JPH03170033A - X-ray transmission window and production thereof - Google Patents

X-ray transmission window and production thereof

Info

Publication number
JPH03170033A
JPH03170033A JP30970189A JP30970189A JPH03170033A JP H03170033 A JPH03170033 A JP H03170033A JP 30970189 A JP30970189 A JP 30970189A JP 30970189 A JP30970189 A JP 30970189A JP H03170033 A JPH03170033 A JP H03170033A
Authority
JP
Japan
Prior art keywords
thin film
diamond
substrate
transmittance
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30970189A
Other languages
Japanese (ja)
Other versions
JPH0786560B2 (en
Inventor
Kazuhiro Baba
和宏 馬場
Yumi Aikawa
相川 由実
Nobuaki Shohata
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1309701A priority Critical patent/JPH0786560B2/en
Publication of JPH03170033A publication Critical patent/JPH03170033A/en
Publication of JPH0786560B2 publication Critical patent/JPH0786560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the transmittance of X-rays and to lower the transmittance of UV rays and visible light by laminating the thin film of metal beryllium on the thin film of the diamond polycrystal in a window part. CONSTITUTION:Resist patterns are formed by a pattern forming stage using a photoresistor 13 in order to partially remove a substrate 12 except the diamond polycrystalline film 11 which is made to remain. The substrate 12 is removed by etching to a desired shape and size to form a window part 12a by using a mask. The thin film 10 of the metal beryllium is formed by vapor deposition or sputtering on the film 11. The high transmittance is thereby exhibited in an X-ray region and the low transmittance is obtd. in a visible light region.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明はX一線に対する透過率が大きく、紫外光から可
視光さらに赤外先に対する透過率の低いX一線透過窓及
びその製造方法に関する。
The present invention relates to an X-line transmission window that has a high transmittance for the X-line and a low transmittance for visible light from ultraviolet light to infrared light, and a method for manufacturing the same.

