JPH0786560B2 - Method for manufacturing X-ray transmission window - Google Patents

Method for manufacturing X-ray transmission window

Info

Publication number
JPH0786560B2
JPH0786560B2 JP1309701A JP30970189A JPH0786560B2 JP H0786560 B2 JPH0786560 B2 JP H0786560B2 JP 1309701 A JP1309701 A JP 1309701A JP 30970189 A JP30970189 A JP 30970189A JP H0786560 B2 JPH0786560 B2 JP H0786560B2
Authority
JP
Japan
Prior art keywords
thin film
diamond
window
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1309701A
Other languages
Japanese (ja)
Other versions
JPH03170033A (en
Inventor
和宏 馬場
由実 相川
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1309701A priority Critical patent/JPH0786560B2/en
Publication of JPH03170033A publication Critical patent/JPH03170033A/en
Publication of JPH0786560B2 publication Critical patent/JPH0786560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はX−線に対する透過率が大きく、紫外光から可
視光さらに赤外光に対する透過率の低いX−線透過窓及
びその製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to an X-ray transmission window having a large transmittance for X-rays and a low transmittance for ultraviolet light, visible light, and infrared light, and a method for manufacturing the same. .

〔従来の技術〕[Conventional technology]

X−線検出器は種々のものがあるが、リチウムを拡散し
たシリコン半導体検出器が近年多く用いられている。
Although there are various X-ray detectors, a silicon semiconductor detector in which lithium is diffused has been widely used in recent years.

通常この半導体検出器は液体窒素温度に冷却して動作さ
せる必要がある。低温に冷却された検出器の断熱と表面
への結露や汚染の防止のために、検出器の半導体素子の
部分は真空槽内に設置され、真空槽外からくるX−線
は、真空を保持し、X−線に対して透過率の高い窓を通
して真空槽内の検出器に導く方法が取られている。
Normally, this semiconductor detector needs to be cooled to the liquid nitrogen temperature to operate. In order to insulate the detector cooled to low temperature and to prevent condensation and contamination on the surface, the semiconductor element part of the detector is installed inside the vacuum chamber, and the X-ray coming from outside the vacuum chamber maintains the vacuum. However, a method of leading to a detector in a vacuum chamber through a window having a high X-ray transmittance is adopted.

また半導体検出器は通常X−線のみならず、紫外線,可
視光線ないしは赤外線に対しても信号を出すこともあ
り、X−線透過窓を検出器の前面に設置して、紫外線や
可視光線ないしは赤外線等を遮断し、X−線に対しての
み感度を持たせる方策も必要とされる。
Further, the semiconductor detector usually outputs a signal not only to X-rays but also to ultraviolet rays, visible rays or infrared rays. Therefore, an X-ray transmission window is installed in front of the detector so that ultraviolet rays, visible rays or infrared rays can be emitted. There is also a need for a measure to block infrared rays and have sensitivity only to X-rays.

X−線透過窓に要求される材料特性は、X−線に対する
透過率が良好、即ち吸収係数が小さく、厚みが薄くで
き、機械的強度の高いこと等が望まれている。吸収係数
は物質特有の値で、通常X−線の波長や物質の密度に依
存し、概略原子番号の小さいものほど吸収係数は小さ
い。透過率は厚みが薄いほど高いので、できるだけ薄い
ものが望ましい。
Regarding the material characteristics required for the X-ray transmission window, it is desired that the transmittance for X-rays is good, that is, the absorption coefficient is small, the thickness can be made thin, and the mechanical strength is high. The absorption coefficient is a value peculiar to a substance, and usually depends on the wavelength of X-rays and the density of the substance. The smaller the approximate atomic number, the smaller the absorption coefficient. The thinner the thickness, the higher the transmittance. Therefore, it is desirable that the thickness be as thin as possible.

この目的のために、従来は厚み約10μm程度のBe薄板が
用いられていた。
For this purpose, a Be thin plate having a thickness of about 10 μm has been conventionally used.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、従来のベリリウム薄板は、金属ベリリウ
ム板を圧延することによって作製しているが、10ミクロ
ン以下の厚みに均一に圧延しにくく、また、たとえ作製
できたとしても、窓としての機械的強度が不足するた
め、実用的でないという問題があった。このため、X−
線の波長で10Å以上の低エネルギーX−線の透過率が極
端に低下し、X−線検出器の動作が制限されるという致
命的欠陥があった。
However, the conventional beryllium thin plate is manufactured by rolling a metal beryllium plate, but it is difficult to uniformly roll it to a thickness of 10 microns or less, and even if it can be manufactured, it has a mechanical strength as a window. Since there is a shortage, there is a problem that it is not practical. Therefore, X-
There has been a fatal defect that the transmittance of low energy X-rays of 10 Å or more at the wavelength of rays is extremely lowered and the operation of the X-ray detector is restricted.

