JPH0888404A - Plane light emitting type semiconductor light emitting device - Google Patents

Plane light emitting type semiconductor light emitting device

Info

Publication number
JPH0888404A
JPH0888404A JP24845494A JP24845494A JPH0888404A JP H0888404 A JPH0888404 A JP H0888404A JP 24845494 A JP24845494 A JP 24845494A JP 24845494 A JP24845494 A JP 24845494A JP H0888404 A JPH0888404 A JP H0888404A
Authority
JP
Japan
Prior art keywords
layer
light emitting
strain
quantum well
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24845494A
Other languages
Japanese (ja)
Inventor
Hideto Sugawara
秀人 菅原
Masayuki Ishikawa
正行 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24845494A priority Critical patent/JPH0888404A/en
Publication of JPH0888404A publication Critical patent/JPH0888404A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a light emitting diode which makes possible improvement of luminous efficacy in a light emitting portion made of InGaAlP and improvement of luminance. CONSTITUTION: A light emitting diode has an n-GaAs substrate 11, an n-InGaAlP clad layer 12 formed on the substrate 11, a multilayer light emitting layer 13 formed on the clad layer 12, and a p-InGaAlP clad layer 15 formed on the multilayer light emitting layer 13, for leading out a light from the plane opposite to the substrate 11. In this light emitting diode, the multilayer light emitting layer 13 is caused to have a multiple quantum well structure in which a strain quantum well layer 13a having a tensile strain and a strain relaxation barrier layer 13b having a compression strain are stacked.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体材料を用
いた半導体発光装置に係わり、特に活性層領域に格子歪
を導入した歪量子井戸構造を用いた面発光型の半導体発
光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device using a compound semiconductor material, and more particularly to a surface emitting semiconductor light emitting device using a strained quantum well structure in which lattice strain is introduced into an active layer region.

【0002】[0002]

【従来の技術】InGaAlP系材料は、窒化物を除く
III-V族化合物半導体混晶中で最大の直接遷移型バンド
ギャップを有し、0.5〜0.6μm帯の発光素子材料
として注目されている。特に、GaAsを基板とし、こ
れに格子整合するInGaAlPによる発光部を持つp
n接合型発光ダイオード(LED)は、従来のGaPや
GaAsP等の間接遷移型の材料を用いたものに比べ、
赤色から緑色の高輝度発光が可能である。しかしなが
ら、この種のLEDにあっても、より短波長の領域(緑
色発光)での発光効率は必ずしも十分とは言えなかっ
た。
2. Description of the Related Art InGaAlP materials exclude nitrides
It has the largest direct transition type band gap in the III-V compound semiconductor mixed crystal, and is attracting attention as a light emitting device material in the 0.5 to 0.6 μm band. In particular, p is used as a substrate of GaAs and has a light emitting portion made of InGaAlP that is lattice-matched to this
The n-junction type light emitting diode (LED) is different from the conventional one using an indirect transition type material such as GaP or GaAsP.
High-intensity light emission from red to green is possible. However, even with this type of LED, the luminous efficiency in the shorter wavelength region (green emission) was not always sufficient.

【0003】図9に、InGaAlP発光部を有する従
来のLEDの素子構造断面を示す。図中1はn−GaA
s基板、2はn−InGaAlPクラッド層、3はIn
GaAlP活性層、4はp−InGaAlPクラッド
層、5はp−GaAlAs電流拡散層、6はp−GaA
sコンタクト層、7はAuZnからなるp側電極、8は
AuGeからなるn側電極である。
FIG. 9 shows a cross section of the structure of a conventional LED having an InGaAlP light emitting portion. In the figure, 1 is n-GaA
s substrate, 2 is n-InGaAlP clad layer, 3 is In
GaAlP active layer, 4 p-InGaAlP cladding layer, 5 p-GaAlAs current spreading layer, 6 p-GaA
s contact layer, 7 is a p-side electrode made of AuZn, and 8 is an n-side electrode made of AuGe.

【0004】InGaAlP活性層3のエネルギーギャ
ップは、クラッド層2,4のそれより小さくなるように
混晶組成が設定されており、光及びキャリアを活性層3
に閉じ込めるダブルヘテロ構造をなしている。また、p
−GaAlAs電流拡散層5の組成は、InGaAlP
活性層3からの発光波長に対し略透明になるように設定
されている。
The mixed crystal composition is set so that the energy gap of the InGaAlP active layer 3 is smaller than that of the clad layers 2 and 4, so that the active layer 3 can receive light and carriers.
It has a double hetero structure that is confined in. Also, p
-The composition of the GaAlAs current diffusion layer 5 is InGaAlP.
It is set to be substantially transparent to the wavelength of light emitted from the active layer 3.

【0005】図9の構造において、活性層3を厚さ0.
2μmのアンドープのIn0.5 (Ga1-x Alx 0.5
P(x=0.4)とした場合、その導電型はn型であ
り、濃度は1〜5×1016cm-3程度であった。このと
き、発光波長は565nm(緑)、発光効率はDC20
mAで0.07%であった。また、x=0.3としたと
き、発光波長は585nm(黄)、発光効率はDC20
mAで0.4%と狭く、GaP,GaAsP系に対する
特性的なメリットは必ずしも見られなかった。一方、x
=0.2としたとき、発光波長は620nm(橙)、発
光効率はDC20mAで1.5%であり、発光波長に対
し吸収体となるGaAs基板1を特に除去することなく
GaAlAs系を上回る発光効率が得られた。
In the structure of FIG. 9, the active layer 3 has a thickness of 0.
2 μm undoped In 0.5 (Ga 1-x Al x ) 0.5
When P (x = 0.4), the conductivity type was n type, and the concentration was about 1 to 5 × 10 16 cm −3 . At this time, the emission wavelength is 565 nm (green) and the emission efficiency is DC20.
It was 0.07% in mA. When x = 0.3, the emission wavelength is 585 nm (yellow) and the emission efficiency is DC20.
It was as narrow as 0.4% in mA, and the characteristic merit over GaP and GaAsP systems was not necessarily found. On the other hand, x
= 0.2, the emission wavelength is 620 nm (orange), the emission efficiency is 1.5% at DC 20 mA, and the emission wavelength exceeds that of the GaAlAs system without particularly removing the GaAs substrate 1 serving as an absorber. Efficiency was obtained.

【0006】このように発光効率は、活性層のAl組成
xに依存して変化していることが、本発明者らの実験に
より分かっている(Appl.Phys.Lett. 58(1991)1010)。
この原因は、活性層の結晶中へのAl混晶比を増加させ
ることによって、非発光センターの影響が大きくなるた
めと考えられる(J.Electron Mater 20(1991)687)。こ
のような背景の中、このInGaAlP材料の特性であ
る原子の秩序配列性を結晶成長条件で変化させ、Al組
成を変えることなく発光波長を短波長化するなどの試作
が行われてきている。
As described above, it is known from the experiments by the present inventors that the luminous efficiency changes depending on the Al composition x of the active layer (Appl. Phys. Lett. 58 (1991) 1010). .
It is considered that this is because the influence of the non-radiative centers is increased by increasing the Al mixed crystal ratio in the crystal of the active layer (J. Electron Mater 20 (1991) 687). Against this background, trial production has been performed, such as changing the ordered arrangement of atoms, which is a characteristic of this InGaAlP material, under crystal growth conditions to shorten the emission wavelength without changing the Al composition.