【従来の技術} X一線検出器は種々のものがあるが、リチウムを拡散し
たシリコン半導体検出器が近年多く用いられている。 通常この半導体検出器は液体窒素温度に冷却して動作さ
せる必要がある。低温に冷却された検出器の断熱と表面
への結露や汚染の防止のために、検出器の半導体素子の
部分は真空槽内に設置され、真空槽外からくるX一線は
、真空を保持し、X−線に対して透過率の高い窓を通し
て真空槽内の検出器に導く方法が取られている。 また半導体検出器は通常X一線のみならず、紫外線,可
視光線ないしは赤外線に対しても信号を出すこともあり
、X一線透過窓を検出器の前面に設置して、紫外線や可
視光線ないしは赤外線等を遮断し、X一線に対してのみ
感度を持たせる方策も必要とされる。 X一線透過窓に要求される材料特性は、X一線に対する
透過率が良好、即ち吸収係数が小さく、厚みが薄くでき
、機械的強度の高いこと等が望まれている。吸収係数は
物質特有の値で、通常X一線の波長や物質の密度に依存
し、概略原子番号の小さいものほど吸収係数は小さい。 透過率は厚みが薄いほど高いので、できるだけ薄いもの
が望ましい。 この目的のために、従来は厚み約10pm程度のBe薄
板が用いられていた. 〔発明が解決しようとする課題〕 しかしながら、従来のべリリウム薄板は、金属ベリリウ
ム板を圧延することによって作製しているが、lOミク
ロン以下の厚みに均一に圧延しにくく、また、たとえ作
製できたとしても、窓としての機械的強度が不足するた
め、実用的でないという問題があった。このため、X−
線の波長でIOA以上の低エネルギーX一線の透過率が
極端に低下し、X一線検出器の動作が制限されるという
致命的欠陥があった。 また、X一線は物質中に吸収され、熱に変わり易く、こ
のため窓材料の温度上昇による熱変形さらには機械的破
壊の問題も生じるため、吸収された熱を速やかに拡散で
きるように、熱拡散率又は熱伝導率は大きく、熱膨張係
数は小さい方が好ましい。 X一線透過窓の目的に適合できる材料は、種々検討され
てはいたが、これまでベリリウム以外には実用的なもの
はなかった。ダイヤモンドは軽元素でありX一線に対し
て透過率が高く、機械的強度や、熱伝導率も大きく、耐
湿性や、耐熱性にも優れた安定な窓材料であるが、高価
でありまた面積も最大で51M1程度のものしか容易に
入手できないという問題があった。さらにダイヤモンド
は高度が高く容易に研磨されないため薄い板状にするこ
とが難しいという製造技術上の問題もあった。 またダイヤモンドは可視光や紫外光に対しても透明でX
一線だけを透過させる用途には不適当であるという問題
もあった。 本発明の目的は前記課題を解決したX一線透過窓及びそ
の製造方法を提供することにある。 〔課題を解決するための手段} 前記目的を達成するため、本発明に係るX一線透過窓に
おいては、所定形状の窓部に主にダイヤモンド多結晶薄
膜からなる膜を形成し、該ダイヤモンド多結晶薄膜上に
金属ベリリウム薄膜を積層したものである.本発明に係
るX一線透過窓の製造方法においては、多結晶ダイヤモ
ンド薄膜を基板上に成膜する工程と,該基板を部分的に
除去し、ダイヤモンド多結晶薄膜のみからなる窓を形成
する工程と、該多結晶ダイヤモンド薄膜上の窓の部分に
金属ベリリウム薄膜を形成する工程とを含むものである
.また、本発明に係るX一線透過窓の製造方法において
は、シリコン基板上にタングステン、ないしはモリブデ
ン膜を作製し、さらにその上に多結晶ダイヤモンド薄膜
を積層する工程と、該基板を部分的に除去し、ダイヤモ
ンド膜のみからなる窓を形成する工程と、該ダイヤモン
ド多結晶薄膜上に金属ベリリウム薄膜を形成する工程と
を含むものである。 〔作用・原理J 次に本発明について説明する。 第1図(a)〜(イ)は本発明に係るX一線透過窓の製
造方法を示す工程図である。 第1図(イ)において、本発明は所定形状の窓部l2a
にダイヤモンド微細結晶粒子の集合体からなるダイヤモ
ンド多結晶薄膜目を形成し、該ダイヤモンド多結晶薄膜
l1上に金属ベリリウム薄膜10を多層構造に設けた窓
を用いることによって、先に述べた種々の欠点を解消す
るものである。 次に本発明の製造方法を図面にしたがって説明する。第
1図0)は基板l2上にダイヤモンド多結晶薄膜11を
形成する工程を示す。ダイヤモンド多結晶#ff!!1
1の形成には、メタンガスと水素の混合ガスを用いた特
開昭58−91 1 00号に記載のような、いわゆる
熱フィラメント法気相合成技術ないしは、特開昭58−
11049号に記載のようなメタンと水素の混合ガスの
マイクロ波励起を利用するプラズマ気相合或法などが利
用できる。第2図は一例として熱フィラメント法気相合
成装置の概略を示したものである。第2図において、ダ
イヤモンド多結晶薄膜を合成すべき基板21は基板加熱
装置22によって加熱し、約600℃〜900℃程度に
保つ。メタンガス(CH,)23及び水素(H,)24
の混合ガスを合成反応装置25内に導入し、基板21よ
り上方に設けた約2000℃に加熱したタングステンフ
ィラメント26によって熱分解励起し、基板21上にダ
イヤモンドを析出させる。27は合或反応装置25内を
真空排気する排気装置である。この方法によるメタンガ
スの熱分解過程とダイヤモンドの生成過程の詳細は、現
在もなお不明の部分が多く、論議のあることろである。 いずれにしても、要するにダイヤモンド多結晶薄膜11
が形成できる方法であれば、どの方法でもよい。薄膜を
形成する結晶粒子の粒径と膜中の結晶粒界に存在するダ
イヤモンド以外の不純物量はX一線の透過係数及び膜の
均一性を決定するので、合成条件は特に重要である。本
発明では、気相合成法によって作製したダイヤモンド多
結晶薄膜の構造としてはダイヤモンドの結晶粒子と非ダ
イヤモンド物質、即ちグラファイトや水素を含有する非
品質炭素などからなるものを用いる。非晶質相の役割は
ダイヤモンドの異常粒成長を抑さえ、微細なグレインか
らなる膜構造にすることにある。即ち、通常ダイヤモン
ドの成長はダイヤモンド種結晶の上にメタンガス中の炭
素がダイヤモンドとして析出するが、その表面に非ダイ
ヤモンド相が析出すると粒成長は停止する。非ダイヤモ
ンド相の析出がないと、大きなグレインからなる膜とな
り、表面の凹凸が大きく、粒間空孔の存在する膜となり
、その上にベリリウム薄膜がつけにくい問題も発生する
。その比率は膜の合成条件、例えばメタンガスと水素ガ
スの混合比率、基板温度、ガス圧などのダイヤモンド多
結晶薄膜の析出条件に依存するので、合成条件は所望の
特性が得られるように制御する必要がある。薄膜の析出
条件を制御することによって得られるダイヤモンド多結
晶薄膜で、0.051III1〜0.2llm程度の粒
径のダイヤモンド粒子と結晶粒界にグラファイトや水素
を含有する非晶質炭素を含むダイヤモンド多結晶薄膜は
、X一線領域では透過率は十分に大きくできる。 第1図(a)において、基板l2となる材料はシリコン
を用いればよいが、必ずしもシリコン基板である必要は
なく、第1図に示すような製造工程を採用することが可
能な基板であれば特に問題はない。 ダイヤモンド多結晶薄膜l1の厚みは膜の機械的強度と
X一線の透過率の値が所望の特性になるように選定すれ
ばよい。 ダイヤモンド多結晶薄膜l1を形成した基板12は、次
に第1図(ロ)に示すように、ダイヤモンド多結晶薄膜
11のみを残し基板12を部分的に除去するために、フ
ォトレジストl3を用いたパターン形成工程によってレ
ジストパターンを形成する。次に、マスク14を用いて
基板のエッチング工程によって所望の形状寸法に基板l
2をエッチングによって除去し、第l図(C)に示すよ
うなダイヤモンド多結晶薄膜I!のみを残した窓部12
aを形成する。基板I2のエッチングには、シリコン基
板の場合には弗酸と硝酸の混合溶液に浸漬することで行
えばよい。次に、第I図(イ)に示すように、ダイヤモ
ンド多結晶薄膜ll上に金属ベリリウム薄膜10を蒸着
ないしはスバッタ法によって形成する。以上の工程を経
ることによってベリリウム薄膜10を被覆せしめたダイ
ヤモンド多結晶薄膜11からなる多層膜を基板l2上に
具備するX一線透過窓が製造できる。 以上述べたように本発明によれば、微細粒径化により膜
の均一性を向上したダイヤモンド多結晶薄膜上に金属ベ
リリウム薄膜を設けた窓を利用できるので、X一線領域
で高い透過率を示し、可視光線領域では、透過率の低い
X一線透過窓が容易に作製できる。 〔実施例〕 以下、本発明の実施例に基づいて説明する。 (実施例1) ダイヤモンド多結晶薄膜の成膜には第2図に示すような
気相合或装置を用いた。反応時のガス条件は、水素ガス
中のメタン濃度を0.5%から5%とし、合成圧力をl
Oトール、基板温度はシリコン基板の表面で600℃〜
950℃とした。以上の条件でダイヤモンド多結晶薄膜
の厚みはほぼ0.3 ミクロンとした。次に、基板の表
面及び裏面にフォトレジストをスピンコーティング法に
より、31111の厚みにコーティングした後、裏面の
基板を除去すべき部分のみレジストを除去し、エッチン
グ窓を形成する。基板の除去には、1:1:2の混合比
率の弗酸(HF) ,硝酸,酢酸の混合液に浸しエッチ
ングし、ダイヤモンド多結晶薄膜のみを残し、基板を完
全に除去する。その後レジスト剥離材により残留したフ
ォトレジストを除去し、次に、第1図に示す製造工程に
したがって、厚み0.1 ミクロンの金属ベリリウム薄