また、X−線は物質中に吸収され、熱に変わり易く、こ
のため窓材料の温度上昇による熱変形さらには機械的破
壊の問題も生じるため、吸収された熱を速やかに拡散で
きるように、熱拡散率又は熱伝導率は大きく、熱膨張係
数は小さい方が好ましい。
Further, the X-rays are absorbed in the substance and are easily converted into heat, which causes a problem of thermal deformation and mechanical destruction due to the temperature rise of the window material, so that the absorbed heat can be quickly diffused. It is preferable that the thermal diffusivity or thermal conductivity is large and the thermal expansion coefficient is small.

X−線透過窓の目的に適合できる材料は、種々検討され
てはいたが、これまでベリリウム以外には実用的なもの
はなかった。ダイヤモンドは軽元素でありX−線に対し
て透過率が高く、機械的強度や、熱伝導率も大きく、耐
湿性や、耐熱性にも優れた安定な窓材料であるが、高価
でありまた面積も最大で5mm程度のものしか容易に入手
できないという問題があった。さらにダイヤモンドは高
度が高く容易に研磨されないため薄い板状にすることが
難しいという製造技術上の問題もあった。またダイヤモ
ンドは可視光や紫外光に対しても透明でX−線だけを透
過させる用途には不適当であるという問題もあった。
Various materials have been investigated for the purpose of the X-ray transmission window, but up to now, there has been no practical material other than beryllium. Diamond is a light element and has a high transmittance for X-rays, a large mechanical strength and a high thermal conductivity, and is a stable window material excellent in moisture resistance and heat resistance, but it is expensive and There was a problem that only a maximum area of about 5 mm was available. Further, diamond has a problem in manufacturing technology that it is difficult to form a thin plate because diamond has a high degree and is not easily polished. There is also a problem that diamond is transparent to visible light and ultraviolet light and is not suitable for use in transmitting only X-rays.

本発明の目的は前記課題を解決したX−線透過窓及びそ
の製造方法を提供することにある。
An object of the present invention is to provide an X-ray transmission window and a method for manufacturing the same that solve the above problems.

〔課題を解決するための手段〕[Means for Solving the Problems]

前記目的を達成するため、本発明に係るX−線透過窓の
製造方法は、成膜工程と、窓形成工程と、薄膜形成工程
とを有し、多結晶ダイヤモンド薄膜上に金属ベリリウム
薄膜を積層してなるX−線透過窓の製造方法であって、 成膜工程は、基板上に多結晶ダイヤモンド薄膜を成膜す
る処理であり、 窓形成工程は、前記基板を部分的に除去し、多結晶ダイ
ヤモンド薄膜のみからなる窓を形成する処理であり、 薄膜形成工程は、前記多結晶ダイヤモンド薄膜上の窓部
分に金属ベリリウム薄膜を形成する処理である。
In order to achieve the above-mentioned object, a method for manufacturing an X-ray transmission window according to the present invention includes a film forming step, a window forming step, and a thin film forming step, and a metal beryllium thin film is laminated on a polycrystalline diamond thin film. In the method for manufacturing an X-ray transmission window, the film forming step is a step of forming a polycrystalline diamond thin film on the substrate, and the window forming step is a step of partially removing the substrate. This is a process of forming a window consisting only of a crystalline diamond thin film, and the thin film forming process is a process of forming a metal beryllium thin film in the window portion on the polycrystalline diamond thin film.

