting device having a light emitting portion made of GaAlP, a method of extracting light emitted from the active layer to the substrate side to the outside of the element using a semiconductor multilayer reflection film is used, but the reflectance is high and the manufacturing tolerance is high. It is difficult to obtain a wide reflection band for increasing the wavelength, and stray light from the end face exists.

【0011】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、高反射率,広反射帯域
を持つ半導体多層反射膜を作成して光取出し効率の向上
をはかることができ、かつ異色波長迷光を低減し得る高
輝度の半導体発光装置を提供することにある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to improve the light extraction efficiency by producing a semiconductor multilayer reflective film having a high reflectance and a wide reflection band. Another object of the present invention is to provide a high-brightness semiconductor light emitting device capable of reducing the stray light of different color wavelength.

【0012】[0012]

【課題を解決するための手段】本発明の骨子は、半導体
多層膜反射膜の構成材料及び構造を工夫することによ
り、高反射率,広反射帯域の特性を持つと同時に、接合
平面に平行方向に導波される光に対しては損失となるブ
ラッグ反射鏡を作成し、光取り出し効率の向上をはかる
ことにある。
The essence of the present invention is to have characteristics of a high reflectance and a wide reflection band by devising the constituent material and structure of the semiconductor multilayer film reflection film, and at the same time, the direction parallel to the bonding plane. The aim is to improve the light extraction efficiency by creating a Bragg reflector that becomes a loss for the light guided to.

【0013】即ち本発明は、半導体基板と、この半導体
基板上に形成された半導体薄膜からなる半導体多層反射
膜と、この半導体多層反射膜上に形成された発光層含む
半導体積層構造部とを具備し、半導体基板と反対の面上
から光を取り出す半導体発光装置において、半導体多層
反射膜を、広反射帯域特性を有する第1のブラッグ反射
鏡と高反射率特性を有する第2のブラッグ型反射鏡によ
って構成したことを特徴とする。
That is, the present invention comprises a semiconductor substrate, a semiconductor multilayer reflective film formed of a semiconductor thin film formed on the semiconductor substrate, and a semiconductor laminated structure portion including a light emitting layer formed on the semiconductor multilayer reflective film. Then, in the semiconductor light emitting device that extracts light from the surface opposite to the semiconductor substrate, the semiconductor multi-layer reflective film has the first Bragg reflector having wide reflection band characteristics and the second Bragg-type reflector having high reflectance characteristics. It is characterized by being configured by.

【0014】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) 半導体積層構造部は、発光層を第1導電型及び第2
導電型のクラッド層で挟んだダブルヘテロ構造となって
いること。 (2) 基板はGaAsであり、ダブルヘテロ構造はInG
aAlP系材料であること。 (3) 半導体多層反射膜は2種のブラッグ型反射鏡からな
り、基板側の第1のブラッグ型反射鏡は広反射帯域特性
を有し、半導体積層構造部側の第2のブラッグ型反射鏡
は高反射率特性を有すること。高反射率で透明なブラッ
グ型反射鏡としてInAlP/InGaAlP、広反射
帯域特性を持ち吸収損失を有するブラッグ型反射鏡とし
てInAlP/GaAsを用いること。 (4) 半導体多層反射膜は材料,組成若しくは膜厚の異な
る3種類以上の半導体層からなり、その1つは発光波長
に対して損失を持つ半導体層であること。 (5) 半導体多層反射膜は、発光中心波長λに対してそれ
ぞれの光学的膜厚がλ/4のIn 0.5(Ga1-x Al
x0.5PとGa1-y Aly As(0≦x≦1,0≦y
≦1)の少なくとも3種類以上の異なる組成の半導体層
からなること。 (6) 半導体多層反射鏡は、発光中心波長λに対して、そ
れぞれの光学的膜厚がλ/4よりも厚いIn 0.5(Ga
1-x Alx0.5Pとλ/4よりも薄いGa1-yAly
s(0≦x≦1,0≦y≦1)の1対の光学的膜厚がλ
/2であり、少なくとも2種類以上の異なる組成の交互
層からなること。
Here, the following are preferred embodiments of the present invention. (1) In the semiconductor laminated structure part, the light emitting layer has a first conductivity type and a second conductivity type.
It has a double hetero structure sandwiched by conductive clad layers. (2) The substrate is GaAs and the double hetero structure is InG
It must be an aAlP-based material. (3) The semiconductor multilayer reflection film is composed of two types of Bragg-type reflecting mirrors, the first Bragg-type reflecting mirror on the substrate side has wide reflection band characteristics, and the second Bragg-type reflecting mirror on the semiconductor laminated structure side. Has high reflectance characteristics. Use InAlP / InGaAlP as a highly reflective and transparent Bragg reflector, and InAlP / GaAs as a Bragg reflector having wide reflection band characteristics and absorption loss. (4) The semiconductor multilayer reflection film is composed of three or more kinds of semiconductor layers having different materials, compositions or film thicknesses, and one of them is a semiconductor layer having a loss with respect to the emission wavelength. (5) The semiconductor multilayer reflective film is made of In 0.5 (Ga 1-x Al) having an optical film thickness of λ / 4 with respect to the emission center wavelength λ.
x) 0.5 P and Ga 1-y Al y As ( 0 ≦ x ≦ 1,0 ≦ y
<1) At least three types of semiconductor layers having different compositions. (6) The semiconductor multilayer reflector has an optical thickness of In 0.5 (Ga) greater than λ / 4 with respect to the emission center wavelength λ.
1-x Al x ) 0.5 P and Ga 1-y Al y A thinner than λ / 4
s (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) has a pair of optical film thicknesses of λ
/ 2 and consists of at least two or more alternating layers of different compositions.