膜を蒸着法によって多層構造に成膜し、X一線透過窓が
完成できる。 以上述べた方法によって作製したX一線透過窓を用いて
、可視光からX一線に対する透過率を評価した。光の透
過率は光源からの光を分光器で分光し、ダイヤモンド多
結晶薄膜の部分に照射し、透過した光の強度を測定する
ことで算定した.紫外線から可視、さらに赤外線領域で
は透過率は、ほぼ5%以下と十分低くできた。X一線領
域の結果を第3図に示す。第3図に示すように本発明の
方法によって、X一線領域での透過率は高くできる。従
来のべリリウム窓では波長IOオングストロームになる
と10%以下となるが、これに比較すると波長が30オ
ングストローム程度までlO%以上の透過率で良好な特
性を示す。 (実施例2) ダイヤモンド多結晶薄膜を形戒する基板として、シリコ
ン基板上にタングステン膜及びモリブデン膜を基板温度
400℃でスパッタ法によって、3pmの厚みに成膜し
たものを用いた。 ダイヤモンド多結晶薄膜の成膜には実施例lと同じ方法
を用いた。第1図に示す製造工程にしたがって、実施例
1の方法と同じ手法により、ベリリウムとダイヤモンド
の多層薄膜のみからなる窓を基板上に作製する。 光の透過率は光源からの光を分光器で分光し、ダイヤモ
ンド多結晶薄膜の部分に照射し、透過した光の強度を測
定することで算定した.紫外光から可視さらに赤外線領
域では透過率は低くほぼ5%以下で透過率は十分低くで
きた。X一線領域の結果を第3図に示す.第3図に示す
ように本発明の方法によって、X一線領域での透過率の
高い、X一線透過窓が作製できる. 〔発明の効果】 本発明の方法によれば、X一線の透過率が大きく、紫外
線や可視光に対する透過率の低い、耐湿性や耐熱性に優
れた安定なX一線透過窓を安価に作製できるので、実用
上きわめて有益である。また製造工程から明らかなよう
に特に基板の種類によらないことは明白で、どのような
基板を用いても本発明の効果は損なわれない。
[Prior Art] There are various types of X-line detectors, but silicon semiconductor detectors in which lithium is diffused have been widely used in recent years. Typically, this semiconductor detector must be cooled to liquid nitrogen temperature to operate. In order to insulate the detector, which is cooled to a low temperature, and to prevent condensation and contamination on the surface, the semiconductor element of the detector is installed in a vacuum chamber, and the X line coming from outside the vacuum chamber is kept in a vacuum. , a method is used in which X-rays are guided to a detector in a vacuum chamber through a window with high transmittance. In addition, semiconductor detectors usually emit signals not only for the X-rays but also for ultraviolet, visible, or infrared rays. There is also a need for a measure to block the radiation and make it sensitive only to the X line. Material properties required for an X-line transmission window include good transmittance for the X-line, that is, a small absorption coefficient, a thin thickness, and high mechanical strength. The absorption coefficient is a value specific to a substance, and usually depends on the wavelength of the X line and the density of the substance, and the smaller the approximate atomic number, the smaller the absorption coefficient. The thinner the thickness, the higher the transmittance, so it is desirable that it be as thin as possible. For this purpose, a Be thin plate with a thickness of approximately 10 pm has been used. [Problems to be Solved by the Invention] However, conventional beryllium thin plates are produced by rolling metal beryllium plates, but it is difficult to uniformly roll them to a thickness of 10 microns or less, and even if they can be produced, However, there was a problem that it was not practical as it lacked mechanical strength as a window. For this reason, X-
There was a fatal flaw in that the transmittance of low-energy X-rays at wavelengths greater than IOA was extremely reduced, limiting the operation of the X-ray detector. In addition, X-rays are easily absorbed by materials and converted into heat, which can cause problems such as thermal deformation and mechanical destruction due to the temperature rise of the window material. It is preferable that the diffusivity or thermal conductivity is large and the coefficient of thermal expansion is small. Various materials have been studied that can be used for the purpose of X-ray transmission windows, but until now there has been no practical material other than beryllium. Diamond is a light element and has high transmittance to the X line, high mechanical strength and thermal conductivity, and is a stable window material with excellent moisture resistance and heat resistance, but it is expensive and requires a large area. However, there was a problem in that only a maximum of about 51M1 could be easily obtained. Furthermore, because diamond has a high altitude and cannot be easily polished, it is difficult to make it into a thin plate, which is a manufacturing technology problem. Diamonds are also transparent to visible and ultraviolet light.
