JPH0786623A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPH0786623A
JPH0786623A JP5229954A JP22995493A JPH0786623A JP H0786623 A JPH0786623 A JP H0786623A JP 5229954 A JP5229954 A JP 5229954A JP 22995493 A JP22995493 A JP 22995493A JP H0786623 A JPH0786623 A JP H0786623A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
sections
film
insulating film
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5229954A
Other languages
Japanese (ja)
Inventor
Keiichi Sano
景一 佐野
Yoichiro Aya
洋一郎 綾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5229954A priority Critical patent/JPH0786623A/en
Publication of JPH0786623A publication Critical patent/JPH0786623A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent the deterioration of characteristics such as photoelectric conversion efficiency due to the leakage current of a modified section by forming an insulating film thicker than a photoelectric conversion layer onto an insulating substrate while holding a division section. CONSTITUTION:A heat-resistant insulating film 14 is divided so that sections corresponding to division sections 16 are held from both sides by the heat-resistant insulating films 14 formed onto an insulating substrate 12. Photoelectric conversion layers 18 having the three layer structure of lower layer electrodes, photoelectric conversion layers and upper layer electrodes are formed. The upper sections of the photoelectric conversion layers 18 in the sections of the division sections 16 among the heat-resistant insulating films 14 are irradiated with laser beams or other energy beams. Consequently, the photoelectric conversion layers 18 in the sections of the division sections 16 are evaporated, and the photoelectric conversion layers 18 are divided. Modified sections 20, in which the end sections of the photoelectric conversion layers 18 are modified into conductive semiconductors, are formed at that time. An insulating film 24 is formed for burying recessed sections 22 and for the protective film of an element, and the protective film 26 is formed, thus acquiring the so-called reverse type photosensor 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は光起電力装置に関し、
特にたとえば微小サイズに形成され、太陽電池や光セン
サなどの光起電力装置および集積型光起電力装置に関す
る。
This invention relates to photovoltaic devices,
In particular, the present invention relates to a photovoltaic device such as a solar cell or an optical sensor, which is formed in a minute size, and an integrated photovoltaic device.

【0002】[0002]

【従来の技術】光起電力装置は、太陽電池に代表される
ように半導体膜の光起電力効果を利用した光−電気エネ
ルギ変換装置である。最近の太陽電池開発は、大面積、
高効率でさらに低コスト化の方向に進んでいる。一方、
マイクロマシンの開発がここ最近活発となり、そのエネ
ルギ供給装置として微小サイズの高効率光起電力装置の
開発要求が高まりつつある。
2. Description of the Related Art A photovoltaic device is a photo-electric energy conversion device which utilizes the photovoltaic effect of a semiconductor film as represented by a solar cell. Recent solar cell development has
We are moving toward higher efficiency and lower costs. on the other hand,
The development of micromachines has become active recently, and the demand for development of highly efficient photovoltaic devices of minute size is increasing as an energy supply device.

【0003】このような高効率光起電力装置の一例を図
4に示す。従来の光起電力装置1においては、まず、図
4(A)に示すように絶縁性基板2上に、金属膜からな
る下層電極,光電変換膜,および透過導電膜からなる上
層電極が順に積層されて光電変換層3が形成される。そ
して、図4(B)に示すように、YAGレーザなどのレ
ーザ照射等によって光電変換層3の一部を蒸発させて除
去し、光電変換層3を分割する。そして、図4(C)に
示すように、その上にSiO2 やポリイミド等の有機薄
膜からなる絶縁保護膜4が形成され、従来の光起電力装
置1が得られる。
An example of such a high-efficiency photovoltaic device is shown in FIG. In the conventional photovoltaic device 1, first, as shown in FIG. 4 (A), a lower layer electrode made of a metal film, a photoelectric conversion film, and an upper layer electrode made of a transparent conductive film are sequentially laminated on an insulating substrate 2. Thus, the photoelectric conversion layer 3 is formed. Then, as shown in FIG. 4B, a part of the photoelectric conversion layer 3 is evaporated and removed by laser irradiation such as YAG laser, and the photoelectric conversion layer 3 is divided. Then, as shown in FIG. 4C, an insulating protective film 4 made of an organic thin film such as SiO 2 or polyimide is formed thereon, and the conventional photovoltaic device 1 is obtained.