【0015】[0015]

【作用】本発明によれば、2種類以上のブラッグ型反射
鏡を組み合せて半導体多層反射膜を構成することによ
り、それぞれの反射鏡が持つ特性を合せ持った反射膜と
なる。この構成によってLEDとして必要な高反射率,
広反射帯域特性を有し、かつ、端面光を効果的に低減す
る反射膜を容易に作成することができる。これにより、
光取り出し効率を向上させることができ、高輝度の半導
体発光装置が実現できることになる。なお、2つのブラ
ッグ反射鏡は前記した位置関係に設定する必要があり、
これらの位置関係が逆の場合と比べて優れた特性が得ら
れた。
According to the present invention, by combining two or more types of Bragg-type reflecting mirrors to form a semiconductor multilayer reflecting film, a reflecting film having the characteristics of each reflecting mirror is obtained. With this structure, the high reflectance required as an LED,
It is possible to easily prepare a reflective film having a wide reflection band characteristic and effectively reducing the end face light. This allows
The light extraction efficiency can be improved, and a high-luminance semiconductor light emitting device can be realized. In addition, it is necessary to set the two Bragg reflectors in the above-mentioned positional relationship,
Excellent characteristics were obtained as compared with the case where these positional relationships were reversed.

【0016】[0016]

【実施例】以下、本発明の実施例につき図面を参照して
説明する。図1は本発明の第1の実施例に係わるLED
の素子構造を示す断面図である。図中101はn−Ga
As基板であり、この基板101の一主面上に、n−I
0.5Al 0.5P/GaAsの10対からなる第1反射
膜(ブラッグ型反射鏡)102,n−In 0.5Al 0.5
P/In 0.5(Ga 0.6Al 0.40.5Pの10対から
なる第2反射膜(ブラッグ型反射鏡)103,n−In
0.5(Ga1-l All0.5Pクラッド層104,In
0.5(Ga1-m Alm0.5P活性層105,p−In
0.5(Ga1-n Aln0.5Pクラッド層106,n−
In 0.5(Ga1-p Alp0.5P電流阻止層107,
p−Ga1-q Alq As電流拡散層108,p−GaA
sコンタクト層109が上記順に積層され、コンタクト
層109は円形に加工されている。そして、コンタクト
層109上にAuZn/Auからなるp側電極110が
形成され、基板101の他方の主面にはAuGe/Au
からなるn側電極111が形成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an LED according to a first embodiment of the present invention.
3 is a cross-sectional view showing the element structure of FIG. In the figure, 101 is n-Ga
It is an As substrate, and n-I is formed on one main surface of the substrate 101.
n 0.5 Al 0.5 P / GaAs 10 pairs of first reflective film (Bragg type reflecting mirror) 102, n-In 0.5 Al 0.5
P / In 0.5 (Ga 0.6 Al 0.4 ) 0.5 P 2nd reflecting film (Bragg type reflecting mirror) 103, n-In consisting of 10 pairs
0.5 (Ga 1-l Al 1 ) 0.5 P cladding layer 104, In
0.5 (Ga 1-m Al m ) 0.5 P active layer 105, p-In
0.5 (Ga 1-n Al n ) 0.5 P cladding layer 106, n-
In 0.5 (Ga 1-p Al p ) 0.5 P current blocking layer 107,
p-Ga 1-q Al q As current diffusion layer 108, p-GaA
The s contact layer 109 is laminated in the above order, and the contact layer 109 is processed into a circular shape. Then, the p-side electrode 110 made of AuZn / Au is formed on the contact layer 109, and AuGe / Au is formed on the other main surface of the substrate 101.
Is formed on the n-side electrode 111.

【0017】ここで、ダブルヘテロ構造部を構成するI
nGaAlP各層のAl組成l,m,nは、高い発光効
率が得られるように、m≦l,m≦nが満足するように
設定されている。即ち、発光層となる活性層105のエ
ネルギーギャップはp−nの2つのクラッド層104,
106よりも小さいダブルヘテロ構造が形成されてい
る。また、電流阻止層107のAl組成pは、m≦pに
設定されている。なお、これらのInGaAlP層は基
板101であるGaAsに格子整合している。
Here, I which constitutes the double hetero structure portion
The Al composition l, m, n of each nGaAlP layer is set so that m ≦ l, m ≦ n is satisfied so that high luminous efficiency can be obtained. That is, the energy gap of the active layer 105 serving as a light emitting layer is two p-n cladding layers 104,
A double heterostructure smaller than 106 is formed. The Al composition p of the current blocking layer 107 is set to m ≦ p. Note that these InGaAlP layers are lattice-matched with GaAs which is the substrate 101.

【0018】また、p−GaAlAs電流拡散層108
のAl組成qは、活性層105の発光波長に対して透明
となるように、活性層105よりもバンドギャップが大
きく選ばれている。なお、以下ではこのようなダブルヘ
テロ構造を持つLEDについて説明するが、光の取出し
効率を考える上では、活性層部の層構造は本質ではな
く、シングルヘテロ接合構造やホモ接合構造、さらには
量子井戸構造でも同様に考えることができる。
The p-GaAlAs current diffusion layer 108 is also used.
The Al composition q is selected to have a larger bandgap than that of the active layer 105 so that the Al composition q is transparent to the emission wavelength of the active layer 105. Although an LED having such a double hetero structure will be described below, the layer structure of the active layer portion is not essential in view of the light extraction efficiency, and a single hetero junction structure, a homo junction structure, or a quantum junction structure is used. A well structure can be similarly considered.