There was also the problem that it was unsuitable for applications in which only one line was transmitted through. SUMMARY OF THE INVENTION An object of the present invention is to provide an X-ray transmission window that solves the above problems and a method for manufacturing the same. [Means for Solving the Problems] In order to achieve the above object, in the X-ray transmission window according to the present invention, a film mainly consisting of a diamond polycrystalline thin film is formed in the window portion of a predetermined shape, and the diamond polycrystalline film is This is a layered metal beryllium thin film on top of a thin film. The method for manufacturing an X-ray transmission window according to the present invention includes a step of forming a polycrystalline diamond thin film on a substrate, and a step of partially removing the substrate to form a window consisting only of the diamond polycrystalline thin film. , forming a metallic beryllium thin film on the window portion on the polycrystalline diamond thin film. In addition, the method for manufacturing an X-ray transmission window according to the present invention includes the steps of forming a tungsten or molybdenum film on a silicon substrate, further laminating a polycrystalline diamond thin film thereon, and partially removing the substrate. However, the method includes a step of forming a window made of only a diamond film, and a step of forming a metallic beryllium thin film on the diamond polycrystalline thin film. [Operation/Principle J] Next, the present invention will be explained. FIGS. 1(a) to 1(a) are process diagrams showing a method of manufacturing an X-ray transmission window according to the present invention. In FIG. 1(A), the present invention has a window l2a having a predetermined shape.
By using a window in which a diamond polycrystalline thin film consisting of an aggregate of diamond microcrystal particles is formed on the diamond polycrystalline thin film 11 and a metal beryllium thin film 10 is provided in a multilayer structure on the diamond polycrystalline thin film l1, the various drawbacks mentioned above can be solved. This is to eliminate the problem. Next, the manufacturing method of the present invention will be explained with reference to the drawings. FIG. 10) shows the process of forming a diamond polycrystalline thin film 11 on a substrate l2. Diamond polycrystal #ff! ! 1
1 can be formed by the so-called hot filament vapor phase synthesis technique as described in JP-A-58-91-100 using a mixed gas of methane gas and hydrogen, or by JP-A-58-1999.
A plasma vapor phase synthesis method using microwave excitation of a mixed gas of methane and hydrogen, as described in Japanese Patent No. 11049, can be used. FIG. 2 shows an outline of a hot filament vapor phase synthesis apparatus as an example. In FIG. 2, a substrate 21 on which a diamond polycrystalline thin film is to be synthesized is heated by a substrate heating device 22 and maintained at about 600°C to 900°C. Methane gas (CH,) 23 and hydrogen (H,) 24
The mixed gas is introduced into the synthesis reaction apparatus 25 and thermally excited by a tungsten filament 26 heated to about 2000° C. provided above the substrate 21 to precipitate diamond on the substrate 21. Reference numeral 27 denotes an exhaust device for evacuating the inside of the reaction device 25. The details of the process of thermally decomposing methane gas and forming diamonds using this method are still largely unknown and controversial. In any case, in short, the diamond polycrystalline thin film 11
Any method may be used as long as it can form the structure. The synthesis conditions are particularly important because the grain size of the crystal grains forming the thin film and the amount of impurities other than diamond present at the grain boundaries in the film determine the X-ray transmission coefficient and the uniformity of the film. In the present invention, the structure of the diamond polycrystalline thin film produced by the vapor phase synthesis method is composed of diamond crystal particles and non-diamond materials, such as graphite and non-quality carbon containing hydrogen. The role of the