【0004】[0004]

【発明が解決しようとする課題】このような従来技術に
おいては、光電変換層3がレーザ照射等によって分割さ
れるとき、発生する熱によって光電変換層3の分割部を
挟む端部の半導体接合が熱的に破壊され、その部分に図
4(C)に示すように導電性半導体膜からなる変質部5
が形成される。したがって、従来の光起電力装置1で
は、動作時に変質部5を通してリーク電流が流れ、その
結果、光電変換装置の光電変換効率が悪化してしまうと
いう問題点があった。
In such a conventional technique, when the photoelectric conversion layer 3 is divided by laser irradiation or the like, the semiconductor junctions at the end portions sandwiching the divided portion of the photoelectric conversion layer 3 by the heat generated. It is thermally destroyed, and the altered portion 5 made of a conductive semiconductor film is formed in that portion as shown in FIG. 4 (C).
Is formed. Therefore, in the conventional photovoltaic device 1, there is a problem that a leak current flows through the altered portion 5 during operation, and as a result, the photoelectric conversion efficiency of the photoelectric conversion device deteriorates.

【0005】それゆえに、この発明の主たる目的は、変
質部のリーク電流による光電変換効率等の特性の悪化を
防止できる、光起電力装置を提供することである。
Therefore, a main object of the present invention is to provide a photovoltaic device capable of preventing deterioration of characteristics such as photoelectric conversion efficiency due to a leak current of an altered portion.

【0006】[0006]

【課題を解決するための手段】第1の発明は、絶縁性基
板上に分割部で分割して形成される光電変換層を含む光
起電力装置において、分割部を挟んで光電変換層より厚
い絶縁膜を絶縁性基板上に形成したことを特徴とする、
光起電力装置である。第2の発明は、絶縁性基板上に分
割部で分割して形成される光電変換層を直列接続した集
積型光起電力装置において、分割部を挟んで光電変換層
より厚い絶縁膜を形成したことを特徴とする、集積型光
起電力装置である。
According to a first aspect of the present invention, in a photovoltaic device including a photoelectric conversion layer formed by dividing a divided portion on an insulating substrate, the photoelectric conversion layer is thicker than the photoelectric conversion layer with the divided portion interposed therebetween. An insulating film is formed on an insulating substrate,
It is a photovoltaic device. A second aspect of the present invention is an integrated photovoltaic device in which photoelectric conversion layers divided by dividing portions are connected in series on an insulating substrate, and an insulating film thicker than the photoelectric converting layer is formed with the dividing portions interposed. An integrated photovoltaic device characterized by the above.

【0007】[0007]

【作用】いずれの場合も、分割部を形成するために光電
変換層または光電変換膜にレーザ等のエネルギビームを
照射するとその分割部に導電性の変質部が形成される
が、絶縁膜によって変質部と光電変換層とを分離するの
で、動作時に変質部で発生したリーク電流が流れなくな
る。
In either case, when the photoelectric conversion layer or the photoelectric conversion film is irradiated with an energy beam such as a laser to form the divided portion, a conductive altered portion is formed in the divided portion. Since the portion and the photoelectric conversion layer are separated, the leak current generated in the altered portion during operation does not flow.

【0008】[0008]

【発明の効果】この発明によれば、エネルギビーム照射
によって光電変換層を分割する際に形成される変質部に
リーク電流が流れることがないので、このようなリーク
電流に起因する光電変換効率の低下を生じない。この発
明の上述の目的,その他の目的,特徴および利点は、図
面を参照して行う以下の実施例の詳細な説明から一層明
らかとなろう。
According to the present invention, since a leak current does not flow in an altered portion formed when the photoelectric conversion layer is divided by the energy beam irradiation, the photoelectric conversion efficiency due to such a leak current can be improved. Does not cause deterioration. The above-mentioned objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments with reference to the drawings.