【0007】この他に、短波長領域での発光効率向上の
手段として、活性層に量子井戸(QW:Quantum Well)
構造を採用する方法が有効と考えられている。QW構造
は電子の波動関数の波長程度以下の厚さの量子井戸層
を、これよりエネルギーギャップが大きく量子井戸中の
電子に対し障壁となる障壁層で挟んだもので、1つ(S
QW:Single Quantum Well)又は2つ以上(MQW:Mul
tiple Quantum Well)の量子井戸層からなる。量子井戸
構造を活性層とする半導体発光素子では、電子状態の量
子化によるエネルギーギャップが等価的に増大し、発光
波長の短波長化が起こる。
In addition to this, as a means for improving the luminous efficiency in the short wavelength region, a quantum well (QW: Quantum Well) is formed in the active layer.
The method of adopting the structure is considered to be effective. The QW structure is formed by sandwiching a quantum well layer having a thickness equal to or less than the wavelength of the electron wave function with a barrier layer having a larger energy gap and serving as a barrier to electrons in the quantum well.
QW: Single Quantum Well) or 2 or more (MQW: Mul
tiple Quantum Well). In a semiconductor light emitting device having a quantum well structure as an active layer, the energy gap due to quantization of electronic states is equivalently increased, and the emission wavelength is shortened.

【0008】このような短波長化は量子井戸構造に本質
的な現象であり、GaAlAs系などの他の材料系でも
見られている。ところが、InGaAlP系を用いた発
光素子に適用する場合、以下のような問題を有する。即
ち、InGaAlP材料ではAl組成の変化に伴う伝導
帯側のバンド不連続値の変化が小さいために量子井戸構
造を形成した場合、伝導帯側は非常に浅い井戸となって
しまう。このため、井戸層に注入したキャリア(電子)
は障壁層まで漏れた状態となる。
Such shortening of wavelength is an essential phenomenon in the quantum well structure, and is also found in other material systems such as GaAlAs system. However, when applied to a light emitting device using an InGaAlP system, it has the following problems. That is, in the InGaAlP material, the change in the band discontinuity value on the conduction band side due to the change in Al composition is small, so that when the quantum well structure is formed, the conduction band side becomes a very shallow well. Therefore, carriers (electrons) injected into the well layer
Leaks to the barrier layer.

【0009】障壁層のAl組成は比較的高く、化学的に
活性なAlを大きくしたために発生する非発光センター
が存在し、漏れた電子はこれを介して非発光再結合して
しまう。障壁層のバンドギャップを大きくすると井戸を
深くできるが、結果としてAl組成を増やすことにな
り、障壁層における非発光センターが増大する問題やキ
ャリアの注入効率の低下を招いていた。
The Al composition of the barrier layer is relatively high, and there is a non-radiative center generated by increasing chemically active Al, and leaked electrons are non-radiatively recombined through this. If the band gap of the barrier layer is increased, the well can be deepened, but as a result, the Al composition is increased, which causes a problem of increasing non-radiative centers in the barrier layer and a decrease in carrier injection efficiency.

【0010】また、Al組成を変えることなく発光波長
を短波長化する手法として、活性層の結晶に格子歪を導
入することも行われてきている。しかしながら、歪量を
増加させることは、結晶中の格子欠陥の増加を招き、さ
らに臨界膜厚との関係から活性層に注入したキャリア
(電子)が十分に活性層に閉じ込められる膜厚を得るこ
とが困難になる等の問題を招く。このため、必ずしも発
光効率向上に有効であるとは言えなかった。
Further, as a method of shortening the emission wavelength without changing the Al composition, lattice strain has been introduced into the crystal of the active layer. However, increasing the amount of strain leads to an increase in lattice defects in the crystal, and further, to obtain a film thickness in which carriers (electrons) injected into the active layer are sufficiently confined in the active layer in relation to the critical film thickness. Will cause problems such as difficulty. Therefore, it cannot be said that it is necessarily effective in improving the luminous efficiency.

【0011】以上のことから、InGaAlP材料を用
いた発光素子において、特に短波長発光の効率向上をは
かるためには、一つには発光部の構造パラメータを最適
化する必要があった。
From the above, in the light emitting device using the InGaAlP material, it is necessary to optimize the structural parameters of the light emitting portion in order to improve the efficiency of light emission of short wavelength in particular.

【0012】[0012]

【発明が解決しようとする課題】このように、従来のI
nGaAlPからなる活性層を持つ半導体発光装置にお
いて短波長高効率化を実現するために量子井戸構造や歪
の導入技術を採用しているが、井戸層への有効なキャリ
アの閉じ込めができないことや、転位,欠陥,非発光セ
ンターによる特性劣化が生じやすい問題があった。
As described above, the conventional I
Although a quantum well structure and a strain introduction technique are adopted in order to achieve high efficiency in a short wavelength in a semiconductor light emitting device having an active layer made of nGaAlP, it is impossible to effectively confine carriers in the well layer. There was a problem that characteristics were likely to deteriorate due to dislocations, defects, and non-radiative centers.

【0013】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、InGaAlP等から
なる発光部における発光効率を改善することができ、輝
度向上をはかり得る面発光型半導体発光装置を提供する
ことにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the luminous efficiency of a light emitting portion made of InGaAlP or the like and to improve the brightness. It is to provide a light emitting device.

【0014】[0014]

【課題を解決するための手段】本発明の骨子は、InG
aAlP等の材料で構成された発光部における発光効率
を改善するために、発光層に引張り歪を入れて、且つこ
のときの歪量によって膜厚を制限されないようにしたも
のである。
The essence of the present invention is InG
In order to improve the light emission efficiency of the light emitting portion made of a material such as aAlP, tensile strain is applied to the light emitting layer, and the film thickness is not limited by the strain amount at this time.

【0015】即ち本発明は、第1導電型の化合物半導体
基板と、この基板上に形成された第1導電型のクラッド
層と、このクラッド層上に形成された多層膜発光層と、
この多層膜発光層上に形成された第2導電型のクラッド
層とを具備し、基板と平行な面上から光を取り出す面発
光型の半導体発光装置であって、基板を基準として多層
膜発光層を正と負の格子不整合を持つ半導体層で構成し
たことを特徴とする。
That is, the present invention provides a compound semiconductor substrate of the first conductivity type, a clad layer of the first conductivity type formed on the substrate, and a multilayer film light emitting layer formed on the clad layer.
A surface-emitting type semiconductor light-emitting device that includes a second-conductivity-type cladding layer formed on the multilayer light-emitting layer and takes out light from a plane parallel to the substrate. The layer is composed of semiconductor layers having positive and negative lattice mismatch.