amorphous phase is to suppress abnormal grain growth of diamond and create a film structure consisting of fine grains. That is, diamond growth normally occurs when carbon in methane gas precipitates as diamond on a diamond seed crystal, but when a non-diamond phase precipitates on the surface, grain growth stops. If there is no precipitation of the non-diamond phase, the film will consist of large grains, the surface will be highly uneven, the film will have intergranular pores, and the problem arises that it will be difficult to attach a beryllium thin film thereon. The ratio depends on the deposition conditions of the diamond polycrystalline thin film, such as the mixing ratio of methane gas and hydrogen gas, substrate temperature, and gas pressure, so the synthesis conditions must be controlled to obtain the desired characteristics. There is. It is a diamond polycrystalline thin film obtained by controlling the deposition conditions of the thin film.It is a diamond polycrystalline thin film obtained by controlling the deposition conditions of the thin film. A crystal thin film can have a sufficiently high transmittance in the X-line region. In FIG. 1(a), silicon may be used as the material for the substrate l2, but it does not necessarily have to be a silicon substrate, and any substrate that can be manufactured using the manufacturing process shown in FIG. There are no particular problems. The thickness of the diamond polycrystalline thin film l1 may be selected so that the mechanical strength and X-ray transmittance value of the film have desired characteristics. The substrate 12 on which the diamond polycrystalline thin film l1 was formed was then treated with a photoresist l3 in order to partially remove the substrate 12, leaving only the diamond polycrystalline thin film 11, as shown in FIG. 1(b). A resist pattern is formed by a pattern forming process. Next, using the mask 14, the substrate is etched into a desired shape and dimension.
2 is removed by etching to form a diamond polycrystalline thin film I! as shown in FIG. 1(C). Window section 12 with only the remaining part
form a. In the case of a silicon substrate, the substrate I2 may be etched by immersing it in a mixed solution of hydrofluoric acid and nitric acid. Next, as shown in FIG. 1(a), a metal beryllium thin film 10 is formed on the diamond polycrystalline thin film 11 by vapor deposition or sputtering. By going through the above steps, it is possible to manufacture an X-ray transmission window having a multilayer film made of a diamond polycrystalline thin film 11 covered with a beryllium thin film 10 on the substrate 12. As described above, according to the present invention, it is possible to use a window in which a metallic beryllium thin film is provided on a diamond polycrystalline thin film whose film uniformity has been improved by making the grain size finer, so that it exhibits high transmittance in the X-line region. In the visible light region, an X-ray transmission window with low transmittance can be easily produced. [Example] Hereinafter, the present invention will be explained based on an example. (Example 1) A vapor phase deposition apparatus as shown in FIG. 2 was used to form a diamond polycrystalline thin film. The gas conditions during the reaction were such that the methane concentration in the hydrogen gas was 0.5% to 5%, and the synthesis pressure was 1
Otor, substrate temperature is 600℃~ on the surface of silicon substrate
The temperature was 950°C. Under the above conditions, the thickness of the diamond polycrystalline thin film was approximately 0.3 microns. Next, a photoresist is coated on the front and back surfaces of the substrate by a spin coating method to a thickness of 31111, and then the resist is removed only from the portion of the back surface where the substrate should be removed to form an etching window. To remove the substrate, the substrate is etched by immersing it in a mixed solution of hydrofluoric acid (HF), nitric acid, and acetic acid at a mixing ratio of 1:1:2, and the substrate is completely removed, leaving only the