【0019】図1に示した構造において各層の厚さ、キ
ャリア濃度は以下に括弧内に示すように設定されてい
る。 n−クラッド層104(0.6μm,5×1017
-3) 活性層105(0.3μm,アンドープ) p−クラッド層106(0.6μm,4×1017
-3) n−電流阻止層107(0.15μm,2×1018cm
-3) p−電流拡散層108(5μm,3×1018cm-3) p−コンタクト層109(0.1μm,3×1018cm
-3) また、半導体多層反射膜を構成する第1及び第2反射膜
102,103については、次のようにしている。即
ち、それぞれの構成層の厚さは、活性層105からの発
光波長λ0 に対して、λ0 /4の光学的膜厚としてい
る。また、各構成層のキャリア濃度は全て5×1017
-3以上となるようにした。
In the structure shown in FIG. 1, the thickness and carrier concentration of each layer are set as shown in parentheses below. n-clad layer 104 (0.6 μm, 5 × 10 17 c
m −3 ) Active layer 105 (0.3 μm, undoped) p-clad layer 106 (0.6 μm, 4 × 10 17 c
m −3 ) n-current blocking layer 107 (0.15 μm, 2 × 10 18 cm
-3 ) p-current diffusion layer 108 (5 μm, 3 × 10 18 cm −3 ) p-contact layer 109 (0.1 μm, 3 × 10 18 cm)
-3 ) Further, the first and second reflective films 102 and 103 that form the semiconductor multilayer reflective film are as follows. That is, the thickness of each constituent layer, the light emitting wavelength lambda 0 from the active layer 105, and an optical thickness of λ 0/4. The carrier concentration of each constituent layer is 5 × 10 17 c
It was set to be m -3 or more.

【0020】上記構造が従来の構造と異なる点は、In
GaAlPからなる発光部(ダブルヘテロ構造)10
4,105,106とGaAs基板101との間に第1
反射膜102及び第2反射膜103を形成したことであ
り、この構造の優位性について以下に示す。
The difference between the above structure and the conventional structure is that In
Light emitting part (double heterostructure) 10 made of GaAlP
No. 1 between the 4, 105, 106 and the GaAs substrate 101
The reflective film 102 and the second reflective film 103 are formed, and the superiority of this structure will be described below.

【0021】図1の第2反射膜103におけるInGa
AlP層は、後述するように反射鏡を構成する高屈折率
層であると同時にダブルヘテロ構造によって導波される
活性層の光を反射鏡側に引っぱりしみ出させる役割を果
たす。十分なしみ出し効果を得るためには、λ/4厚さ
に相当する膜厚で少なくとも1層以上挿入しなければな
らない。反射鏡側にしみ出された光は第1反射膜102
におけるGaAs層によって吸収され、これにより迷光
を減らすことができる。
InGa in the second reflective film 103 of FIG.
The AlP layer is a high-refractive index layer constituting a reflecting mirror as described later, and at the same time plays a role of pulling out the light of the active layer guided by the double hetero structure to the reflecting mirror side. In order to obtain a sufficient leakage effect, it is necessary to insert at least one layer with a film thickness equivalent to λ / 4 thickness. The light exuded to the reflecting mirror side is the first reflecting film 102.
It is absorbed by the GaAs layer at, which reduces stray light.

【0022】次に、反射特性に関する詳細な記述を行
う。図2は、シュレーションによる第1反射膜102と
第2反射膜103の対数と反射率の関係について示した
ものである。ここで用いた各パラメータを下記の(表
1)に示す(D.E.Aspens, et al,JAP 60, 754(1986),
H.Tanaka, et al, JAP 59,985(1986))。
Next, a detailed description of the reflection characteristics will be given. FIG. 2 shows the relationship between the logarithm of the first reflective film 102 and the second reflective film 103 and the reflectance by the simulation. The parameters used here are shown in (Table 1) below (DEAspens, et al, JAP 60, 754 (1986),
H. Tanaka, et al, JAP 59,985 (1986)).

【0023】[0023]

【表1】 [Table 1]

【0024】第1反射膜102は、構成層としてInG
aAlP活性層105からの光に対して吸収損失を持つ
GaAsを使っているため、多い対数になると反射率は
飽和してしまう。対数の少ないところではInAlPと
GaAsの屈折率差が大きいため、第2反射膜103よ
りも高い反射率を示す。第2反射膜103は構成層が共
に活性層からの光に対して透明であるため、対数が多い
所では非常に高い反射率が得られる。
The first reflective film 102 is made of InG as a constituent layer.
Since GaAs, which has absorption loss for the light from the aAlP active layer 105, is used, the reflectance is saturated when the number of logarithms is large. Since the difference in the refractive index between InAlP and GaAs is large where the logarithm is small, the reflectance is higher than that of the second reflective film 103. Since the constituent layers of the second reflective film 103 are both transparent to the light from the active layer, a very high reflectance can be obtained in a place with a large number of logarithms.