【0016】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) 多層膜発光層及びクラッド層はInGaAlP系材
料からなること。 (2) 多層膜発光層が、引張り歪(又は圧縮歪)を持つ歪
量子井戸層と圧縮歪(又は引張り歪)を持つ歪緩和障壁
層とを積層した多重量子井戸構造から構成されること。 (3) 歪層と歪緩和層の基板との格子不整合率と膜厚をそ
れぞれΔa1,2 とd1,2として、Δa1 ×d1 =−(Δ
a2 ×d2 )の関係が成り立つようにする。 (4) 歪層として、In1-x (Ga1-y Aly x P(x
>0.51)を用い、歪緩和層としてIn1-s (Ga
1-m Alm s P(s<0.51)を用いる。 (5) (4) の関係において、y<mとすること。 (6) 歪量子井戸層の総膜厚は150nm以上とし、格子
定数は基板のそれと比べて−0.5%以上とすること。
Here, the following are preferred embodiments of the present invention. (1) The multilayer light emitting layer and the cladding layer should be made of InGaAlP-based material. (2) The multilayer light emitting layer is composed of a multiple quantum well structure in which a strained quantum well layer having tensile strain (or compressive strain) and a strain relaxation barrier layer having compressive strain (or tensile strain) are laminated. (3) Let Δa1,2 and d1,2 be the lattice mismatch rate between the strained layer and the strain relaxation layer and the substrate, respectively, and let Δa1 × d1 =-(Δ
The relationship of a2 × d2) is established. (4) As the strained layer, In 1-x (Ga 1-y Al y ) x P (x
> 0.51) and In 1-s (Ga) as a strain relaxation layer.
1-m Al m ) s P (s <0.51) is used. (5) In the relationship of (4), y <m. (6) The total thickness of the strained quantum well layer should be 150 nm or more, and the lattice constant should be -0.5% or more of that of the substrate.

【0017】[0017]

【作用】本発明によれば、歪層に対して逆歪を入れた歪
緩和層を用いることによって、これまで臨界膜厚によっ
て制限されていた歪層の膜厚を厚くすることができるた
め、キャリアの閉じ込めも十分にすることができ、Al
組成を増加させずに短波長化できる歪の効果をより効果
的に働かせることができる。また、歪緩和層のAl組成
を歪層のそれよりも大きくすることによって、伝導帯側
のエネルギーギャップ差が大きな(井戸が深い)多重量
子井戸構造とすることができる。このため、歪がない場
合の量子井戸構造によって起こるエネルギーギャップの
等価的な増大によるクラッド層或いは障壁層とのバンド
ギャップ差が小さくなる現象からくる、注入キャリアの
オーバフロー(注入キャリアが活性領域から漏れ流れる
こと)の量を抑制することができる。また、歪量を多く
することによって、価電子帯側で縮退していた有効質量
の重い正孔と軽い正孔が分離し、このことにより自然放
出光の発光効率を向上させることができる。
According to the present invention, by using the strain relaxation layer in which the inverse strain is applied to the strained layer, the thickness of the strained layer, which has been limited by the critical thickness until now, can be increased. Carriers can be sufficiently confined, and Al
The effect of strain that can shorten the wavelength without increasing the composition can be more effectively exerted. Further, by making the Al composition of the strain relaxation layer larger than that of the strain layer, it is possible to form a multiple quantum well structure having a large energy gap difference on the conduction band side (deep well). Therefore, due to the phenomenon that the band gap difference with the cladding layer or the barrier layer becomes smaller due to the equivalent increase in energy gap caused by the quantum well structure without strain, the overflow of injected carriers (the injected carriers leak from the active region). Flow rate) can be suppressed. Further, by increasing the amount of strain, the heavy holes and the light holes, which have been degenerated on the valence band side and have a large effective mass, are separated from each other, whereby the luminous efficiency of spontaneous emission light can be improved.

【0018】なお、ここで言う歪は、基板に用いる結晶
の格子定数a0 とその上に結晶成長したInGaAlP
材料の格子定数aとで次のように表わせる。即ち、 {(a−a0 )/a0 }×100% となり、引張り歪は負の値となる。
The strain referred to here is the lattice constant a0 of the crystal used for the substrate and the InGaAlP crystal grown on it.
It can be expressed as follows by the lattice constant a of the material. That is, {(a-a0) / a0} * 100%, and the tensile strain has a negative value.

【0019】[0019]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (実施例1)図1(a)は、本発明の第1の実施例に係
わる発光ダイオード(LED)の概略構造を示す断面図
である。図中11はn−GaAs基板であり、この基板
11の一主面上にn−In0.5 (Ga1-A AlA 0.5
Pクラッド層12、歪緩和量子井戸活性層13、及びp
−In0.5 (Ga1-B AlB 0.5 Pクラッド層14か
らなる発光部が成長されている。さらに、この発光部上
に、p−Ga1-c Alc As電流拡散層15及びp−G
aAsコンタクト層16が成長形成され、コンタクト層
16は選択エッチングより、例えば円形に加工されてい
る。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1A is a sectional view showing a schematic structure of a light emitting diode (LED) according to a first embodiment of the present invention. In the figure, 11 is an n-GaAs substrate, and n-In 0.5 (Ga 1 -A Al A ) 0.5 is formed on one main surface of the substrate 11.
P cladding layer 12, strain relaxation quantum well active layer 13, and p
-In 0.5 emitting portion composed of (Ga 1-B Al B) 0.5 P cladding layer 14 is grown. Further, on the light emitting portion, the p-Ga 1-c Al c As current diffusion layer 15 and the p-G are formed.
The aAs contact layer 16 is grown and formed, and the contact layer 16 is processed into a circular shape, for example, by selective etching.

【0020】そして、コンタクト層16上にAu−Zn
からなるp側電極17が形成され、基板11の他方の主
面にAu−Geからなるn側電極18が形成されてい
る。なお、各層の成長は有機金属気相成長法(MOCV
D法)を用いた。
Then, Au--Zn is formed on the contact layer 16.
Is formed, and the n-side electrode 18 made of Au—Ge is formed on the other main surface of the substrate 11. The growth of each layer is performed by the metal organic chemical vapor deposition (MOCV) method.
Method D) was used.

【0021】歪緩和量子井戸活性層13は、図1(b)
に示すように、引張り歪を持つ歪量子井戸層(歪層)1
3aと圧縮歪を持つ歪緩和障壁層(歪緩和層)13bと
を積層したものである。また、歪量子井戸層13aの材
料はIn1-x (Ga1-y Aly x P(x>0.5,0
≦y≦1)で、歪緩和層13bの材料はIn1-s (Ga
1-m Alm s P(s<0.5,0≦m≦1)である。
The strain relaxation quantum well active layer 13 is shown in FIG.
As shown in, strained quantum well layer (strained layer) 1 having tensile strain 1
3a and a strain relaxation barrier layer (strain relaxation layer) 13b having a compressive strain are laminated. The material of the strained quantum well layer 13a is In 1-x (Ga 1-y Al y ) x P (x> 0.5,0).
≦ y ≦ 1), the material of the strain relaxation layer 13b is In 1-s (Ga)
1-m Al m ) s P (s <0.5, 0 ≦ m ≦ 1).