また本発明に係るX−線透過窓の製造方法は、成膜工程
と、窓形成工程と、薄膜形成工程とを有し、多結晶ダイ
ヤモンド薄膜上に金属ベリリウム薄膜を積層してなるX
−線透過窓の製造方法であって、 成膜工程は、シリコン基板上にタングステン或いはモリ
ブデン膜を形成し、さらにその上に多結晶ダイヤモンド
薄膜を積層形成する処理であり、 窓形成工程は、前記基板を部分的に除去し、多結晶ダイ
ヤモンド薄膜のみからなる窓を形成する処理であり、 薄膜形成工程は、前記多結晶ダイヤモンド薄膜上に金属
ベリリウム薄膜を形成する処理である。
The method of manufacturing an X-ray transmission window according to the present invention has a film forming step, a window forming step, and a thin film forming step, and is formed by laminating a metal beryllium thin film on a polycrystalline diamond thin film.
-A method of manufacturing a linear transmission window, wherein the film forming step is a step of forming a tungsten or molybdenum film on a silicon substrate, and further forming a polycrystalline diamond thin film on the tungsten or molybdenum film. This is a process of partially removing the substrate to form a window composed of only the polycrystalline diamond thin film, and the thin film forming step is a process of forming a metal beryllium thin film on the polycrystalline diamond thin film.

〔作用・原理〕[Action / Principle]

次に本発明について説明する。 Next, the present invention will be described.

第1図(a)〜(d)は本発明に係るX−線透過窓の製
造方法を示す工程図である。
FIGS. 1 (a) to 1 (d) are process diagrams showing a method for manufacturing an X-ray transmission window according to the present invention.

第1図(d)において、本発明は所定形状の窓部12aに
ダイヤモンド微細結晶粒子の集合体からなるダイヤモン
ド多結晶薄膜11を形成し、該ダイヤモンド多結晶薄膜11
上に金属ベリリウム薄膜10を多層構造に設けた窓を用い
ることによって、先に述べた種々の欠点を解消するもの
である。
In FIG. 1 (d), according to the present invention, a diamond polycrystal thin film 11 made of an aggregate of diamond fine crystal grains is formed in a window 12a having a predetermined shape, and the diamond polycrystal thin film 11 is formed.
By using a window in which the metal beryllium thin film 10 is provided in a multi-layered structure, the various drawbacks described above are eliminated.