【0009】[0009]

【実施例】図1を参照して、この発明の一実施例に従っ
た光起電力装置10を製造工程順に説明する。まず、図
1(A)に示すように、ガラス,石英,セラミックまた
はその表面に絶縁膜が形成されたステンレスなどからな
る絶縁性基板12上に、SiOx またはSiNx などの
耐熱性絶縁膜14を、たとえばプラズマCVD膜または
熱CVDによって、形成する。その後、図1(B)に示
すように、耐熱性絶縁膜14によって分割部16に当た
る部分が両側から挟まれるように、耐熱性絶縁膜14
が、たとえばフォトリソ工程によってパターニングされ
て分割される。すなわち、耐熱性絶縁膜14は、図1
(C)の工程で形成される光電変換層18と図1(D)
の工程で形成されてしまう変質部20とを分離するよう
に形成される。耐熱性絶縁膜14の膜厚は、光電変換層
18の厚みに比較して十分厚く(たとえば2倍以上に)
形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, a photovoltaic device 10 according to an embodiment of the present invention will be described in the order of manufacturing steps. First, as shown in FIG. 1 (A), a heat resistant insulating film 14 such as SiO x or SiN x is formed on an insulating substrate 12 made of glass, quartz, ceramic or stainless steel having an insulating film formed on the surface thereof. Are formed, for example, by plasma CVD film or thermal CVD. After that, as shown in FIG. 1B, the heat-resistant insulating film 14 is sandwiched by the heat-resistant insulating film 14 so that the portion corresponding to the dividing portion 16 is sandwiched from both sides.
Are patterned and divided by, for example, a photolithography process. That is, the heat-resistant insulating film 14 is formed as shown in FIG.
The photoelectric conversion layer 18 formed in the step (C) and FIG.
It is formed so as to be separated from the altered portion 20 that will be formed in the step of. The film thickness of the heat-resistant insulating film 14 is sufficiently thicker than the thickness of the photoelectric conversion layer 18 (for example, twice or more).
Form.

【0010】図1(B)の工程で耐熱性絶縁膜14を分
割した後、図1(C)の工程で下層電極,光電変換膜お
よび上層電極の3層構造を有する光電変換層18が形成
される。詳細には図示しないが、よく知られているよう
に、まずTi,Mo,Pt,Au,AlまたはAg等の
金属膜によって下層電極を形成し、続いて、下からn,
i,p層のたとえば非晶質シリコン膜からなる光電変換
膜がたとえばプラズマCVD法によって形成され、その
上にITOのような透明導電膜をスパッタリングによっ
て上層電極として形成する。このようにして、下層電
極,光電変換膜および上層電極の3層構造からなる光電
変換層18が形成される。なお、このとき耐熱性絶縁膜
14上にも光電変換層18が形成されるが、これは、耐
熱性絶縁膜14の膜厚が十分大きいため、絶縁性基板1
2上の光電変換層18から孤立する。
After dividing the heat resistant insulating film 14 in the step of FIG. 1B, a photoelectric conversion layer 18 having a three-layer structure of a lower electrode, a photoelectric conversion film and an upper electrode is formed in the step of FIG. 1C. To be done. Although not shown in detail, as is well known, a lower electrode is first formed by a metal film of Ti, Mo, Pt, Au, Al, Ag, or the like, and then n,
A photoelectric conversion film made of, for example, an amorphous silicon film for the i and p layers is formed by, for example, a plasma CVD method, and a transparent conductive film such as ITO is formed thereon as an upper layer electrode by sputtering. In this way, the photoelectric conversion layer 18 having a three-layer structure of the lower layer electrode, the photoelectric conversion film, and the upper layer electrode is formed. At this time, the photoelectric conversion layer 18 is also formed on the heat-resistant insulating film 14, but this is because the heat-resistant insulating film 14 has a sufficiently large film thickness.
2 is isolated from the photoelectric conversion layer 18 above.