diamond polycrystalline thin film. After that, the remaining photoresist was removed using a resist stripping agent, and then a 0.1 micron thick metal beryllium thin film was formed into a multilayer structure by vapor deposition according to the manufacturing process shown in Figure 1, and the X-ray transmission window was can be completed. Using the X-line transmission window produced by the method described above, the transmittance from visible light to the X-line was evaluated. The light transmittance was calculated by dividing the light from the light source with a spectrometer, irradiating it onto the diamond polycrystalline thin film, and measuring the intensity of the transmitted light. Transmittance in the ultraviolet to visible and even infrared regions was sufficiently low, approximately 5% or less. The results for the X-line region are shown in FIG. As shown in FIG. 3, the transmittance in the X-line region can be increased by the method of the present invention. Conventional beryllium windows have a transmittance of less than 10% when the wavelength is 10 angstroms, but compared to this, it shows good characteristics with a transmittance of 10 % or more up to a wavelength of about 30 angstroms. (Example 2) As a substrate on which a diamond polycrystalline thin film was formed, a tungsten film and a molybdenum film were formed to a thickness of 3 pm on a silicon substrate by sputtering at a substrate temperature of 400°C. The same method as in Example 1 was used to form the diamond polycrystalline thin film. According to the manufacturing process shown in FIG. 1 and using the same method as in Example 1, a window consisting only of a multilayer thin film of beryllium and diamond is produced on a substrate. The light transmittance was calculated by dividing the light from the light source with a spectrometer, irradiating it onto the diamond polycrystalline thin film, and measuring the intensity of the transmitted light. In the ultraviolet to visible and infrared regions, the transmittance was low, approximately 5% or less, and the transmittance was sufficiently low. Figure 3 shows the results for the X-line region. As shown in FIG. 3, by the method of the present invention, an X-line transmission window with high transmittance in the X-line region can be fabricated. [Effects of the Invention] According to the method of the present invention, a stable X-line transmission window with high X-line transmittance, low transmittance to ultraviolet rays and visible light, and excellent moisture resistance and heat resistance can be manufactured at low cost. Therefore, it is extremely useful in practice. Further, as is clear from the manufacturing process, it is clear that the invention does not depend on the type of substrate, and the effects of the present invention are not impaired no matter what type of substrate is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図0,(ロ),(c),(イ)は本発明に係るX一
線透過窓の製造方法を示す工程図、第2図はダイヤモン
ド多結晶薄膜を形成する一方法を説明する図、第3図は
実施例l及び実施例2の方法によって得られた透過窓の
特性を示す図である. lO・・・ベリリウム薄膜 11・・・ダイヤモンド多結晶薄膜  l2・・・基板
12a・・・窓部         13・・・フォト
レジストl4・・・マスク 2l・・・ダイヤモンドを形成する基板22・・・基板
加熱装置     23・・・メタンガス24・・・水
素ガス       25・・・合成反応装置26・・
・タングステンフィラメント 27・・・排気装置特許
出願入 日本電気株式会社 (0.) ?口口口■/4マスク ↑ 111111 (b) (C,) 第 1 図 27頭虜談置 第 2 図
Figures 10, (b), (c), and (a) are process diagrams showing a method for manufacturing an X-ray transmission window according to the present invention, and Figure 2 is a diagram illustrating a method for forming a diamond polycrystalline thin film. , FIG. 3 is a diagram showing the characteristics of the transmission windows obtained by the methods of Example 1 and Example 2. lO...Beryllium thin film 11...Diamond polycrystalline thin film l2...Substrate 12a...Window portion 13...Photoresist l4...Mask 2l...Substrate on which diamond is formed 22...Substrate Heating device 23...Methane gas 24...Hydrogen gas 25...Synthesis reaction device 26...
・Tungsten filament 27...Exhaust device patent application filed NEC Corporation (0.)? Mouth mouth mouth ■ / 4 mask ↑ 111111 (b) (C,) 1st figure 27 head prisoner story 2nd figure