次に本発明の製造方法を図面にしたがって説明する。第
1図(a)は基板12上にダイヤモンド多結晶薄膜11を形
成する工程を示す。ダイヤモンド多結晶薄膜11の形成に
は、メタンガスと水の混合ガスを用いた特開昭58−9110
0号に記載のような、いわゆる熱フィラメント法気相合
成技術ないしは、特開昭58−110494号に記載のようなメ
タンと水素の混合ガスのマイクロ波励起を利用するプラ
ズマ気相合成法などが利用できる。第2図は一例として
熱フィラメント法気相合成装置の概略を示したものであ
る。第2図において、ダイヤモンド多結晶薄膜を合成す
べき基板21は基板加熱装置22によって加熱し、約600℃
〜900℃程度に保つ。メタンガス(CH4)23及び水素
(H2)24の混合ガスを合成反応装置25内に導入し、基板
21より上方に設けた約2000℃に加熱したタングステンフ
ィラメント26によって熱分解励起し、基板21上にダイヤ
モンドを析出させる。27は合成反応装置25内を真空排気
する排気装置である。この方法によるメタンガスの熱分
解過程とダイヤモンドの生成過程の詳細は、現在もなお
不明の部分が多く、論議のあるところである。いずれに
しても、要するにダイヤモンド多結晶薄膜11が形成でき
る方法であれば、どの方法でもよい。薄膜を形成する結
晶粒子の粒径と膜中の結晶粒界に存在するダイヤモンド
以外の不純物量はX−線の透過係数及び膜の均一性を決
定するので、合成条件は特に重要である。本発明では、
気相合成法によって作製したダイヤモンド多結晶薄膜の
構造としてはダイヤモンドの結晶粒子と非ダイヤモンド
物質、即ちグラファイトや水素を含有する非晶質炭素な
どからなるものを用いる。非晶質相の役割はダイヤモン
ドの異常粒成長を抑え、微細なグレインからなる膜構造
にすることにある。即ち、通常ダイヤモンドの成長はダ
イヤモンド種結晶の上にメタンガス中の炭素がダイヤモ
ンドとして析出するが、その表面に非ダイヤモンド相が
析出すると粒成長は停止する。非ダイヤモンド相の析出
がないと、大きなグレインからなる膜となり、表面の凹
凸が大きく、粒間空孔の存在する膜となり、その上にベ
リリウム薄膜がつけにくい問題も発生する。その比率は
膜の合成条件、例えばメタンガスと水素ガスの混合比
率、基板温度、ガス圧などのダイヤモンド多結晶薄膜の
析出条件に依存するので、合成条件反所望の特性が得ら
れるように制御する必要がある。薄膜の析出条件を制御
することによって得られるダイヤモンド多結晶薄膜で、
0.05μm〜0.2μm程度の粒径のダイヤモンド粒子と結
晶粒界にグラファイトや水素を含有する非晶質炭素を含
むダイヤモンド多結晶薄膜は、X−線領域では透過率は
十分に大きくできる。
Next, the manufacturing method of the present invention will be described with reference to the drawings. FIG. 1A shows a process of forming a diamond polycrystalline thin film 11 on a substrate 12. For forming the polycrystalline diamond thin film 11, a mixed gas of methane gas and water was used.
No. 0, a so-called hot filament method vapor phase synthesis technique, or a plasma vapor phase synthesis method utilizing microwave excitation of a mixed gas of methane and hydrogen as described in JP-A-58-110494. Available. FIG. 2 shows an outline of a hot filament method gas phase synthesis apparatus as an example. In FIG. 2, the substrate 21 on which the diamond polycrystalline thin film is to be synthesized is heated by the substrate heating device 22 to about 600 ° C.
Keep at about 900 ℃. A mixed gas of methane gas (CH 4 ) 23 and hydrogen (H 2 ) 24 was introduced into the synthesis reactor 25, and
Pyrolysis is excited by the tungsten filament 26 provided above the substrate 21 and heated to about 2000 ° C. to deposit diamond on the substrate 21. 27 is an exhaust device for evacuating the inside of the synthesis reaction device 25. The details of the thermal decomposition process of methane gas and the formation process of diamond by this method are still unclear at present and are controversial. In any case, any method may be used as long as the polycrystalline diamond thin film 11 can be formed. The synthesis conditions are particularly important because the grain size of the crystal grains forming the thin film and the amount of impurities other than diamond existing at the crystal grain boundaries in the film determine the X-ray transmission coefficient and the uniformity of the film. In the present invention,
As the structure of the diamond polycrystalline thin film produced by the vapor phase synthesis method, a structure composed of diamond crystal grains and a non-diamond substance, that is, graphite or amorphous carbon containing hydrogen is used. The role of the amorphous phase is to suppress abnormal grain growth of diamond and form a film structure composed of fine grains. That is, usually in the growth of diamond, carbon in methane gas is deposited as diamond on the diamond seed crystal, but grain growth is stopped when the non-diamond phase is deposited on the surface of the diamond. If the non-diamond phase is not deposited, it becomes a film composed of large grains, the surface has large irregularities, and it becomes a film in which intergranular vacancies exist, and there is a problem that it is difficult to attach a beryllium thin film on it. The ratio depends on the film synthesis conditions, for example, the mixing ratio of methane gas and hydrogen gas, the substrate temperature, the gas pressure, and other deposition conditions of the polycrystalline diamond thin film, so it is necessary to control the synthesis conditions so that the desired characteristics are obtained. There is. Diamond polycrystalline thin film obtained by controlling the deposition conditions of the thin film,
The diamond polycrystal thin film containing diamond particles having a grain size of about 0.05 μm to 0.2 μm and amorphous carbon containing graphite or hydrogen at the crystal grain boundaries can have sufficiently high transmittance in the X-ray region.

第1図(a)において、基板12となる材料はシリコンを
用いればよいが、必ずしもシリコン基板である必要はな
く、第1図に示すような製造工程を採用することが可能
な基板であれば特に問題はない。ダイヤモンド多結晶薄
膜11の厚みは膜の機械的強度とX−線の透過率の値が所
望の特性になるように選定すればよい。
In FIG. 1 (a), silicon may be used as the material for the substrate 12, but it is not necessarily a silicon substrate, and any substrate capable of adopting the manufacturing process shown in FIG. 1 may be used. There is no particular problem. The thickness of the diamond polycrystalline thin film 11 may be selected so that the mechanical strength of the film and the value of X-ray transmittance have desired characteristics.