【0022】このように設定された歪緩和量子井戸活性
層部を、図1(a)に示した面発光型LEDに適用した
例について以下に示す。歪量子井戸層13aを厚さ15
nm,歪量−1%のIn0.41(Ga0.7 Al0.3 0.59
P、歪緩和障壁層13bを厚さ20nm,歪量+0.3
75%のIn0.54(Ga0.3 Al0.7 0.46Pとして2
0対、クラッド層12をn−In0.5 Al0.5 P、クラ
ッド層14をp−In0.5 Al0.5 Pとした。電流拡散
層15は厚さ7μmのp−Ga0.3 Al0.7 Asとし
た。クラッド層12,14及び電流拡散層15の不純物
ドーピングは、p型はZnを不純物とし、クラッド層1
4は3×1017cm-3、電流拡散層15は3×1018
-3、n型はSiを不純物とし、クラッド層12は3×
1017cm-3程度とした。
An example in which the strain relaxation quantum well active layer portion thus set is applied to the surface emitting LED shown in FIG. 1A will be described below. The strained quantum well layer 13a has a thickness of 15
nm, strain-1% In 0.41 (Ga 0.7 Al 0.3 ) 0.59
P, strain relaxation barrier layer 13b has a thickness of 20 nm, strain amount +0.3
75% of In 0.54 ( Ga 0.3 Al 0.7 ) 0.46 P as 2
No. 0, the cladding layer 12 was n-In 0.5 Al 0.5 P, and the cladding layer 14 was p-In 0.5 Al 0.5 P. The current diffusion layer 15 was made of p-Ga 0.3 Al 0.7 As with a thickness of 7 μm. Impurity doping of the clad layers 12 and 14 and the current diffusion layer 15 is performed by using Zn as an impurity for the p-type
4 is 3 × 10 17 cm −3 , and the current spreading layer 15 is 3 × 10 18 c
m −3 , n-type has Si as an impurity, and the cladding layer 12 has 3 ×
It was set to about 10 17 cm -3 .

【0023】歪量子井戸層13aの総膜厚は300nm
となり、図2に示した歪量と臨界膜厚との関係からの−
0.5%の臨界膜厚20nmよりも厚いことになる。し
かしながら、図1に示した素子構造の結晶成長を行い、
その結晶の表面モホロジー観察によって、臨界膜厚を越
えた時に見られる格子緩和の欠陥は見られなかった。ま
た、X線回折による評価において、結晶成長層は基板結
晶に格子整合していることが確認された。これは、歪緩
和層を導入することによって、厚膜成長が可能になった
ものと考えられる。他に、40対としたものについても
同様の特性が確認された。
The total thickness of the strained quantum well layer 13a is 300 nm.
From the relationship between the amount of strain and the critical film thickness shown in FIG.
This means that the critical film thickness of 0.5% is thicker than 20 nm. However, the crystal growth of the device structure shown in FIG.
By observing the surface morphology of the crystal, defects of lattice relaxation observed when the critical thickness was exceeded were not found. In addition, in the evaluation by X-ray diffraction, it was confirmed that the crystal growth layer was lattice-matched with the substrate crystal. It is considered that this is because the introduction of the strain relaxation layer has enabled thick film growth. In addition, similar characteristics were confirmed for 40 pairs.

【0024】このLEDの電流−光出力特性を図3に示
す。図中Aは本実施例の歪緩和量子井戸構造活性層を有
する場合の電流−光出力特性を、Bは図5に示した従来
構造においてInGaAlP活性層3のAl混晶比を
0.4とした場合の電流−光出力特性である。図3中に
示した2つの素子の発光波長は略同等であり、575n
m程度であった。歪緩和量子井戸構造と従来構造(バル
ク活性層)とを20mAの動作電流の下で光出力を比較
すると、歪緩和量子井戸構造とした方が約3倍の光出力
を得ることができた。
The current-light output characteristics of this LED are shown in FIG. In the figure, A is the current-light output characteristic in the case of having the strain relaxation quantum well structure active layer of the present embodiment, and B is the Al mixed crystal ratio of the InGaAlP active layer 3 in the conventional structure shown in FIG. It is a current-light output characteristic in the case. The emission wavelengths of the two elements shown in FIG.
It was about m. Comparing the optical outputs of the strain-relaxed quantum well structure and the conventional structure (bulk active layer) under an operating current of 20 mA, the strain-relaxed quantum well structure was able to obtain approximately three times the optical output.

【0025】図4に、動作電流20mAにおける発光波
長と外部量子効率の関係について示す。図中の白丸は本
実施例の歪緩和量子井戸構造活性層を有する素子の結果
であり、黒丸は図9に示した従来構造においてInGa
AlP活性層3のAl混晶比を0.2,0.3,0.4
とした素子の結果である。本実施例構造における外部量
子効率は同波長における従来構造と比べて高効率発光が
得られており、その値は0.7%であった。
FIG. 4 shows the relationship between the emission wavelength and the external quantum efficiency at an operating current of 20 mA. The white circles in the figure are the results of the element having the strain relaxation quantum well structure active layer of the present embodiment, and the black circles are InGa in the conventional structure shown in FIG.
The Al mixed crystal ratio of the AlP active layer 3 is 0.2, 0.3, 0.4.
Is the result of the element. The external quantum efficiency of the structure of this example was higher than that of the conventional structure at the same wavelength, and the value was 0.7%.

【0026】このように本実施例によれば、発光層を構
成する量子井戸活性層13として、引張り歪を持つ歪量
子井戸層13aに対し逆歪の圧縮歪を持つ歪緩和障壁層
13bを用いることにより、臨界膜厚によって制限され
ていた量子井戸活性層13の膜厚を、この臨界膜厚より
も十分厚くすることができる。このため、歪の導入によ
りAl組成を増加させずに短波長化できると共に、キャ
リアの閉じ込めも十分にすることができる。従って、I
nGaAlPからなる発光部における発光効率を改善す
ることができ、輝度の大幅な向上をはかることができ
る。 (実施例2)図5(a)は本発明の第2の実施例の概略
構成を示す断面図である。この実施例が先に説明した実
施例と異なる点は、素子を構成する材料にII-VI 族のZ
nSe系を用いていることである。
As described above, according to the present embodiment, as the quantum well active layer 13 constituting the light emitting layer, the strain relaxation barrier layer 13b having compressive strain of reverse strain is used for the strained quantum well layer 13a having tensile strain. As a result, the film thickness of the quantum well active layer 13 that was limited by the critical film thickness can be made sufficiently thicker than this critical film thickness. Therefore, the introduction of strain can shorten the wavelength without increasing the Al composition, and can also sufficiently confine carriers. Therefore, I
It is possible to improve the luminous efficiency of the light emitting portion made of nGaAlP, and it is possible to significantly improve the luminance. (Embodiment 2) FIG. 5A is a sectional view showing a schematic configuration of a second embodiment of the present invention. The difference between this embodiment and the above-described embodiment is that the material forming the device is made of II-VI group Z
That is, the nSe system is used.

【0027】図中51はp−GaAs基板であり、この
基板51の一主面上にp−InAlP/InGaAlP
/InGaP系よりなる通電容易層52,p−ZnSe
バッファ層53が成長され、このバッファ層53上にp
−ZnMgSeSクラッド層54、歪緩和量子井戸活性
層55及びn−ZnMgSesクラッド層56からなる
発光部が成長されている。さらに、この発光部上にn−
ZnSeコンタクト層57が形成されている。
In the figure, 51 is a p-GaAs substrate, and p-InAlP / InGaAlP is formed on one main surface of the substrate 51.
/ InGaP-based easy-to-carry layer 52, p-ZnSe
A buffer layer 53 is grown, and p is formed on the buffer layer 53.
A light emitting portion including a -ZnMgSeS cladding layer 54, a strain relaxation quantum well active layer 55, and an n-ZnMgSeS cladding layer 56 is grown. Furthermore, n-
A ZnSe contact layer 57 is formed.