【0025】図3は、シミュレーションによる2つの反
射膜102.103における反射スペクトルの半値幅
(FWHM)と、対数の関係について示したものであ
る。第1反射膜102は対数を増すと比較的広い値で飽
和し、第2反射膜103は次第に狭くなる。つまり、こ
れらの計算結果から第1反射膜102は反射率は比較的
低いが反射帯域が広く、第2反射膜103は反射率は比
較的高いが反射帯域が狭くなることが分かり、これらの
結果は各構成層の屈折率と吸収系数の関係によるもので
あることが分かる。
FIG. 3 shows the relationship between the full width at half maximum (FWHM) of the reflection spectrum of the two reflection films 102.103 and the logarithm of the simulation. The first reflective film 102 saturates at a relatively wide value as the number of logarithms increases, and the second reflective film 103 becomes gradually narrower. That is, it is understood from these calculation results that the first reflective film 102 has a relatively low reflectance but a wide reflection band, and the second reflective film 103 has a relatively high reflectance but a narrow reflection band. It is understood that is due to the relationship between the refractive index of each constituent layer and the absorption coefficient.

【0026】図4は、第1反射膜102(10対),第
2反射膜103(20対)とこの2つの反射膜各10対
を基板側に第1反射膜102、その上に第2反射膜10
3を形成したハイブリッド型の反射膜のシミュレーショ
ンによる反射スペクトルを示したものである。第1反射
膜(10対)及び第2反射膜(20対)のスペクトル
は、前記したような反射率と半値幅の関係となってい
る。ハイブリッド型反射膜のスペクトルから反射率のピ
ーク値は約90%で他の反射膜よりも高い値を示してお
り、半値幅は50nmの値を示している。この半値幅の
値は、InGaAlPのLED活性層からの発光のスペ
クトル12〜14nm(H.Sugawara, et al,J.J.A.P 3
1,2446 (1992))と比べると十分広く、前記した作製許
容度が十分大きいものと考えられる。
In FIG. 4, a first reflective film 102 (10 pairs), a second reflective film 103 (20 pairs) and 10 pairs of each of these two reflective films are provided on the substrate side of the first reflective film 102, and then on the second reflective film 102. Reflective film 10
3 is a view showing a reflection spectrum of a hybrid type reflection film having No. 3 formed by simulation. The spectra of the first reflective film (10 pairs) and the second reflective film (20 pairs) have the relationship between the reflectance and the half width as described above. From the spectrum of the hybrid type reflection film, the peak value of the reflectance is about 90%, which is higher than that of the other reflection films, and the full width at half maximum shows the value of 50 nm. The value of this half width is the spectrum of emission from the LED active layer of InGaAlP 12 to 14 nm (H. Sugawara, et al, JJAP 3
1,2446 (1992)), which is sufficiently wide, and is considered to have a sufficiently large manufacturing tolerance.

【0027】これらの計算結果から、ハイブリッド型反
射膜は光取り出し効率向上に有効であり、その作製許容
度も十分大きいことが分かる。対数の設定に関しては、
第2反射膜103は、対数を増やすと帯域が狭くなるた
め20対以下、できれば15対以下とするのが望まし
い。第1反射鏡102は、対数を増やすと抵抗が大きく
なるためやはり20以下、できれば15対以下とするの
が望ましい。迷光を低減する目的を考慮すると実施例で
記述したそれぞれ10対前後に設定するのが最適条件と
なる。
From these calculation results, it is understood that the hybrid type reflection film is effective in improving the light extraction efficiency and has a sufficiently large manufacturing tolerance. Regarding the logarithmic setting,
The number of the second reflective films 103 is 20 pairs or less, preferably 15 pairs or less, because the band becomes narrower as the number of pairs increases. Since the resistance of the first reflecting mirror 102 increases as the number of pairs increases, the number of pairs is preferably 20 or less, and more preferably 15 or less. Considering the purpose of reducing stray light, the optimum condition is to set about 10 pairs each as described in the embodiment.

【0028】実際、図1に示した積層構造でp側電極1
10の直径を200μmφ、電流阻止層107の直径を
240μmφとし、それぞれを同心円状に形成し、In
0.5(Ga1-m Alm0.5P活性層105のAl組成
mを0.3として、素子を構成し、順方向に電圧を印加
し電流を流したところ、p側電極110部を除いた素子
表面広域から585nmにピーク波長を有し、光度が3
cdを越える発光が得られた。また、端面光から迷光も
殆どなく実用上問題のないレベルまで低減できた。p−
Ga1-q Alq As電流拡散層108による光吸収の影
響は、そのAl組成qを高く設定することにより短波長
の発光に対しても低減でき、Al組成qを0.7から
0.8とし、In 0.5(Ga1-m Alm0.5P活性層
105のAl組成mを0.5としたピーク波長555n
mの緑色発光素子においても光度3cdを越える発光が
得られた。
In practice, the p-side electrode 1 having the laminated structure shown in FIG.
The diameter of 10 is 200 μmφ and the diameter of the current blocking layer 107 is 240 μmφ, and each of them is formed in a concentric shape.
0.5 (Ga 1-m Al m ) 0.5 P An element was formed by setting the Al composition m of the P active layer 105 to 0.3, and when a voltage was applied in the forward direction and a current was applied, the p-side electrode 110 part was removed. It has a peak wavelength of 585 nm from a wide area on the device surface and has a luminous intensity of 3
Light emission exceeding cd was obtained. In addition, there was almost no stray light from the edge light, and it was possible to reduce the light to a level at which there was no practical problem. p-
The effect of light absorption by the Ga 1-q Al q As current diffusion layer 108 can be reduced even for short wavelength light emission by setting the Al composition q high, and the Al composition q is 0.7 to 0.8. And an In 0.5 (Ga 1-m Al m ) 0.5 P active layer 105 having an Al composition m of 0.5 and a peak wavelength of 555 n
Even in the green light emitting device of m, light emission exceeding 3 cd was obtained.