【0011】次いで、図1(D)に示すように、耐熱性
絶縁膜14間の分割部16(図1(B))の部分の光電
変換層18上に、YAGレーザなどのレーザビームある
いは他のエネルギビームを照射する。応じて、この部分
の光電変換層18が蒸発し、光電変換層18が分割され
る。このエネルギビーム照射による光電変換層18の分
割の際、そのとき発生する熱によって光電変換層18が
部分的に熱的ダメージを受け、分割部を挟んだ光電変換
層18の端部が導電性半導体に変質した変質部20が形
成される。ただし、耐熱性絶縁膜14に挟まれた動作部
の光電変換層18は、エネルギビーム照射による熱がこ
の耐熱性絶縁膜14で遮断されるので、熱的なダメージ
を受けることはない。
Then, as shown in FIG. 1D, a laser beam such as a YAG laser or the like is formed on the photoelectric conversion layer 18 in the portion of the divided portion 16 (FIG. 1B) between the heat resistant insulating films 14. Irradiate the energy beam of. Accordingly, the photoelectric conversion layer 18 in this portion is evaporated and the photoelectric conversion layer 18 is divided. When the photoelectric conversion layer 18 is divided by the irradiation with the energy beam, the photoelectric conversion layer 18 is partially thermally damaged by the heat generated at that time, and the ends of the photoelectric conversion layer 18 sandwiching the divided portion have conductive semiconductors. An altered portion 20 that has been altered to However, the photoelectric conversion layer 18 of the operating portion sandwiched by the heat resistant insulating film 14 is not thermally damaged because the heat generated by the energy beam irradiation is blocked by the heat resistant insulating film 14.

【0012】そして、図1(E)に示すように、分割に
よって形成された凹部22の埋め込み用と素子の保護膜
用として、たとえばAl2 3 ,MgOまたはBeO等
からなる比較的熱導電率の高い絶縁膜24が、たとえば
スパッタリングあるいは熱CVDによって形成される。
そして、その上にたとえば透明絶縁膜であるポリイミド
等からなる保護膜26が形成される。このようにして、
保護膜26側からの光をエネルギ変換するいわゆる逆タ
イプの光起電力装置10が得られる。
Then, as shown in FIG. 1 (E), a relatively thermal conductivity of, for example, Al 2 O 3 , MgO, or BeO is used for filling the recesses 22 formed by division and for protecting the element. The high insulating film 24 is formed by, for example, sputtering or thermal CVD.
Then, a protective film 26 made of, for example, polyimide, which is a transparent insulating film, is formed thereon. In this way
The so-called reverse type photovoltaic device 10 that converts the energy of light from the protective film 26 side can be obtained.

【0013】この光起電力装置10では、耐熱性絶縁膜
14を形成することによって、エネルギビーム照射によ
って生じる変質部20を光電変換層18から分離できる
とともに、エネルギビーム照射で発生する熱が耐熱性絶
縁膜14によって遮られて動作部の光電変換層18に伝
わることがない。したがって、もし耐熱性絶縁膜14が
なければ変質部20を通してリーク電流が流れるが、変
質部20を光電変換層18から分離しているので、変質
部20を通してリーク電流が流れることはない。したが
って、リーク電流に起因する光電変換効率の低下を防げ
る。さらに、動作部の光電変換層18が熱的ダメージを
受けることがないので、それによる効率低下も防止でき
る。
In this photovoltaic device 10, by forming the heat-resistant insulating film 14, the altered portion 20 generated by the energy beam irradiation can be separated from the photoelectric conversion layer 18, and the heat generated by the energy beam irradiation is heat resistant. It is not blocked by the insulating film 14 and transmitted to the photoelectric conversion layer 18 of the operating portion. Therefore, if the heat-resistant insulating film 14 is not provided, the leak current flows through the altered portion 20, but since the altered portion 20 is separated from the photoelectric conversion layer 18, the leak current does not flow through the altered portion 20. Therefore, it is possible to prevent a decrease in photoelectric conversion efficiency due to the leak current. Furthermore, since the photoelectric conversion layer 18 of the operating portion is not thermally damaged, it is possible to prevent the efficiency from being lowered.

【0014】さらに、比較的熱伝導率の高い絶縁膜24
を凹部18に埋め込むことによって、絶縁性基板12と
絶縁膜24とを熱的に結合することになり、動作時に光
(特に強度の大きい光)を照射した場合に光起電力装置
10および絶縁性基板12の下に蓄積する熱を効率よく
放熱でき、光起電力装置10の温度上昇を抑制できる。
また、絶縁性基板12上の素子表面の凹凸の程度が、従
来より大きくなることから、保護膜26表面の凹凸も大
きくなりその表面積が増大することからも、放熱効率の
一層の向上が期待できる。
Further, the insulating film 24 having a relatively high thermal conductivity.
Embedded in the recess 18, the insulating substrate 12 and the insulating film 24 are thermally coupled to each other, and the photovoltaic device 10 and the insulating property can be obtained when light (especially high intensity light) is irradiated during operation. The heat accumulated under the substrate 12 can be efficiently radiated, and the temperature rise of the photovoltaic device 10 can be suppressed.
Further, since the degree of unevenness of the element surface on the insulating substrate 12 becomes larger than that of the conventional one, the unevenness of the surface of the protective film 26 also becomes large and the surface area increases, so that further improvement of the heat dissipation efficiency can be expected. .