【0028】そして、コンタクト層57上の一部にNi
−Auからなるn側電極58が形成され、基板51の他
方の主面にTi−Auからなるp側電極59が形成され
ている。なお、p,n両不純物材料としてはそれぞれ
N,Clを用い、結晶成長は分子線エピタキシャル成長
法(MBE法)を用いた。
Ni is formed on a part of the contact layer 57.
An n-side electrode 58 made of -Au is formed, and a p-side electrode 59 made of Ti-Au is formed on the other main surface of the substrate 51. It should be noted that N and Cl were used as both the p and n impurity materials, and the molecular beam epitaxial growth method (MBE method) was used for crystal growth.

【0029】歪緩和量子井戸活性層55は、図5(b)
に示すように圧縮歪を持つ歪量子井戸層(歪層)55a
と引張り歪を持つ歪緩和障壁層(歪緩和層)55bを積
層したものである。また、歪量子井戸層55aの材料は
Cdx Zn1-x Se(x>0)或いはZnSex Te
1-x (x<1)で、歪緩和障壁層55bの材料はZnS
x Se1-x (x>0)である。
The strain relaxation quantum well active layer 55 is shown in FIG.
Strained quantum well layer (strained layer) 55a having compressive strain as shown in FIG.
And a strain relaxation barrier layer (strain relaxation layer) 55b having tensile strain. The material of the strained quantum well layer 55a is Cd x Zn 1-x Se (x> 0) or ZnSe x Te.
1-x (x <1) and the material of the strain relaxation barrier layer 55b is ZnS
x Se 1-x (x> 0).

【0030】このように設定された歪緩和量子井戸活性
層部を図5(a)に示した面発光型LEDに適用した例
について以下に示す。ここで用いた歪量子井戸層材料は
CdZnSeで、その歪量と膜厚は+2%,5nmであ
る。また、歪緩和障壁層ZnSSeの歪量と膜厚は−1
%,10nmとした。その対数は40対とした。なお、
ここでいう歪は、ZnSe結晶の格子定数a0 と他の結
晶成長層の格子定数aとを用いて{(a−a0 )/a0
}×100%の関係で表わせ、引張り歪が負の値とな
る。また、この実施例においても、前記実施例と同様に
格子緩和によると考えられる欠陥は見られなかった。
An example in which the strain relaxation quantum well active layer portion thus set is applied to the surface emitting LED shown in FIG. 5A will be described below. The strain quantum well layer material used here is CdZnSe, and the strain amount and the film thickness are + 2% and 5 nm. Further, the strain amount and the film thickness of the strain relaxation barrier layer ZnSSe are −1.
%, 10 nm. The logarithm was set to 40. In addition,
The strain referred to here is {(a-a0) / a0 by using the lattice constant a0 of ZnSe crystal and the lattice constant a of other crystal growth layers.
} × 100%, and the tensile strain has a negative value. Further, in this example as well, similar to the above-mentioned examples, no defects considered to be due to lattice relaxation were observed.

【0031】このような構成の素子に動作電流20mA
のバイアスを加えたところ、発光波長530nmの青緑
色で高度10cdの高輝度発光が得られた。 (実施例3)図6(a)は、本発明の第3の実施例の概
略構成を示す断面図である。この実施例が先に説明した
実施例と異なる点は、素子を構成する材料にInGaA
lN系を用いていることである。
An operating current of 20 mA is applied to the element having such a structure.
When a bias of 1 was applied, a high-luminance light emission with an altitude of 10 cd was obtained with a blue-green light emission wavelength of 530 nm. (Embodiment 3) FIG. 6A is a sectional view showing a schematic configuration of a third embodiment of the present invention. This embodiment is different from the above-described embodiments in that the material forming the device is InGaA.
That is, the 1N system is used.

【0032】図中61はサファイア基板であり、この基
板61上にGaAlN系よりなるバッファ層62が成長
され、このバッファ層62上にn−GaN層63,n−
GaAlNクラッド層64,歪緩和量子井戸活性層65
及びp−GaAlNクラッド層66からなる発光部が成
長されている。さらに、この発光部上にはp−GaNコ
ンタクト層67が成長されている。そして、コンタクト
層67上の一部にNi−Auからなるp側電極68が形
成され、n側電極69はn−GaN63上の他の主面に
Ti−Au或いはTi−Alを用いて形成されている。
なお、p,n両不純物材料としては、それぞれMg,S
iを用い、結晶成長は有機金属気相成長法(MOCVD
法)を用いた。
In the figure, reference numeral 61 is a sapphire substrate, on which a GaAlN-based buffer layer 62 is grown, and n-GaN layers 63, n- are formed on the buffer layer 62.
GaAlN cladding layer 64, strain relaxation quantum well active layer 65
And a light emitting portion composed of the p-GaAlN cladding layer 66 is grown. Furthermore, a p-GaN contact layer 67 is grown on this light emitting portion. Then, a p-side electrode 68 made of Ni-Au is formed on a part of the contact layer 67, and an n-side electrode 69 is formed on the other main surface of the n-GaN 63 using Ti-Au or Ti-Al. ing.
The p and n impurity materials are Mg and S, respectively.
i is used for crystal growth by metalorganic vapor phase epitaxy (MOCVD
Method) was used.

【0033】歪緩和量子井戸活性層65は、図6(b)
に示すように、圧縮歪を持つ量子井戸層65aと引張り
歪を持つ歪緩和障壁層(歪緩和層)65bとを積層した
ものである。また、量子井戸層65aの材料はアンドー
プのInx Ga1-x N(x>0)で、歪緩和障壁層65
bの材料はGa1-x (InAl)x N(x<1)であ
る。
The strain relaxation quantum well active layer 65 is shown in FIG.
As shown in, the quantum well layer 65a having a compressive strain and the strain relaxation barrier layer (strain relaxation layer) 65b having a tensile strain are laminated. The material of the quantum well layer 65a is undoped In x Ga 1-x N (x> 0), and the strain relaxation barrier layer 65 is formed.
The material of b is Ga 1-x (InAl) x N (x <1).

【0034】このように設定された歪緩和量子井戸活性
層部を図6(a)に示した面発光型LEDに適用した例
について以下に示す。ここで用いた歪量子井戸層InG
aNの歪量と膜厚は+2%,5nmで、また歪緩和障壁
層の材料はGaAlNでその歪量と膜厚は−1%,10
nmとし、その対数は40とした。なお、ここで言う歪
はGaN結晶の格子定数a0 と他の結晶層の格子定数a
とを用いて{(a−a0 )/a0 }×100%の関係を
表わせ、引っ張り歪は負の値となる。また、この実施例
においても前記実施例と同様に、格子緩和によると考え
られる欠陥は見られなかった。
An example in which the strain relaxation quantum well active layer portion thus set is applied to the surface emitting LED shown in FIG. 6A will be described below. Strained quantum well layer InG used here
The strain amount and film thickness of aN are + 2% and 5 nm, and the strain relaxation barrier layer is made of GaAlN and the strain amount and film thickness are -1% and 10%.
nm and the logarithm thereof was 40. The strain referred to here is the lattice constant a0 of the GaN crystal and the lattice constant a of other crystal layers.
Is used to express the relationship of {(a-a0) / a0} * 100%, and the tensile strain has a negative value. Also, in this example, as in the case of the above-mentioned examples, no defects considered to be due to lattice relaxation were found.