【0029】このように本実施例によれば、InGaA
lP活性層105とn−GaAs基板101との間に反
射特性の異なる2つの反射膜、第1反射膜102と第2
反射103を設けた構成としているので、従来構造では
素子外部に取り出すことのできなかった活性層105か
ら基板側へ放出された光を、これら反射膜102,10
3で素子表面方向へ反射させ、有効に光を取り出すこと
ができる。
As described above, according to this embodiment, InGaA
Two reflection films having different reflection characteristics, the first reflection film 102 and the second reflection film, are provided between the 1P active layer 105 and the n-GaAs substrate 101.
Since the reflection 103 is provided, the light emitted to the substrate side from the active layer 105, which could not be extracted to the outside of the element in the conventional structure, is reflected by the reflection films 102 and 10.
At 3, the light can be effectively extracted by reflecting it toward the surface of the element.

【0030】しかも、本実施例では反射膜の積層におい
て、活性層105に近い方に発光波長に対して透明で高
反射率の特性を持つ反射鏡(第2反射膜103)を設
け、基板101に近い方に反射帯域の広い特性を持つ反
射鏡(第1反射膜102)を設けることによって、2つ
の反射膜特性を合せ持った反射率が高く反射帯域の広い
ハイブリッド型反射鏡を構成し、かつ第2反射膜103
によって活性層105中の光をしみ出させ、第1反射鏡
102によって損失を持つようにすることができる。こ
れにより、光の取り出し効率を向上させ、高輝度のLE
Dを実現することができ、さらに迷光を低減することが
でき、かつ量産性や再現性といった作製許容度も広くす
ることができる。
In addition, in this embodiment, in the laminated reflective film, a reflective mirror (second reflective film 103) having a high reflectance characteristic that is transparent to the emission wavelength is provided nearer to the active layer 105, and the substrate 101 is formed. By providing a reflecting mirror (first reflecting film 102) having a wide reflection band nearer to, a hybrid type reflecting mirror having a high reflectance and a wide reflection band having two reflecting film characteristics is formed. And the second reflective film 103
The light in the active layer 105 can be exuded by, and the first reflecting mirror 102 can have a loss. As a result, the light extraction efficiency is improved and the LE with high brightness is
D can be realized, stray light can be reduced, and manufacturing tolerance such as mass productivity and reproducibility can be widened.

【0031】図5は本発明の第2の実施例に係わるLE
Dの素子構造を示す断面図である。なお、図1と同一部
分には同一符号を付してその詳しい説明は省略する。こ
の実施例が先に説明した第1の実施例と異なる点は、ブ
ラッグ反射鏡を構成する第2反射膜の構成にある。
FIG. 5 shows an LE according to the second embodiment of the present invention.
It is sectional drawing which shows the element structure of D. The same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted. The difference between this embodiment and the first embodiment described above lies in the structure of the second reflecting film forming the Bragg reflector.

【0032】即ち、本実施例では第2反射膜503の構
成材料を第1反射膜102と同様にInAlPとGaA
sの2種類とし、第1反射膜102とはそれぞれの膜厚
を変化させることによって、異なる反射特性を持つ反射
膜を設けた。ここで、第2反射膜503を構成するIn
AlP/GaAs1対の光学的膜厚を、λ0 /2に保っ
たままGaAs層をλ0 /4よりも薄くし、InAlP
層をλ0 /4よりも厚くする。これ以外の条件(各層の
厚さ,キャリア濃度)は先の第1の実施例と同様とし
た。
That is, in the present embodiment, the constituent materials of the second reflective film 503 are InAlP and GaA as in the first reflective film 102.
There are two types, s, and the thickness of each of the first reflection film 102 and the first reflection film 102 is changed to provide a reflection film having different reflection characteristics. Here, In forming the second reflective film 503
AlP / GaAs1 the optical thickness of pairs, the GaAs layer while maintaining the lambda 0/2 thinner than λ 0/4, InAlP
Thicker than the layer λ 0/4. The other conditions (thickness of each layer, carrier concentration) were the same as those in the first embodiment.

【0033】このような構成であれば、InGaAlP
活性層105からの光に対して吸収損失を持つ第2反射
膜503のGaAs層が、第1反射膜102のGaAs
層と比べて薄くなっているため、接合方向の光に対して
は吸収損失を減らし、かつ活性層105に近い位置にあ
るため、接合方向と平行に導波される光に対して効果
的に損失を持たせることができる。また、反射特性に関
しても実効的な反射率が高くなる。よって、この組み合
せによるハイブリッド型反射膜とすることで、第1の実
施例で記した効果と同等の効果が得られる。
With such a structure, InGaAlP
The GaAs layer of the second reflective film 503, which has absorption loss for the light from the active layer 105, is the GaAs layer of the first reflective film 102.
Since it is thinner than the layer, it reduces absorption loss for light in the junction direction, and is effective for light guided in parallel with the junction direction because it is near the active layer 105. Can have a loss. In addition, the effective reflectance is high in terms of reflection characteristics. Therefore, by using the hybrid type reflection film by this combination, the same effect as the effect described in the first embodiment can be obtained.