【0015】さらに、この実施例では、分割部16に位
置する光電変換層18を他の光電変換層18から分離で
きるので、エネルギビームを照射する位置の判別および
それによる分割が容易になるという利点もある。なお、
素子の面積が微小化するほど光電変換出力に対する変質
部のリーク電流の割合が大きくなることを考えると、こ
の実施例は、特に、光電変換層18の受光面積が数ミリ
角以下と微小な光起電力装置10に有効となるものでは
あるが、より大きなサイズのものにも適用できることは
いうまでもない。
Further, in this embodiment, since the photoelectric conversion layer 18 located in the dividing portion 16 can be separated from the other photoelectric conversion layers 18, it is easy to determine the position where the energy beam is irradiated and the division by it becomes easy. There is also. In addition,
Considering that the ratio of the leak current of the altered portion to the photoelectric conversion output becomes larger as the area of the element becomes smaller, this embodiment particularly has a light receiving area of the photoelectric conversion layer 18 of a few millimeters square or less and a small amount of light. Although it is effective for the electromotive force device 10, it goes without saying that it can also be applied to a larger size device.

【0016】また、上述の実施例では、逆タイプの光起
電力装置10について述べたが、これに限定されず、絶
縁性基板12側からの光をエネルギ変換するいわゆる順
タイプの光起電力装置にもこの発明を適用できる。この
場合、絶縁性基板12はたとえばガラスまたは石英等に
よって形成し、光電変換層18は、絶縁性基板12側か
ら順に積層された透明導電膜,光電変換膜および金属膜
を含む。そして、光電変換膜を構成するたとえば非晶質
シリコン膜は、下からp,i,n層の順に積層される。
Further, in the above-mentioned embodiment, the reverse type photovoltaic device 10 is described, but the present invention is not limited to this, and is a so-called forward type photovoltaic device for converting light from the insulating substrate 12 side into energy. The present invention can also be applied to. In this case, the insulating substrate 12 is formed of, for example, glass or quartz, and the photoelectric conversion layer 18 includes a transparent conductive film, a photoelectric conversion film, and a metal film which are sequentially stacked from the insulating substrate 12 side. Then, for example, an amorphous silicon film forming the photoelectric conversion film is laminated from the bottom in the order of p, i, and n layers.

【0017】さらに、光電変換膜の材料は、結晶系シリ
コン,さらにGaAs系あるいはCdS系であってもよ
い。図2および図3を参照して、この発明の他の実施例
に従った集積型太陽電池30を製造工程順に説明する。
なお、この実施例の集積型太陽電池30は、絶縁性基板
12側からの光をエネルギ変換するいわゆる順タイプの
装置であり、分割部34(図2(E))によって分割し
かつ隣接する光電変換膜36が導体膜すなわち透明導電
膜32および裏面電極40によって直列接続する。この
発明は分割部34に適用される。
Further, the material of the photoelectric conversion film may be crystalline silicon, GaAs or CdS. Referring to FIGS. 2 and 3, an integrated solar cell 30 according to another embodiment of the present invention will be described in the order of manufacturing steps.
The integrated solar cell 30 of this embodiment is a so-called forward type device that converts light from the insulating substrate 12 side into energy, and is divided by the dividing unit 34 (FIG. 2 (E)) and adjacent photoelectric cells. The conversion film 36 is connected in series by the conductor film, that is, the transparent conductive film 32 and the back electrode 40. The present invention is applied to the dividing unit 34.