【0035】このような構成の素子に動作電流20mA
のバイアスを加えたところ、発光波長450nmの青色
で光度5cdの高輝度発光が得られた。この発光スペク
トルの半値幅は〜10mmと狭く、単色性に優れた発光
が得られた。また、歪量子井戸層65aにZnをドーピ
ングして発光センターを形成し、20mAのバイアスで
動作させたところ、500nmに発光ピーク波長を持
ち、光度7cdの高輝度発光が得られた。 (実施例4)図7(a)は、本発明の第4の実施例の概
略構成を示す断面図である。この実施例が先に説明した
実施例と異なる点は、素子を面発光型レーザとしたこと
である。
An operating current of 20 mA is applied to the element having such a structure.
When a bias of 2 was applied, high-luminance light emission with a blue light having an emission wavelength of 450 nm and a luminous intensity of 5 cd was obtained. The full width at half maximum of this emission spectrum was as narrow as -10 mm, and light emission excellent in monochromaticity was obtained. Further, when a light emitting center was formed by doping Zn into the strained quantum well layer 65a and operated with a bias of 20 mA, a high-luminance light emission having a light emission peak wavelength of 500 nm and a luminous intensity of 7 cd was obtained. (Embodiment 4) FIG. 7A is a sectional view showing a schematic configuration of a fourth embodiment of the present invention. The difference of this embodiment from the above-described embodiments is that the device is a surface emitting laser.

【0036】図中71はn−GaAs基板であり、この
基板71上にはn−GaAsバッファ層72を介してn
−AlAsとn−Ga0.5 Al0.5 Asの30対から構
成されるブラッグ反射層73が形成されている。さら
に、このブラッグ反射層73上には、n−In0.5 (G
0.3 Al0.7 0.5 Pクラッド層74、歪み緩和量子
井戸活性層75、p−In0.5 (Ga0.3 Al0.7
0.5 Pクラッド層76からなる発光部が形成されてい
る。さらにまた、このクラッド層76上には、p−Ga
AlAs層77が第1のコンタクト層として形成され、
p−AlAsとp−Ga0.5 Al0.5 Asの30対構成
されるブラッグ反射層78が形成され、この2つによっ
てリッジが構成されている。
In the figure, reference numeral 71 denotes an n-GaAs substrate, and an n-GaAs buffer layer 72 is provided on the substrate 71 for n.
Bragg reflection layer 73 is formed composed of 30 pairs of -AlAs and n-Ga 0.5 Al 0.5 As. Furthermore, n-In 0.5 (G
a 0.3 Al 0.7 ) 0.5 P cladding layer 74, strain relaxation quantum well active layer 75, p-In 0.5 (Ga 0.3 Al 0.7 ).
A light emitting portion made of a 0.5 P cladding layer 76 is formed. Furthermore, p-Ga is formed on the clad layer 76.
An AlAs layer 77 is formed as a first contact layer,
A Bragg reflection layer 78 composed of 30 pairs of p-AlAs and p-Ga 0.5 Al 0.5 As is formed, and a ridge is formed by these two.

【0037】そして、このリッジ側面には、p−GaA
sコンタクト層79が第2コンタクト層として形成され
ており、さらにこのコンタクト層79の上面にはAu−
Znからなるp側電極81が形成され、基板71の主面
にAu−Geからなるn側電極82が形成されている。
なお、コンタクト層77の厚さは1μmで、リッジの径
は20μmとした。また、結晶成長は有機金属気相成長
法(MOCVD法)を用いた。
On the side surface of this ridge, p-GaA is formed.
An s contact layer 79 is formed as a second contact layer, and Au-- on the upper surface of the contact layer 79.
A p-side electrode 81 made of Zn is formed, and an n-side electrode 82 made of Au—Ge is formed on the main surface of the substrate 71.
The contact layer 77 had a thickness of 1 μm and the ridge had a diameter of 20 μm. The crystal growth was performed by the metal organic chemical vapor deposition method (MOCVD method).

【0038】本実施例における電流注入82は、電極8
1〜p−GaAsコンタクト層79〜ブラッグ反射層7
8の側面及びp−GaAlAsコンタクト層77の側面
を介して行われる。そのため、p−GaAlAsコンタ
クト層77のキャリア濃度は高めに設定しており、発光
波長に対して損失とならないようAl混晶比を0.5と
している。そして、本実施例における電流狭窄は、クラ
ッド層76とコンタクト層79との間のInGaAlP
/GaAsヘテロ接合間のヘテロ障壁83によって行わ
れている。
The current injection 82 in this embodiment is performed by the electrode 8
1-p-GaAs contact layer 79-Bragg reflection layer 7
8 and the side surface of the p-GaAlAs contact layer 77. Therefore, the carrier concentration of the p-GaAlAs contact layer 77 is set high, and the Al mixed crystal ratio is set to 0.5 so as not to cause a loss with respect to the emission wavelength. The current confinement in this embodiment is caused by the InGaAlP between the clad layer 76 and the contact layer 79.
This is performed by the hetero barrier 83 between the / GaAs heterojunctions.

【0039】歪緩和量子井戸活性層75は、図7(b)
に示すように引張り歪を持つ歪量子井戸層(歪層)75
aの6層と、その井戸層75aを挟む圧縮歪を持つ歪緩
和障壁層(歪緩和層)75bの7層を積層したものであ
る。また、歪量子井戸層75aの材料はIn1-x (Ga
1-y Aly x P(x<0.5,0≦y≦1)で、歪緩
和障壁層75bの材料はIn1-s (Ga1-m Alm s
P(s>0.5,0≦m≦1)である。
The strain relaxation quantum well active layer 75 is shown in FIG.
Strained quantum well layer (strained layer) 75 having tensile strain as shown in
6 of a and 7 layers of a strain relaxation barrier layer (strain relaxation layer) 75b having a compressive strain sandwiching the well layer 75a are laminated. The material of the strained quantum well layer 75a is In 1-x (Ga
1-y Al y) x P (x < in 0.5,0 ≦ y ≦ 1), the material of the strain relaxation barrier layer 75b In 1-s (Ga 1 -m Al m) s
P (s> 0.5, 0 ≦ m ≦ 1).

【0040】このように設定された歪緩和量子井戸活性
層を持つ面発光レーザの動作電流−光出力特性を図8に
示す。ここに示す素子の歪量子井戸層75aは厚さ5n
m、歪量+2%のIn0.75Ga0.25Pであり、歪緩和障
壁層75bは厚さ10nm、歪量−1%のIn0.35(G
0.6 Al0.4 0.65Pとした。なお、ここで言う歪
は、基板に用いているGaAsの格子定数a0 と、その
上に結晶成長したInGaAlP結晶の格子定数aとを
用いて{(a−a0 )/a0 }×100の関係で表わ
せ、引張り歪は負の値となる。この素子の発振波長は6
75nmで、図8に示すようにレーザ発振しきい値2m
A、最大光出力8mWであった。
FIG. 8 shows the operating current-optical output characteristics of the surface emitting laser having the strain relaxation quantum well active layer thus set. The strained quantum well layer 75a of the device shown here has a thickness of 5n.
m, strain + 2% of In 0.75 Ga 0.25 P, the strain relaxation barrier layer 75 b has a thickness of 10 nm, strain -1% of In 0.35 (G
a 0.6 Al 0.4 ) 0.65 P. The strain referred to here has a relationship of {(a−a0) / a0} × 100 using the lattice constant a0 of GaAs used for the substrate and the lattice constant a of the InGaAlP crystal grown on it. That is, the tensile strain has a negative value. The oscillation wavelength of this device is 6
At 75 nm, the laser oscillation threshold is 2 m as shown in FIG.
A, the maximum light output was 8 mW.