【0034】図6は本発明の第3の実施例に係わるLE
Dの素子構造を示す断面図である。なお、図1と同一部
分には同一符号を付して、その詳しい説明は省略する。
この実施例は、第1反射膜と第2反射膜のように反射特
性を2つに分けることなく、半導体多層反射膜の反射特
性を徐々に連続的に変化させたものである。
FIG. 6 shows an LE according to the third embodiment of the present invention.
It is sectional drawing which shows the element structure of D. The same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
In this embodiment, the reflection characteristics of the semiconductor multilayer reflection film are gradually and continuously changed without dividing the reflection characteristics into two unlike the first reflection film and the second reflection film.

【0035】この実施例が、第2の実施例と異なる点
は、反射膜602のInAlP/GaAs1対における
光学的膜厚をλ0 /2に保ったまま、活性層105に近
い方のGaAs層をλ0 /4よりも薄くし、InAlP
層をλ0 /4よりも厚くする。そして、反射膜602中
のGaAs基板101に近い方のInAlP/GaAs
1対におけるInAlP、GaAsそれぞれの光学的膜
厚がλ0 /4になるように、反射膜602中で徐々に変
化させる。これ以外の条件は、先の第1の実施例及び第
2の実施例と同様とした。
[0035] This embodiment is different from the second embodiment, while maintaining the optical film thickness of the InAlP / GaAs1 pair of reflecting films 602 to lambda 0/2, GaAs layer closer to the active layer 105 the thinner than λ 0/4, InAlP
Thicker than the layer λ 0/4. Then, InAlP / GaAs closer to the GaAs substrate 101 in the reflective film 602
InAlP in pair, such that each optical thickness GaAs is lambda 0/4, gradually changes in the reflection film 602. The other conditions were the same as those in the first and second embodiments.

【0036】このような構成であれば、反射膜602中
の発光部近傍と基板101近傍では、活性層105から
の光に対する吸収損失が異なるため、実効的な反射率が
異なるため第1及び第2の実施例で示した効果と同様な
効果が得られる。
With such a structure, since the absorption loss for the light from the active layer 105 is different between the light emitting portion in the reflective film 602 and the substrate 101, the effective reflectance is different. The same effect as the effect shown in the second embodiment can be obtained.

【0037】これまで面発光型のダブルヘテロ構造In
GaAlPのLEDにおいて、活性層端部や横方向から
の光は活性層内部を導波して出射されるため、活性層内
部で損失を受け素子表面からの出射光よりも波長が長く
なってしまい、このことは素子からの全体的な放射を見
た場合、単色性が損なわれることや、2色発光してしま
うといった問題があることを述べてきた。これを防ぐた
めに上記実施例を示してきたが、反射鏡における光吸収
層の効果を最大限発揮するには、クラッド層の厚さを薄
くすることが有効である。
Up to now, the surface emitting type double hetero structure In
In a GaAlP LED, light from the end of the active layer or from the lateral direction is emitted while being guided inside the active layer, so that the wavelength is longer than that of the light emitted from the surface of the element due to loss inside the active layer. However, this has been described as a problem that monochromaticity is impaired and two-color light emission occurs when the overall radiation from the device is viewed. In order to prevent this, the above embodiment has been shown, but in order to maximize the effect of the light absorption layer in the reflecting mirror, it is effective to reduce the thickness of the cladding layer.

【0038】例えば、第2,第3の実施例において、反
射膜を構成しているGaAsが損失層となり活性層の厚
さがこれらの実施例においては、0.3μmであるため
n−InGaAlPクラッド層104の厚さを0.3μ
m以下とすることが有効である。この構造とすることに
よって、活性層105での光の導波モードに損失を互え
て端面からの放出光を、より効果的に防ぐことができ
る。
For example, in the second and third embodiments, the GaAs forming the reflection film serves as a loss layer, and the thickness of the active layer is 0.3 μm in these embodiments, so the n-InGaAlP cladding is used. The thickness of the layer 104 is 0.3μ
It is effective to make it m or less. With this structure, it is possible to more effectively prevent the emitted light from the end face by compensating for the loss in the guided mode of light in the active layer 105.

【0039】なお、本発明は上述した各実施例に限定さ
れるものではない。実施例では反射膜の構成にInGa
AlP系材料とGaAlAs系材料を用いたが、InG
aAsP系材料やII−VI族材料によって構成しても同様
の効果が得られる。また、材料系を問わず、超格子膜を
形成して屈折率を変化させた膜によって反射膜を構成し
た場合にも同様の効果が得られる。また、実施例では活
性層のAl組成としては0.3又は0.5を用いたが、
Al組成を変化させることによって赤色から緑色域に渡
る可視光領域の発光を得ることができる。また本発明
は、発光ダイオードに限らず、面発光レーザに適用する
ことも可能である。その他、本発明の要旨を逸脱しない
範囲で、種々変形して実施することができる。
The present invention is not limited to the above embodiments. In the embodiment, the reflective film has a structure of InGa.
Although AlP-based material and GaAlAs-based material were used, InG
The same effect can be obtained by using an aAsP-based material or a II-VI group material. Further, regardless of the material system, the same effect can be obtained when the reflective film is formed by a film having a superlattice film formed therein and having a refractive index changed. Further, in the embodiment, 0.3 or 0.5 is used as the Al composition of the active layer,
By changing the Al composition, light emission in the visible light range from red to green can be obtained. Further, the present invention can be applied not only to the light emitting diode but also to a surface emitting laser. In addition, various modifications can be made without departing from the scope of the present invention.