【0018】まず、図2(A)に示すように、たとえば
ガラスまたは石英等によって形成される絶縁性基板12
を準備し、図2(B)に示すように絶縁性基板12の表
面にたとえばITOなどの透明導電膜32を形成する。
そして、図2(C)に示すように、透明導電膜32の分
割部34に相当する部分にYAGレーザ等のレーザビー
ムを照射して、透明導電膜32が隣接セル毎に分割され
る。その上に、図2(D)に示すように、たとえばSi
x やSiO2 等の耐熱性絶縁膜14が形成される。耐
熱性絶縁膜14の膜厚は、図3(A)の工程で形成され
る光電変換膜36の厚みに比較して十分厚くされる。次
いで、図2(E)に示すように、耐熱性絶縁膜14がパ
ターニングされる。すなわち、耐熱性絶縁膜14がフォ
トリソ工程によってパターニングされ、耐熱性絶縁膜1
4が分割部34に当たる位置を両側から挟むように分割
される。すなわち、耐熱性絶縁膜14は、後に形成され
る光電変換膜36と変質部38とを分離するように形成
される。なお、先に述べた実施例においてもそうである
ように、耐熱性絶縁膜14がSiO2 によって形成され
た場合には、たとえば希HF(バッファドフッ酸)を用
いてパターニングされる。
First, as shown in FIG. 2 (A), an insulating substrate 12 made of, for example, glass or quartz.
Then, as shown in FIG. 2B, a transparent conductive film 32 such as ITO is formed on the surface of the insulating substrate 12.
Then, as shown in FIG. 2C, a portion of the transparent conductive film 32 corresponding to the dividing portion 34 is irradiated with a laser beam such as a YAG laser to divide the transparent conductive film 32 into adjacent cells. On top of that, as shown in FIG.
A heat resistant insulating film 14 such as N x or SiO 2 is formed. The film thickness of the heat resistant insulating film 14 is made sufficiently thicker than the thickness of the photoelectric conversion film 36 formed in the step of FIG. Next, as shown in FIG. 2E, the heat resistant insulating film 14 is patterned. That is, the heat-resistant insulating film 14 is patterned by the photolithography process,
4 is divided so that the position where it hits the dividing portion 34 is sandwiched from both sides. That is, the heat resistant insulating film 14 is formed so as to separate the photoelectric conversion film 36 to be formed later and the altered portion 38. When the heat-resistant insulating film 14 is made of SiO 2 , as in the above-described embodiments, it is patterned using, for example, dilute HF (buffered hydrofluoric acid).

【0019】そして、図3(A)に示すように、その上
に光電変換膜36を形成する。光電変換膜36では、た
とえば非晶質シリコン膜が下からp,i,n層の順に積
層される。そして、図3(B)に示すように、YAGレ
ーザ等のエネルギビームを照射することによって光電変
換膜36をパターニングする。このとき発生する熱によ
って光電変換膜36が熱的ダメージを受け、分割部34
を挟んだ光電変換膜が導電性半導体に変質した変質部3
8が形成される。ただし、先の実施例と同様に、耐熱性
絶縁膜14に挟まれた動作部の光電変換膜36は熱的な
ダメージを受けない。そして、その上に、図3(C)に
示すように、たとえばTi,Al,Ag,ITOなどか
らなる裏面電極40を形成する。したがって、隣接する
光電変換膜36は、透明導電膜32および裏面電極40
を介して直列接続される。次いで、図3(D)に示すよ
うに、YAGレーザ等のエネルギビームを照射すること
によって、裏面電極40を分割する。その後、図3
(E)に示すように、その上にたとえば透明絶縁膜であ
るポリイミド等からなる保護膜26を形成する。このよ
うにして、集積型太陽電池30が形成される。
Then, as shown in FIG. 3A, a photoelectric conversion film 36 is formed thereon. In the photoelectric conversion film 36, for example, an amorphous silicon film is laminated in the order of p, i, and n layers from the bottom. Then, as shown in FIG. 3B, the photoelectric conversion film 36 is patterned by irradiating an energy beam such as a YAG laser. The photoelectric conversion film 36 is thermally damaged by the heat generated at this time, and the dividing portion 34
Altered part 3 in which the photoelectric conversion film sandwiching the film is transformed into a conductive semiconductor
8 is formed. However, as in the previous embodiment, the photoelectric conversion film 36 of the operating portion sandwiched by the heat resistant insulating film 14 is not thermally damaged. Then, as shown in FIG. 3C, a back surface electrode 40 made of, for example, Ti, Al, Ag, ITO or the like is formed thereon. Therefore, the adjacent photoelectric conversion film 36 includes the transparent conductive film 32 and the back electrode 40.
Are connected in series via. Next, as shown in FIG. 3D, the back electrode 40 is divided by irradiating an energy beam such as a YAG laser. After that, FIG.
As shown in (E), a protective film 26 made of, for example, polyimide, which is a transparent insulating film, is formed thereon. In this way, the integrated solar cell 30 is formed.