【0041】一般に、歪の量を増加し臨界膜厚に近くな
るとミスフィット転位等の欠陥の発生が起こりレーザ発
振が困難になり、キンクレベルの急激な低下が起こる
が、本実施例で作成した素子はこのような特性は見られ
ず、しきい値の低い良好なレーザ特性が得られた。ま
た、通常のレーザにおいては発光部の膜厚を厚くするこ
とは望ましくないが、面発光型レーザでは発光部の膜厚
を厚くしても問題はないばかりか、膜厚を厚くすること
によりゲインが大きくなり、しきい値も下がる。従っ
て、量子井戸層と障壁層に正と負の歪を持たせることに
より膜厚を厚くできる本発明の効果は大きい。
Generally, when the amount of strain is increased to approach the critical film thickness, defects such as misfit dislocations occur and laser oscillation becomes difficult and the kink level sharply decreases. The element did not show such characteristics, and excellent laser characteristics with a low threshold value were obtained. Also, it is not desirable to increase the thickness of the light emitting portion in a normal laser, but in the surface emitting laser, there is no problem in increasing the thickness of the light emitting portion, and the gain can be increased by increasing the thickness. Is larger and the threshold is lower. Therefore, the effect of the present invention that the film thickness can be increased by giving positive and negative strains to the quantum well layer and the barrier layer is great.

【0042】なお、本発明は上述した各実施例に限定さ
れるものではない。実施例では、歪緩和層を用いて発光
部内の歪の総量をほぼ0に設定したが、格子緩和の起こ
らない範囲で歪を残すことによっても同様の効果が得ら
れる。また、歪緩和量子井戸構造部の格子不整合系材料
は上述した材料に限定されるものではなく、InGaA
sP系又はI-III-VI 族のカルコパイライト材料を用い
ても同様の効果が得られる。その他、本発明の要旨を逸
脱しない範囲で、種々変形して実施することができる。
The present invention is not limited to the above embodiments. In the embodiment, the strain relaxation layer is used to set the total amount of strain in the light emitting portion to approximately 0. However, the same effect can be obtained by leaving the strain in a range where lattice relaxation does not occur. Further, the lattice mismatch material of the strain relaxation quantum well structure is not limited to the above-mentioned materials, and InGaA
Similar effects can be obtained by using an sP-based or I-III-VI group chalcopyrite material. In addition, various modifications can be made without departing from the scope of the present invention.

【0043】[0043]

【発明の効果】以上詳述したように本発明によれば、化
合物半導体基板上に形成されInGaAlP等からなる
発光部を有する半導体発光装置において、その発光部を
正負の異なる格子歪を持つ多重層でその総歪量をほぼ0
となるように形成することにより、注入キャリアの有効
な閉じ込めが可能な厚膜成長が可能となり、またその多
重層も多重量子井戸構造とすることによって、非発光セ
ンターの増加を伴うAl混晶比の増加をせずとも、短波
長で高い発光効率をはかり得る半導体発光装置を実現す
ることができる。
As described above in detail, according to the present invention, in a semiconductor light emitting device having a light emitting portion made of InGaAlP or the like formed on a compound semiconductor substrate, the light emitting portion is provided with a multi-layer having different lattice strains of positive and negative. And the total strain amount is almost 0
By making it so that it becomes possible to grow a thick film capable of effectively confining injected carriers, and also by forming a multiple quantum well structure in the multiple layers, an Al mixed crystal ratio with an increase in non-radiative centers is obtained. It is possible to realize a semiconductor light emitting device capable of achieving high light emission efficiency at a short wavelength without increasing the number.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例に係わる発光ダイオードの素子構
造、バンド構造及び歪量を示す図。
FIG. 1 is a diagram showing a device structure, a band structure and a strain amount of a light emitting diode according to a first embodiment.

【図2】格子不整合率(歪量)と臨界膜厚との関係を示
す図。
FIG. 2 is a diagram showing a relationship between a lattice mismatch rate (strain amount) and a critical film thickness.

【図3】実施例素子と従来素子における電流−光出力特
性を示す図。
FIG. 3 is a diagram showing current-light output characteristics of an example device and a conventional device.

【図4】実施例素子と従来素子における発光波長と外部
量子効率との関係を示す図。
FIG. 4 is a diagram showing the relationship between the emission wavelength and external quantum efficiency in the device of the example and the conventional device.

【図5】第2の実施例に係わる発光ダイオードの素子構
造、バンド構造及び歪量を示す図。
FIG. 5 is a diagram showing an element structure, a band structure and a strain amount of a light emitting diode according to a second embodiment.

【図6】第3の実施例に係わる発光ダイオードの素子構
造、バンド構造及び歪量を示す図。
FIG. 6 is a diagram showing an element structure, a band structure and a strain amount of a light emitting diode according to a third embodiment.

【図7】第4の実施例に係わる面発光型レーザの素子構
造、バンド構造及び歪量を示す図。
FIG. 7 is a diagram showing an element structure, a band structure and a strain amount of a surface emitting laser according to a fourth embodiment.

【図8】第4の実施例における面発光レーザの動作電流
−光出力特性を示す図。
FIG. 8 is a diagram showing operating current-optical output characteristics of a surface emitting laser according to a fourth embodiment.

【図9】InGaAlP発光部を有する従来のLEDの
素子構造を示す断面図。
FIG. 9 is a cross-sectional view showing a device structure of a conventional LED having an InGaAlP light emitting portion.

【符号の説明】[Explanation of symbols]

11…n−GaAs基板 12…n−InGaAlPクラッド層 13,55,65,75…歪緩和量子井戸活性層 13a,55a,65a,75a…歪量子井戸層 13b,55b,65b,75b…歪緩和障壁層 14…p−InGaAlPクラッド層 15…p−GaAlAs電流拡散層 16…p−GaAsコンタクト層 17,59,68,81…p側電極 18,58,69,82…n側電極 51…p−GaAs基板 52…p−InAlP/InGaAlP/InGaP系
よりなる通電容易層 53…p−ZnSeバッファ層 54…p−ZnMgSeSクラッド層 56…n−ZnMgSesクラッド層 57…n−ZnSeコンタクト層 61…サファイア基板 62…GaAlN系よりなるバッファ層 63…n−GaN層 64…n−GaAlNクラッド層 66…p−GaAlNクラッド層 67…p−GaNコンタクト層 71…n−GaAs基板 72…n−GaAsバッファ層 73,78…ブラッグ反射層 74…n−InGaAlPクラッド層 76…p−InGaAlPクラッド層 77…p−GaAlAs第1コンタクト層 79…p−GaAs第2コンタクト層
11 ... n-GaAs substrate 12 ... n-InGaAlP clad layer 13, 55, 65, 75 ... strain relaxation quantum well active layer 13a, 55a, 65a, 75a ... strain quantum well layer 13b, 55b, 65b, 75b ... strain relaxation barrier Layer 14 ... p-InGaAlP clad layer 15 ... p-GaAlAs current diffusion layer 16 ... p-GaAs contact layer 17, 59, 68, 81 ... p-side electrode 18, 58, 69, 82 ... n-side electrode 51 ... p-GaAs Substrate 52 ... Easy-to-carry layer made of p-InAlP / InGaAlP / InGaP system 53 ... p-ZnSe buffer layer 54 ... p-ZnMgSeS cladding layer 56 ... n-ZnMgSes cladding layer 57 ... n-ZnSe contact layer 61 ... Sapphire substrate 62 ... GaAlN-based buffer layer 63 ... n-GaN layer 64 ... n-GaA 1N clad layer 66 ... p-GaAlN clad layer 67 ... p-GaN contact layer 71 ... n-GaAs substrate 72 ... n-GaAs buffer layer 73, 78 ... Bragg reflection layer 74 ... n-InGaAlP clad layer 76 ... p-InGaAlP clad layer Layer 77 ... p-GaAlAs first contact layer 79 ... p-GaAs second contact layer