ダイヤモンド多結晶薄膜11を形成した基板12は、次に第
1図(b)に示すように、ダイヤモンド多結晶薄膜11の
みを残し基板12を部分的に除去するために、フォトレジ
スト13を用いたパターン形成工程によってレジストパタ
ーンを形成する。次に、マスク14を用いて基板のエッチ
ング工程によって所望の形状寸法に基板12をエッチング
によって除去し、第1図(c)に示すようなダイヤモン
ド多結晶薄膜11のみを残した窓部12aを形成する。基板1
2のエッチングには、シリコン基板の場合には弗酸と硝
酸の混合溶液に浸漬することで行えばよい。次に、第1
図(d)に示すように、ダイヤモンド多結晶薄膜11上に
金属ベリリウム薄膜10を蒸着ないしはスパッタ法によっ
て形成する。以上の工程を経ることによってベリリウム
薄膜10を被覆せしめたダイヤモンド多結晶薄膜11からな
る多層膜を基板12上に具備するX−線透過窓が製造でき
る。
As shown in FIG. 1 (b), the substrate 12 on which the diamond polycrystalline thin film 11 was formed was used a photoresist 13 to partially remove the substrate 12 while leaving only the diamond polycrystalline thin film 11. A resist pattern is formed by the pattern forming process. Next, the substrate 12 is removed by etching using the mask 14 in a substrate etching process to form a window 12a in which only the diamond polycrystalline thin film 11 is left as shown in FIG. 1 (c). To do. Board 1
In the case of a silicon substrate, the etching of 2 may be performed by immersing it in a mixed solution of hydrofluoric acid and nitric acid. Then the first
As shown in FIG. 3D, a metal beryllium thin film 10 is formed on the diamond polycrystalline thin film 11 by vapor deposition or sputtering. Through the above steps, an X-ray transmission window having a multilayer film composed of the polycrystalline diamond thin film 11 coated with the beryllium thin film 10 on the substrate 12 can be manufactured.

以上述べたように本発明によれば、微細粒径化により膜
の均一性を向上したダイヤモンド多結晶薄膜上に金属ベ
リリウム薄膜を設けた窓を利用できるので、X−線領域
で高い透過率を示し、可視光線領域では、透過率の低い
X−線透過窓が容易に作製できる。
As described above, according to the present invention, it is possible to use a window in which a metal beryllium thin film is provided on a diamond polycrystalline thin film whose film uniformity is improved by reducing the grain size, so that a high transmittance is obtained in the X-ray region. In the visible light region, an X-ray transmission window having low transmittance can be easily manufactured.

〔実施例〕〔Example〕

以下、本発明の実施例に基づいて説明する。 Hereinafter, description will be given based on examples of the present invention.

(実施例1) ダイヤモンド多結晶薄膜の成膜には第2図に示すような
気相合成装置を用いた。反応時のガス条件は、水素ガス
中のメタン濃度を0.5%から5%とし、合成圧力を10ト
ール、基板温度はシリコン基板の表面で600℃〜950℃と
した。以上の条件でダイヤモンド多結晶薄膜の厚みはほ
ぼ0.3ミクロンとした。次に、基板の表面及び裏面にフ
ォトレジストをスピンコーティング法により、3μmの
厚みにコーティングした後、裏面の基板を除去すべき部
分のみレジストを除去し、エッチング窓を形成する。基
板の除去には、1:1:2の混合比率の弗酸(HF),硝酸,
酢酸の混合液に浸しエッチングし、ダイヤモンド多結晶
薄膜のみを残し、基板を完全に除去する。その後レジス
ト剥離材により残留したフォトレジストを除去し、次
に、第1図に示す製造工程にしたがって、厚み0.1ミク
ロンの金属ベリリウム薄膜を蒸着法によって多層構造に
成膜し、X−線透過窓が完成できる。
Example 1 A vapor phase synthesis apparatus as shown in FIG. 2 was used to form a diamond polycrystalline thin film. The gas conditions during the reaction were such that the concentration of methane in hydrogen gas was 0.5% to 5%, the synthesis pressure was 10 Torr, and the substrate temperature was 600 ° C to 950 ° C on the surface of the silicon substrate. Under the above conditions, the thickness of the polycrystalline diamond thin film was set to approximately 0.3 μm. Then, a photoresist is coated on the front surface and the back surface of the substrate to a thickness of 3 μm by a spin coating method, and then only the portion of the back surface where the substrate should be removed is removed to form an etching window. To remove the substrate, use hydrofluoric acid (HF), nitric acid, and
The substrate is completely removed by immersing in a mixed solution of acetic acid and etching to leave only the diamond polycrystalline thin film. After that, the remaining photoresist is removed by a resist remover, and then a metal beryllium thin film having a thickness of 0.1 μm is formed into a multi-layer structure by an evaporation method according to the manufacturing process shown in FIG. Can be completed.