【0020】この実施例の集積型太陽電池30において
も、耐熱性絶縁膜14を形成することによって、変質部
38を動作部の光電変換膜36から分離できるととも
に、エネルギビーム照射のときに発生する熱が耐熱性絶
縁膜14によって遮られ、光電変換膜36に伝わらな
い。したがって、動作時に変質部38を通してリーク電
流が流れることがないし、動作部の光電変換膜36が熱
的ダメージを受けないので、光電変換効率の低下を防げ
る。
Also in the integrated solar cell 30 of this embodiment, by forming the heat-resistant insulating film 14, the altered portion 38 can be separated from the photoelectric conversion film 36 of the operating portion, and is generated at the time of energy beam irradiation. The heat is blocked by the heat resistant insulating film 14 and is not transferred to the photoelectric conversion film 36. Therefore, a leak current does not flow through the altered portion 38 during operation, and the photoelectric conversion film 36 in the operating portion is not thermally damaged, so that a decrease in photoelectric conversion efficiency can be prevented.

【0021】なお、図2および図3に示す実施例では、
順タイプの集積型光起電力装置について述べたが、これ
に限定されず、保護膜26側からの光をエネルギ変換す
るいわゆる逆タイプの集積型太陽電池にもこの発明を適
用できる。この場合、絶縁性基板12は、セラミックま
たはその表面に絶縁膜が形成されたステンレスなどによ
っても形成され得る。そして、図2および図3に示す実
施例の透明導電膜32と裏面電極40とが入れ換えられ
る。
In the embodiment shown in FIGS. 2 and 3,
Although the forward type integrated photovoltaic device has been described, the present invention is not limited to this, and the present invention can also be applied to a so-called reverse type integrated solar cell that converts energy from the protective film 26 side into energy. In this case, the insulating substrate 12 may be formed of ceramic or stainless steel having an insulating film formed on the surface thereof. Then, the transparent conductive film 32 and the back electrode 40 of the embodiment shown in FIGS. 2 and 3 are exchanged.

【0022】なお、上述の各実施例では、絶縁性基板1
2上に形成される絶縁膜として、耐熱性絶縁膜14を用
いたが、耐熱性のない絶縁膜であってもよい。なぜな
ら、変質部20または38と動作部の光電変換層18ま
たは光電変換膜36とを電気的に分離してリーク電流が
流れないようにすればよいからである。ただし、耐熱性
がさほど大きくない絶縁膜を用いた場合でも、絶縁膜を
幅広に形成することによって耐熱性を向上させることが
でき、上述の実施例と同様の効果が得られる。
In each of the above embodiments, the insulating substrate 1 is used.
Although the heat-resistant insulating film 14 is used as the insulating film formed on the second insulating film 2, it may be an insulating film having no heat resistance. This is because the altered portion 20 or 38 and the photoelectric conversion layer 18 or the photoelectric conversion film 36 of the operating portion may be electrically separated so that a leak current does not flow. However, even when an insulating film whose heat resistance is not so large is used, the heat resistance can be improved by forming the insulating film wide, and the same effect as that of the above-described embodiment can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を製造工程順に示す図解図
である。
FIG. 1 is an illustrative view showing one embodiment of the present invention in the order of manufacturing steps.

【図2】この発明の他の実施例の製造工程の一部を示す
図解図である。
FIG. 2 is an illustrative view showing a part of the manufacturing process of another embodiment of the present invention.

【図3】図2の製造工程の続きを示す図解図である。FIG. 3 is an illustrative view showing a sequel to the manufacturing process of FIG. 2;

【図4】従来技術の製造工程を示す図解図である。FIG. 4 is an illustrative view showing a manufacturing process of a conventional technique.