【0040】[0040]

【発明の効果】以上詳述したように本発明によれば、I
nGaAlP等からなる発光部と基板との間に反射率の
高い反射膜と反射帯域の広い反射膜を組み合せたハイブ
リッド型反射膜を設けることにより、高反射率,広帯域
反射を持つ反射膜を形成して光取出し効率の向上をはか
ることができ、かつ異色波長迷光を低減し得る高輝度の
半導体発光装置を実現することが可能となる。
As described above in detail, according to the present invention, I
By providing a hybrid type reflective film, which is a combination of a reflective film having a high reflectance and a reflective film having a wide reflective band, between the light emitting portion made of nGaAlP or the like and the substrate, a reflective film having a high reflectance and broadband reflection is formed. As a result, it is possible to realize a high-brightness semiconductor light emitting device capable of improving the light extraction efficiency and reducing stray light of a different color wavelength.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例に係わるLEDの素子構造を示す
断面図。
FIG. 1 is a sectional view showing an element structure of an LED according to a first embodiment.

【図2】第1及び第2の反射膜の対数と反射率との関係
について示した特性図。
FIG. 2 is a characteristic diagram showing the relationship between the logarithm of the first and second reflective films and the reflectance.

【図3】第1及び第2の反射膜における反射スペクトル
の半値幅と対数との関係について示した特性図。
FIG. 3 is a characteristic diagram showing a relationship between a half width and a logarithm of a reflection spectrum in the first and second reflection films.

【図4】ハイブリッド型の反射膜の反射スペクトルを示
した特性図。
FIG. 4 is a characteristic diagram showing a reflection spectrum of a hybrid type reflection film.

【図5】第2の実施例に係わるLEDの素子構造を示す
断面図。
FIG. 5 is a sectional view showing an element structure of an LED according to a second embodiment.

【図6】第3の実施例に係わるLEDの素子構造を示す
断面図。
FIG. 6 is a sectional view showing an element structure of an LED according to a third embodiment.

【図7】InGaAlP発光部を有する従来のLEDの
素子構造を示す断面図。
FIG. 7 is a cross-sectional view showing a device structure of a conventional LED having an InGaAlP light emitting portion.

【符号の説明】[Explanation of symbols]

101…n−GaAs基板 102…n−InAlP/GaAs第1反射膜(ブラッ
グ型反射鏡) 103…n−InAlP/InGaAlP第2反射膜
(ブラッグ型反射鏡) 104…n−InGaAlPクラッド層 105…InGaAlP活性層 106…p−InGaAlPクラッド層 107…n−InGaAlP電流阻止層 108…p−GaAlAs電流拡散層 109…p−GaAsコンタクト層 110…AuZn/Auからなるp側電極 111…AuGe/Auからなるn側電極 503…InAlP/GaAs第2反射膜(ブラッグ型
反射鏡) 602…InAlP/GaAs反射膜(ブラッグ型反射
鏡)
101 ... n-GaAs substrate 102 ... n-InAlP / GaAs first reflection film (Bragg type reflection mirror) 103 ... n-InAlP / InGaAlP second reflection film (Bragg type reflection mirror) 104 ... n-InGaAlP clad layer 105 ... InGaAlP Active layer 106 ... p-InGaAlP cladding layer 107 ... n-InGaAlP current blocking layer 108 ... p-GaAlAs current diffusion layer 109 ... p-GaAs contact layer 110 ... p-side electrode 111 made of AuZn / Au 111 ... n made of AuGe / Au Side electrode 503 ... InAlP / GaAs second reflection film (Bragg type reflection mirror) 602 ... InAlP / GaAs reflection film (Bragg type reflection mirror)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板と、この半導体基板上に形成さ
れた半導体薄膜からなる半導体多層反射膜と、この半導
体多層反射膜上に形成された発光層を含む半導体積層構
造部とを具備し、前記半導体基板と反対側の面上から光
を取り出す半導体発光装置であって、 前記半導体多層反射膜は、広反射帯域特性を有する第1
のブラッグ反射鏡と、高反射率特性を有する第2のブラ
ッグ反射鏡によって構成されていることを特徴とする半
導体発光装置。
1. A semiconductor substrate, a semiconductor multilayer reflective film formed of a semiconductor thin film formed on the semiconductor substrate, and a semiconductor laminated structure portion including a light emitting layer formed on the semiconductor multilayer reflective film, A semiconductor light emitting device that extracts light from a surface opposite to the semiconductor substrate, wherein the semiconductor multilayer reflective film has a wide reflection band characteristic.
And a second Bragg reflecting mirror having a high reflectance characteristic.
JP23004293A 1993-09-16 1993-09-16 Semiconductor light emitting device Expired - Fee Related JP3152812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23004293A JP3152812B2 (en) 1993-09-16 1993-09-16 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23004293A JP3152812B2 (en) 1993-09-16 1993-09-16 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH0786638A true JPH0786638A (en) 1995-03-31
JP3152812B2 JP3152812B2 (en) 2001-04-03