Claims (3)

【特許請求の範囲】[Claims] (1)所定形状の窓部に主にダイヤモンド多結晶薄膜か
らなる膜を形成し、該ダイヤモンド多結晶薄膜上に金属
ベリリウム薄膜を積層したことを特徴とするX−線透過
窓。
(1) An X-ray transmission window characterized in that a film mainly composed of a diamond polycrystalline thin film is formed in a window portion of a predetermined shape, and a metal beryllium thin film is laminated on the diamond polycrystalline thin film.
(2)多結晶ダイヤモンド薄膜を基板上に成膜する工程
と、該基板を部分的に除去し、ダイヤモンド多結晶薄膜
のみからなる窓を形成する工程と、該多結晶ダイヤモン
ド薄膜上の窓の部分に金属ベリリウム薄膜を形成する工
程とを含むことを特徴とするX−線透過窓の製造方法。
(2) A step of forming a polycrystalline diamond thin film on a substrate, a step of partially removing the substrate to form a window consisting only of the polycrystalline diamond thin film, and a portion of the window on the polycrystalline diamond thin film. A method for manufacturing an X-ray transmission window, comprising the steps of: forming a metallic beryllium thin film.
(3)シリコン基板上にタングステン、ないしはモリブ
デン膜を作製し、さらにその上に多結晶ダイヤモンド薄
膜を積層する工程と、該基板を部分的に除去し、ダイヤ
モンド多結晶薄膜のみからなる窓を形成する工程と、該
ダイヤモンド多結晶薄膜上に金属ベリリウム薄膜を形成
する工程とを含むことを特徴とするX−線透過窓の製造
方法。
(3) A step of producing a tungsten or molybdenum film on a silicon substrate, and further laminating a polycrystalline diamond thin film thereon, and partially removing the substrate to form a window made only of the diamond polycrystalline thin film. A method for manufacturing an X-ray transmission window, comprising the steps of: forming a metallic beryllium thin film on the diamond polycrystalline thin film.
JP1309701A 1989-11-29 1989-11-29 Method for manufacturing X-ray transmission window Expired - Lifetime JPH0786560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309701A JPH0786560B2 (en) 1989-11-29 1989-11-29 Method for manufacturing X-ray transmission window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309701A JPH0786560B2 (en) 1989-11-29 1989-11-29 Method for manufacturing X-ray transmission window