【符号の説明】[Explanation of symbols]

10 …光起電力装置 12 …絶縁性基板 14 …耐熱性絶縁膜 16,34 …分割部 18 …光電変換層 20,38 …変質部 22 …凹部 24 …絶縁膜 30 …集積型太陽電池 32 …透明導電膜 36 …光電変換膜 40 …裏面電極 DESCRIPTION OF SYMBOLS 10 ... Photovoltaic device 12 ... Insulating substrate 14 ... Heat resistant insulating film 16,34 ... Dividing part 18 ... Photoelectric conversion layer 20, 38 ... Altered part 22 ... Recessed part 24 ... Insulating film 30 ... Integrated solar cell 32 ... Transparent Conductive film 36 ... Photoelectric conversion film 40 ... Backside electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板上に分割部で分割して形成され
る光電変換層を含む光起電力装置において、 前記分割部を挟んで前記光電変換層より厚い絶縁膜を前
記絶縁性基板上に形成したことを特徴とする、光起電力
装置。
1. A photovoltaic device comprising a photoelectric conversion layer formed on an insulating substrate by being divided by dividing portions, wherein an insulating film thicker than the photoelectric conversion layer is sandwiched on the insulating substrate. A photovoltaic device, characterized in that
【請求項2】絶縁性基板上に分割部で分割して形成され
る光電変換層を直列接続した集積型光起電力装置におい
て、 前記分割部を挟んで前記光電変換層より厚い絶縁膜を形
成したことを特徴とする、集積型光起電力装置。
2. An integrated photovoltaic device in which photoelectric conversion layers divided by dividing portions are connected in series on an insulating substrate, and an insulating film thicker than the photoelectric converting layer is formed with the dividing portions sandwiched therebetween. An integrated photovoltaic device characterized by the above.
JP5229954A 1993-09-16 1993-09-16 Photovoltaic device Withdrawn JPH0786623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5229954A JPH0786623A (en) 1993-09-16 1993-09-16 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5229954A JPH0786623A (en) 1993-09-16 1993-09-16 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPH0786623A true JPH0786623A (en) 1995-03-31

Family

ID=16900318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5229954A Withdrawn JPH0786623A (en) 1993-09-16 1993-09-16 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPH0786623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274446A (en) * 2000-03-23 2001-10-05 Kanegafuchi Chem Ind Co Ltd Method of manufacturing integrated hybrid thin film solar battery
US9741884B2 (en) 2009-03-31 2017-08-22 Lg Innotek Co., Ltd. Solar cell and method of fabricating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274446A (en) * 2000-03-23 2001-10-05 Kanegafuchi Chem Ind Co Ltd Method of manufacturing integrated hybrid thin film solar battery
US9741884B2 (en) 2009-03-31 2017-08-22 Lg Innotek Co., Ltd. Solar cell and method of fabricating the same
US9893221B2 (en) 2009-03-31 2018-02-13 Lg Innotek Co., Ltd. Solar cell and method of fabricating the same

Similar Documents

Publication Publication Date Title
US4650524A (en) Method for dividing semiconductor film formed on a substrate into plural regions by backside energy beam irradiation
JPH0449272B2 (en)
JPH0536997A (en) Photovoltaic device
JPH0851229A (en) Integrated solar battery and its manufacture
JPH0786623A (en) Photovoltaic device
JP3133494B2 (en) Photovoltaic element
JP2002261313A (en) Thin-film photoelectric conversion module
JP3521268B2 (en) Method for manufacturing photovoltaic device
JP4636689B2 (en) Method for structuring transparent electrode layers
JP3505201B2 (en) Method for manufacturing photovoltaic device
JPS6213829B2 (en)
JPS6114769A (en) Photovoltaic device
JP2000049371A (en) Photovoltaic device and its manufacture
JPS61187379A (en) Manufacture of photovoltaic device
JP4358493B2 (en) Solar cell
JPH03250771A (en) Manufacture of photovoltaic device
JP2001237442A (en) Solar cell and its manufacturing method
JPS6253958B2 (en)
JP2883370B2 (en) Photovoltaic device
JPH03151673A (en) Manufacture of photovoltaic device
JPH04363071A (en) Manufacture of optical semiconductor device
JPS60231372A (en) Manufacture of semiconductor device
JP2001094133A (en) Integrated solar cell and method for producing the same
JPH065897A (en) Integrated photovoltaic device
JPH0464473B2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128