【手続補正書】[Procedure amendment]

【提出日】平成6年11月9日[Submission date] November 9, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】このように設定された歪緩和量子井戸活性
層部を、図1(a)に示した面発光型LEDに適用した
例について以下に示す。歪量子井戸層13aを厚さ15
nm,歪量−0.5%のIn0.41(Ga0.7 Al0.3
0.59P、歪緩和障壁層13bを厚さ20nm,歪量+
0.375%のIn0.54(Ga0.3 Al0.70.46Pと
して20対、クラッド層12をn−In0.5 Al0.5
P、クラッド層14をp−In0.5 Al0.5 Pとした。
電流拡散層15は厚さ7μmのp−Ga0.3 Al0.7
sとした。クラッド層12,14及び電流拡散層15の
不純物ドーピングは、p型はZnを不純物とし、クラッ
ド層14は3×1017cm-3、電流拡散層15は3×1
18cm-3、n型はSiを不純物とし、クラッド層12
は3×1017cm-3程度とした。
An example in which the strain relaxation quantum well active layer portion thus set is applied to the surface emitting LED shown in FIG. 1A will be described below. The strained quantum well layer 13a has a thickness of 15
nm, strain- 0.5 % of In 0.41 (Ga 0.7 Al 0.3 ).
0.59 P, thickness of strain relaxation barrier layer 13b is 20 nm, strain amount +
20 pairs of 0.375% In 0.54 ( Ga 0.3 Al 0.7 ) 0.46 P and the cladding layer 12 made of n-In 0.5 Al 0.5.
P, and the cladding layer 14 was p-In 0.5 Al 0.5 P.
The current diffusion layer 15 is 7 μm thick p-Ga 0.3 Al 0.7 A
s. Impurity doping of the clad layers 12 and 14 and the current diffusion layer 15 was performed by using Zn as an impurity for the p-type, the cladding layer 14 was 3 × 10 17 cm −3 , and the current diffusion layer 15 was 3 × 1.
0 18 cm −3 , n-type has Si as an impurity, and the cladding layer 12
Was about 3 × 10 17 cm −3 .

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第1導電型の化合物半導体基板と、この基
板上に形成された第1導電型のクラッド層と、このクラ
ッド層上に形成された多層膜発光層と、この多層膜発光
層上に形成された第2導電型のクラッド層とを具備し、
基板と平行な面上から光を取り出す半導体発光装置であ
って、 前記多層膜発光層を前記基板を基準として正と負の格子
不整合を持つ半導体層で構成してなることを特徴とする
面発光型半導体発光装置。
1. A first-conductivity-type compound semiconductor substrate, a first-conductivity-type clad layer formed on the substrate, a multilayer light-emitting layer formed on the clad layer, and the multi-layer light-emitting layer. A clad layer of the second conductivity type formed above,
A semiconductor light emitting device for extracting light from a plane parallel to a substrate, characterized in that the multilayer light emitting layer is constituted by a semiconductor layer having a positive and negative lattice mismatch with respect to the substrate. Light emitting type semiconductor light emitting device.
【請求項2】前記多層膜発光層が、引張り歪又は圧縮歪
を持つ歪量子井戸層と圧縮歪又は引張り歪を持つ歪緩和
障壁層とを積層した多重量子井戸構造からなることを特
徴とする請求項1記載の面発光型半導体発光装置。
2. The multi-layered light emitting layer has a multiple quantum well structure in which a strained quantum well layer having tensile strain or compressive strain and a strain relaxation barrier layer having compressive strain or tensile strain are laminated. The surface emitting semiconductor light emitting device according to claim 1.
JP24845494A 1994-09-17 1994-09-17 Plane light emitting type semiconductor light emitting device Pending JPH0888404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24845494A JPH0888404A (en) 1994-09-17 1994-09-17 Plane light emitting type semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24845494A JPH0888404A (en) 1994-09-17 1994-09-17 Plane light emitting type semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH0888404A true JPH0888404A (en) 1996-04-02

Family

ID=17178380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24845494A Pending JPH0888404A (en) 1994-09-17 1994-09-17 Plane light emitting type semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH0888404A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103498A (en) * 2006-10-18 2008-05-01 Dowa Electronics Materials Co Ltd Light-emitting element
JP2013219323A (en) * 2012-03-13 2013-10-24 Ricoh Co Ltd Semiconductor laminate and surface emitting laser element
US8933432B2 (en) 2010-12-28 2015-01-13 Shin-Etsu Handotai Co., Ltd. Light-emitting device
WO2017071401A1 (en) * 2015-10-29 2017-05-04 天津三安光电有限公司 Light-emitting diode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103498A (en) * 2006-10-18 2008-05-01 Dowa Electronics Materials Co Ltd Light-emitting element
US8933432B2 (en) 2010-12-28 2015-01-13 Shin-Etsu Handotai Co., Ltd. Light-emitting device
JP2013219323A (en) * 2012-03-13 2013-10-24 Ricoh Co Ltd Semiconductor laminate and surface emitting laser element
WO2017071401A1 (en) * 2015-10-29 2017-05-04 天津三安光电有限公司 Light-emitting diode

Similar Documents

Publication Publication Date Title
US5410159A (en) Light-emitting diode
US5488233A (en) Semiconductor light-emitting device with compound semiconductor layer
JP3063756B1 (en) Nitride semiconductor device
JP3290672B2 (en) Semiconductor light emitting diode
US7953134B2 (en) Semiconductor light-emitting device
US6121638A (en) Multi-layer structured nitride-based semiconductor devices
US5008891A (en) Semiconductor light-emitting devices
JP2000228536A (en) Light emitting diode
JP2001053339A (en) Semiconductor light-emitting device and manufacture thereof
JP2000244013A (en) Nitride semiconductor element
JPH10190052A (en) Semiconductor light emitting element
US5459746A (en) Surface emission type semiconductor light-emitting device
JP4097232B2 (en) Semiconductor laser element
JP3406907B2 (en) Semiconductor light emitting diode
US5296718A (en) Light emitting semiconductor device having multilayer structure
JP4288030B2 (en) Semiconductor structure using group III nitride quaternary material system
US5917196A (en) Group III-V type nitride compound semiconductor light-emitting device
JPH0888404A (en) Plane light emitting type semiconductor light emitting device
JP3237972B2 (en) Semiconductor light emitting device
JP2956623B2 (en) Self-excited oscillation type semiconductor laser device
JP2000004068A (en) Semiconductor light-emitting element
JP2661576B2 (en) Semiconductor light emitting device
JPH07235723A (en) Semiconductor laser element
JP3207618B2 (en) Semiconductor device
JP3279308B2 (en) Nitride semiconductor light emitting device