Publications (2)

Publication Number Publication Date
JPH03170033A true JPH03170033A (en) 1991-07-23
JPH0786560B2 JPH0786560B2 (en) 1995-09-20

Family

ID=17996243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309701A Expired - Lifetime JPH0786560B2 (en) 1989-11-29 1989-11-29 Method for manufacturing X-ray transmission window

Country Status (1)

Country Link
JP (1) JPH0786560B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526965A (en) * 2001-03-21 2004-09-02 アドバンスト・エレクトロン・ビームズ・インコーポレーテッド Emission window for electron beam emitter
JP2010185665A (en) * 2009-02-10 2010-08-26 Kobe Steel Ltd Material for x-ray transmission window, and x-ray transmission window with the material
US7919763B2 (en) 2001-03-21 2011-04-05 Advanced Electron Beams, Inc. Electron beam emitter
CN110192124A (en) * 2017-01-18 2019-08-30 牛津仪器技术股份公司 Radiation window

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795053A (en) * 1980-12-05 1982-06-12 Nec Corp X-ray window
JPS63263488A (en) * 1987-04-21 1988-10-31 ペトロ−カナダ・インコ−ポレ−テツド Radiation transmitting window

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795053A (en) * 1980-12-05 1982-06-12 Nec Corp X-ray window
JPS63263488A (en) * 1987-04-21 1988-10-31 ペトロ−カナダ・インコ−ポレ−テツド Radiation transmitting window

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526965A (en) * 2001-03-21 2004-09-02 アドバンスト・エレクトロン・ビームズ・インコーポレーテッド Emission window for electron beam emitter
US7919763B2 (en) 2001-03-21 2011-04-05 Advanced Electron Beams, Inc. Electron beam emitter
US8338807B2 (en) 2001-03-21 2012-12-25 Hitachi Zosen Corporation Electron beam emitter
JP2010185665A (en) * 2009-02-10 2010-08-26 Kobe Steel Ltd Material for x-ray transmission window, and x-ray transmission window with the material
CN110192124A (en) * 2017-01-18 2019-08-30 牛津仪器技术股份公司 Radiation window
CN110192124B (en) * 2017-01-18 2023-07-25 牛津仪器技术股份公司 Radiation window

Also Published As

Publication number Publication date
JPH0786560B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
JP2823276B2 (en) Method for manufacturing X-ray mask and apparatus for controlling internal stress of thin film
EP1022614B1 (en) Photomask blank, photomask, methods of manufacturing the same, and method of forming micropattern
US4468799A (en) Radiation lithography mask and method of manufacturing same
EP0676772A1 (en) X-ray windows
JPH0864524A (en) Preparation of x-ray absorption mask
US4994141A (en) Method of manufacturing a mask support of SiC for radiation lithography masks
JPH03170033A (en) X-ray transmission window and production thereof
JP3071876B2 (en) X-ray mask, method of manufacturing the same, and exposure method using the same
KR930004236B1 (en) X-ray exposure mask manufacturing method
JP2000109366A (en) Light non-transmittive high purity silicon carbide material, light shieldable material for semiconductor treating device, and semiconductor treating device
Löchel et al. Diamond membranes for x-ray masks
US4946751A (en) Method of manufacturing a mask for radiation lithography
JPH03168701A (en) Infrared-ray transmission filter and its manufacture
Oda et al. An x-ray mask using SiC membrane deposited by ECR plasma CVD
US5335256A (en) Semiconductor substrate including a single or multi-layer film having different densities in the thickness direction
GB2288272A (en) X-ray windows
JPH0712017B2 (en) SiC / Si for X-ray lithography Lower 3 Lower N 4 Film forming method
JP3350235B2 (en) Method of manufacturing X-ray mask and X-ray mask obtained by the method
JP3866912B2 (en) Lithographic mask substrate and method of manufacturing the same
JPH0430737B2 (en)
JP3360269B2 (en) Diamond film for X-ray lithography and method for producing the same
Nara et al. Synchrotron radiation‐assisted silicon homoepitaxy at 100° C using Si2H6/H2 mixture
JP3437389B2 (en) Mask membrane for electron beam and X-ray lithography
JP3127037B2 (en) X-ray mask support, X-ray mask structure, and X-ray exposure method
JPH10125672A (en) Carbon film having fluorinated insulating surface pattern and production thereof