以上述べた方法によって作製したX−線透過窓を用い
て、可視光からX−線に対する透過率を評価した。光の
透過率は光源からの光を分光器で分光し、ダイヤモンド
多結晶薄膜の部分に照射し、透過した光の強度を測定す
ることで算定した。紫外線から可視、さらに赤外線領域
では透過率は、ほぼ5%以下と十分低くできた。X−線
領域の結果を第3図に示す。第3図に示すように本発明
の方法によって、X−線領域での透過率は高くできる。
従来のベリリウム窓では波長10オングストロームになる
と10%以下となるが、これに比較すると波長が30オング
ストローム程度まで10%以上の透過率で良好な特性を示
す。
Using the X-ray transmission window produced by the method described above, the transmittance of visible light to X-rays was evaluated. The light transmittance was calculated by dispersing the light from the light source with a spectroscope, irradiating the portion of the polycrystalline diamond thin film, and measuring the intensity of the transmitted light. The transmittance was sufficiently low at approximately 5% or less in the visible to infrared and infrared regions. Results for the X-ray region are shown in FIG. As shown in FIG. 3, the method of the present invention can increase the transmittance in the X-ray region.
In the conventional beryllium window, it becomes 10% or less at a wavelength of 10 angstroms, but in comparison to this, good characteristics are exhibited at a transmittance of 10% or more up to a wavelength of 30 angstroms.

(実施例2) ダイヤモンド多結晶薄膜を形成する基板として、シリコ
ン基板上にタングステン膜及びモリブデン膜を基板温度
400℃でスパッタ法によって、3μmの厚みに成膜した
ものを用いた。
Example 2 A tungsten film and a molybdenum film are formed on a silicon substrate as a substrate for forming a diamond polycrystalline thin film at a substrate temperature.
A film having a thickness of 3 μm formed by sputtering at 400 ° C. was used.

ダイヤモンド多結晶薄膜の成膜には実施例1と同じ方法
を用いた。第1図に示す製造工程にしたがって、実施例
1の方法と同じ手法により、ベリリウムとダイヤモンド
の多層薄膜のみからなる窓を基板上に作製する。
The same method as in Example 1 was used to form the diamond polycrystalline thin film. According to the manufacturing process shown in FIG. 1, a window made of only a multilayer thin film of beryllium and diamond is formed on the substrate by the same method as that of the first embodiment.

光の透過率は光源からの光を分光器で分光し、ダイヤモ
ンド多結晶薄膜の部分に照射し、透過した光の強度を測
定することで算定した。紫外光から可視さらに赤外線領
域では透過率は低くほぼ5%以下で透過率は十分低くで
きた。X−線領域の結果を第3図に示す。第3図に示す
ように本発明の方法によって、X−線領域での透過率の
高い、X−線透過窓が作製できる。
The light transmittance was calculated by dispersing the light from the light source with a spectroscope, irradiating the portion of the polycrystalline diamond thin film, and measuring the intensity of the transmitted light. The transmittance was low in the range from ultraviolet light to visible light and infrared light, and the transmittance was sufficiently low at about 5% or less. Results for the X-ray region are shown in FIG. As shown in FIG. 3, an X-ray transmission window having a high transmittance in the X-ray region can be produced by the method of the present invention.

〔発明の効果〕〔The invention's effect〕

本発明の方法によれば、X−線の透過率が大きく、紫外
線や可視光に対する透過率の低い、耐湿性や耐熱性に優
れた安定なX−線透過窓を安価に作製できるので、実用
上きわめて有益である。また製造工程から明らかなよう
に特に基板の種類によらないことは明白で、どのような
基板を用いても本発明の効果は損なわれない。
According to the method of the present invention, a stable X-ray transmission window having a high X-ray transmittance, a low transmittance for ultraviolet rays and visible light, and excellent moisture resistance and heat resistance can be produced at a low cost, so that it is practical. Above is extremely beneficial. Further, as is clear from the manufacturing process, it is clear that it does not depend on the kind of the substrate, and the effect of the present invention is not impaired even if any substrate is used.

さらに本発明は、多結晶ダイヤモンド薄膜と金属ベリリ
ウム薄膜との熱膨張係数の相違に着目し、多結晶ダイヤ
モンド薄膜上に金属ベリリウム薄膜を形成しているた
め、多結晶ダイヤモンド薄膜の成膜温度より低い温度の
下に金属ベリリウム薄膜の成膜を行うことができ、金属
ベリリウム薄膜のクラックの発生を防止することができ
る。
Furthermore, the present invention focuses on the difference in the coefficient of thermal expansion between the polycrystalline diamond thin film and the metal beryllium thin film, and since the metal beryllium thin film is formed on the polycrystalline diamond thin film, it is lower than the deposition temperature of the polycrystalline diamond thin film. The metal beryllium thin film can be formed at a temperature, and cracks in the metal beryllium thin film can be prevented.

また金属ベリリウム薄膜は、多結晶ダイヤモンド薄膜の
成膜時のような高温では炭素と反応し炭化物を生成し、
本来のX線透過性が損なわれるが、本発明によれば、金
属ベリリウム薄膜は、多結晶ダイヤモンド薄膜上に成膜
するため、金属ベリリウム薄膜の成膜は、多結晶ダイヤ
モンド薄膜の成膜温度より低い温度の下に行われるた
め、X線透過性の低下を防止することができるという効
果がある。
Further, the metal beryllium thin film reacts with carbon at a high temperature such as when forming a polycrystalline diamond thin film to generate a carbide,
Although the original X-ray transparency is impaired, according to the present invention, since the metal beryllium thin film is formed on the polycrystalline diamond thin film, the metal beryllium thin film is formed at a temperature higher than that of the polycrystalline diamond thin film. Since it is performed at a low temperature, there is an effect that it is possible to prevent a decrease in X-ray transparency.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b),(c),(d)は本発明に係る
X−線透過窓の製造方法を示す工程図、第2図はダイヤ
モンド多結晶薄膜を形成する一方法を説明する図、第3
図は実施例1及び実施例2の方法によって得られた透過
窓の特性を示す図である。 10……ベリリウム薄膜 11……ダイヤモンド多結晶薄膜、12……基板 12a……窓部、13……フォトレジスト 14……マスク 21……ダイヤモンドを形成する基板 22……基板加熱装置、23……メタンガス 24……水素ガス、25……合成反応装置 26……タングステンフィラメント、27……排気装置
1 (a), (b), (c), and (d) are process drawings showing a method for manufacturing an X-ray transmission window according to the present invention, and FIG. 2 shows a method for forming a diamond polycrystalline thin film. Figure explaining, third
The figure is a diagram showing the characteristics of the transmission window obtained by the methods of Example 1 and Example 2. 10 …… Beryllium thin film 11 …… Diamond polycrystalline thin film, 12 …… Substrate 12a …… Window, 13 …… Photoresist 14 …… Mask 21 …… Diamond forming substrate 22 …… Substrate heating device, 23 …… Methane gas 24 …… Hydrogen gas, 25 …… Synthesis reactor 26 …… Tungsten filament, 27 …… Exhaust device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】成膜工程と、窓形成工程と、薄膜形成工程
とを有し、多結晶ダイヤモンド薄膜上に金属ベリリウム
薄膜を積層してなるX−線透過窓の製造方法であって、 成膜工程は、基板上に多結晶ダイヤモンド薄膜を成膜す
る処理であり、 窓形成工程は、前記基板を部分的に除去し、多結晶ダイ
ヤモンド薄膜のみからなる窓を形成する処理であり、 薄膜形成工程は、前記多結晶ダイヤモンド薄膜上の窓部
分に金属ベリリウム薄膜を形成する処理であることを特
徴とするX−線透過窓の製造方法。
1. A method of manufacturing an X-ray transmission window, comprising a film forming step, a window forming step, and a thin film forming step, wherein a metal beryllium thin film is laminated on a polycrystalline diamond thin film. The film process is a process of forming a polycrystalline diamond thin film on the substrate, and the window forming process is a process of partially removing the substrate to form a window made of only the polycrystalline diamond thin film. The step is a process of forming a metal beryllium thin film on a window portion on the polycrystalline diamond thin film, the method for manufacturing an X-ray transmission window.
【請求項2】成膜工程と、窓形成工程と、薄膜形成工程
とを有し、多結晶ダイヤモンド薄膜上に金属ベリリウム
薄膜を積層してなるX−線透過窓の製造方法であって、 成膜工程は、シリコン基板上にタングステン或いはモリ
ブデン膜を形成し、さらにその上に多結晶ダイヤモンド
薄膜を積層形成する処理であり、 窓形成工程は、前記基板を部分的に除去し、多結晶ダイ
ヤモンド薄膜のみからなる窓を形成する処理であり、 薄膜形成工程は、前記多結晶ダイヤモンド薄膜上に金属
ベリリウム薄膜を形成する処理であることを特徴とする
X−線透過窓の製造方法。
2. A method of manufacturing an X-ray transmission window, comprising a film forming step, a window forming step, and a thin film forming step, wherein a metal beryllium thin film is laminated on a polycrystalline diamond thin film. The film process is a process in which a tungsten or molybdenum film is formed on a silicon substrate, and a polycrystalline diamond thin film is further laminated thereon. In the window forming process, the substrate is partially removed to remove the polycrystalline diamond thin film. A method of manufacturing an X-ray transmission window, which is a process of forming a window consisting of only a single layer, and the thin film forming step is a process of forming a metal beryllium thin film on the polycrystalline diamond thin film.
JP1309701A 1989-11-29 1989-11-29 Method for manufacturing X-ray transmission window Expired - Lifetime JPH0786560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309701A JPH0786560B2 (en) 1989-11-29 1989-11-29 Method for manufacturing X-ray transmission window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309701A JPH0786560B2 (en) 1989-11-29 1989-11-29 Method for manufacturing X-ray transmission window

Publications (2)

Publication Number Publication Date
JPH03170033A JPH03170033A (en) 1991-07-23
JPH0786560B2 true JPH0786560B2 (en) 1995-09-20

Family

ID=17996243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309701A Expired - Lifetime JPH0786560B2 (en) 1989-11-29 1989-11-29 Method for manufacturing X-ray transmission window

Country Status (1)

Country Link
JP (1) JPH0786560B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020135290A1 (en) * 2001-03-21 2002-09-26 Advanced Electron Beams, Inc. Electron beam emitter
US7265367B2 (en) 2001-03-21 2007-09-04 Advanced Electron Beams, Inc. Electron beam emitter
JP2010185665A (en) * 2009-02-10 2010-08-26 Kobe Steel Ltd Material for x-ray transmission window, and x-ray transmission window with the material
FI127409B (en) * 2017-01-18 2018-05-15 Oxford Instruments Tech Oy Radiation window

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795053A (en) * 1980-12-05 1982-06-12 Nec Corp X-ray window
JPS63263488A (en) * 1987-04-21 1988-10-31 ペトロ−カナダ・インコ−ポレ−テツド Radiation transmitting window

Also Published As

Publication number Publication date
JPH03170033A (en) 1991-07-23

Similar Documents

Publication Publication Date Title
Hirvonen et al. Self‐diffusion in silicon as probed by the (p, γ) resonance broadening method
US4096026A (en) Method of manufacturing a chromium oxide film
JPH0864524A (en) Preparation of x-ray absorption mask
US4998267A (en) X-ray lithography carbon mask and method of manufacturing the same
JPH0786560B2 (en) Method for manufacturing X-ray transmission window
JP2010532306A (en) Semiconductor device structure and manufacturing method thereof
JPH08134638A (en) Formation of titanium oxide film
Tonneau et al. Growth kinetics of nickel microstructures produced by laser‐induced decomposition of nickel tetracarbonyl
JPH08260150A (en) Graphite layer forming method, x-ray optical element having graphite layer formed by the method and production of the x-ray optical element
JP2000109366A (en) Light non-transmittive high purity silicon carbide material, light shieldable material for semiconductor treating device, and semiconductor treating device
US5335256A (en) Semiconductor substrate including a single or multi-layer film having different densities in the thickness direction
JP3380761B2 (en) Method of manufacturing mask for X-ray exposure
JPH0585892A (en) Diamond thin film and its production
Löchel et al. Diamond membranes for X-ray masks
Nara et al. Synchrotron radiation‐assisted silicon homoepitaxy at 100° C using Si2H6/H2 mixture
EP1487005B1 (en) Stencil mask for ion implantation
JP3220523B2 (en) X-ray mask
JPH03168701A (en) Infrared-ray transmission filter and its manufacture
Lea et al. Work‐Function Measurements on Monolayer Films of Uranium on (100),(110), and (113) Oriented Faces of Tungsten Single Crystals by Photoelectric and Contact Potential Difference Techniques
JP3350235B2 (en) Method of manufacturing X-ray mask and X-ray mask obtained by the method
JP3866912B2 (en) Lithographic mask substrate and method of manufacturing the same
GB2288272A (en) X-ray windows
JP2527009Y2 (en) Diamond window
JP3437389B2 (en) Mask membrane for electron beam and X-ray lithography
Akazawa Formation of Si–Si bonds and precipitation of Si nanocrystals in vacuum-ultraviolet-irradiated a-SiO 2 films