Family

ID=16901658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23004293A Expired - Fee Related JP3152812B2 (en) 1993-09-16 1993-09-16 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3152812B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001190A1 (en) * 1995-06-21 1997-01-09 Rohm Co., Ltd. Light-emitting diode chip and light-emitting diode using the same
JP2003101141A (en) * 2001-07-09 2003-04-04 Nichia Chem Ind Ltd Multilayer film reflecting layer and gallium nitride based light emitting element using the same
JP2008159626A (en) * 2006-12-20 2008-07-10 Rohm Co Ltd Semiconductor light-emitting element
JP2008235691A (en) * 2007-03-22 2008-10-02 Anritsu Corp Semiconductor light emitting element
JP2009246056A (en) * 2008-03-30 2009-10-22 Dowa Electronics Materials Co Ltd Light emitting element
JP2010050496A (en) * 2006-06-27 2010-03-04 Seiko Epson Corp Surface-emitting type semiconductor laser
JP2010245312A (en) * 2009-04-07 2010-10-28 Hitachi Cable Ltd Light-emitting element
JP2010541218A (en) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Thin film LED having mirror layer and method of manufacturing the same
JP2011077496A (en) * 2009-04-28 2011-04-14 Shin Etsu Handotai Co Ltd Light-emitting element, and method of manufacturing the same
JP2011082233A (en) * 2009-10-05 2011-04-21 Hitachi Cable Ltd Light emitting element
JP2011176001A (en) * 2010-02-23 2011-09-08 Hitachi Cable Ltd Light emitting device and method of manufacturing the same
JP2021114594A (en) * 2019-08-27 2021-08-05 株式会社東芝 Optical semiconductor element

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001190A1 (en) * 1995-06-21 1997-01-09 Rohm Co., Ltd. Light-emitting diode chip and light-emitting diode using the same
GB2307104A (en) * 1995-06-21 1997-05-14 Rohm Co Ltd Light-emitting diode chip and light-emitting diode using the same
US5760422A (en) * 1995-06-21 1998-06-02 Rohm Co., Ltd. Light-emitting diode chip and light-emitting diode using the same
GB2307104B (en) * 1995-06-21 1999-12-29 Rohm Co Ltd Light-emiting diode chip and light-emitting diode using the same
JP2003101141A (en) * 2001-07-09 2003-04-04 Nichia Chem Ind Ltd Multilayer film reflecting layer and gallium nitride based light emitting element using the same
JP2010050496A (en) * 2006-06-27 2010-03-04 Seiko Epson Corp Surface-emitting type semiconductor laser
JP2008159626A (en) * 2006-12-20 2008-07-10 Rohm Co Ltd Semiconductor light-emitting element
JP2008235691A (en) * 2007-03-22 2008-10-02 Anritsu Corp Semiconductor light emitting element
JP2010541218A (en) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Thin film LED having mirror layer and method of manufacturing the same
US9252331B2 (en) 2007-09-28 2016-02-02 Osram Opto Semiconductors Gmbh Thin-film LED having a mirror layer and method for the production thereof
JP2009246056A (en) * 2008-03-30 2009-10-22 Dowa Electronics Materials Co Ltd Light emitting element
JP2010245312A (en) * 2009-04-07 2010-10-28 Hitachi Cable Ltd Light-emitting element
JP2011077496A (en) * 2009-04-28 2011-04-14 Shin Etsu Handotai Co Ltd Light-emitting element, and method of manufacturing the same
JP2011082233A (en) * 2009-10-05 2011-04-21 Hitachi Cable Ltd Light emitting element
JP2011176001A (en) * 2010-02-23 2011-09-08 Hitachi Cable Ltd Light emitting device and method of manufacturing the same
JP2021114594A (en) * 2019-08-27 2021-08-05 株式会社東芝 Optical semiconductor element

Also Published As

Publication number Publication date
JP3152812B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
KR100208108B1 (en) Semiconductor light-emitting device and method for producing the same
US5466950A (en) Semiconductor light emitting device with short wavelength light selecting means
US5153889A (en) Semiconductor light emitting device
JP4054631B2 (en) Semiconductor light emitting device and method for manufacturing the same, LED lamp, and LED display device
JP3698402B2 (en) Light emitting diode
US20110037049A1 (en) Nitride semiconductor light-emitting device
JP3290672B2 (en) Semiconductor light emitting diode
JP3240097B2 (en) Semiconductor light emitting device
US6399409B2 (en) Method for fabricating semiconductor light emitting element
US5459746A (en) Surface emission type semiconductor light-emitting device
JP3152812B2 (en) Semiconductor light emitting device
JPH0614564B2 (en) Semiconductor light emitting element
JPH08228022A (en) Semiconductor light-emitting element
JP2002237617A (en) Semiconductor light-emitting diode
JPH11233815A (en) Semiconductor light emitting diode
JP3237972B2 (en) Semiconductor light emitting device
JP3400110B2 (en) Light emitting diode
JPH0327577A (en) Light emitting diode array
JP2004241462A (en) Light emitting element and epitaxial wafer therefor
JP2000174331A (en) Semiconductor device
JPH04257276A (en) Semiconductor element
JP2006270073A (en) Light-emitting diode and method of manufacturing it
JP2003218386A (en) Light emitting diode
JP3852852B2 (en) Light emitting diode
JPH0888404A (en) Plane light emitting type semiconductor light emitting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080126

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees