JPH03168701A - Infrared-ray transmission filter and its manufacture - Google Patents

Infrared-ray transmission filter and its manufacture

Info

Publication number
JPH03168701A
JPH03168701A JP1309702A JP30970289A JPH03168701A JP H03168701 A JPH03168701 A JP H03168701A JP 1309702 A JP1309702 A JP 1309702A JP 30970289 A JP30970289 A JP 30970289A JP H03168701 A JPH03168701 A JP H03168701A
Authority
JP
Japan
Prior art keywords
thin film
polycrystalline thin
infrared
substrate
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309702A
Other languages
Japanese (ja)
Inventor
Kazuhiro Baba
和宏 馬場
Yumi Aikawa
相川 由実
Nobuaki Shohata
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1309702A priority Critical patent/JPH03168701A/en
Publication of JPH03168701A publication Critical patent/JPH03168701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To hold the transmissivity low in the visible light range and high in the infrared-light range by forming a diamond polycrystalline thin film at a window part in a specific shape. CONSTITUTION:The diamond polycrystalline thin film 12 is a formed on a substrate 11 by a heat filament vapor-phase composing method, etc., and a resist pattern is formed by using photoresist 13. Then the substrate 11 is etched in a desired shape by using a mask 14 to form the window part 11a in the specific shape and only the diamond polycrystalline thin film 12 is left corresponding to the window part 11a. This diamond polycrystalline thin film 12 can utilize both the light scattering and absorption by the ruggedness of the film surface and the scattering and absorption of light in a crystal grain boundary where a graphite phase in the film is present. Consequently, high transmissivity is obtained in the infrared range of >=50 micron wavelength and made low in the visible-light range.

Description

【発明の詳細な説明】 〔産業上の利用分野J 本発明は波長にして1ミクロン以上の赤外線に対する透
過率が大きく、1ミクロン以下の可視光に対する透過率
の低い赤外線透過フィルター及びその製造方法に関する
Detailed Description of the Invention [Field of Industrial Application J] The present invention relates to an infrared transmission filter that has a high transmittance for infrared rays having a wavelength of 1 micron or more and a low transmittance for visible light that has a wavelength of 1 micron or less, and a method for manufacturing the same. .

〔従来の技術] 赤外線透過フィルターは、焦電効果を用いた焦電型赤外
センサーや、半導体HgCdTe系赤外センサ一或いは
ボロメータなどの赤外線検出器に入射する光のうち可視
光線を遮断し、赤外光のみを透過させることによって信
号対雑音比を向上する目的で検出器の前面に設置して用
いられる。従来、赤外線透過フィルターのためには可視
光の透過率が小さく赤外光透過率の良好な材料、例えば
単結晶シリコンや、ゲルマニウム, MgF,, Ca
F,, Csl, CsBr, LiF, Nal或い
はダイヤモンド等を焼結対の形、或いは単結晶を切断研
磨した板の形にして用いられている.また別の技術では
、材料の屈折率、吸収係数及び膜厚の異なる薄膜を多層
構造に積層し、光の多重反射光の干渉効果を利用して、
赤外光領域の透過率を可視光線領域よりも大きくするこ
とによりフィルターとして使われている。
[Prior Art] An infrared transmission filter blocks visible light among the light that enters an infrared detector such as a pyroelectric infrared sensor using a pyroelectric effect, a semiconductor HgCdTe infrared sensor, or a bolometer. It is installed in front of the detector to improve the signal-to-noise ratio by transmitting only infrared light. Conventionally, materials with low visible light transmittance and good infrared light transmittance have been used for infrared transmission filters, such as single crystal silicon, germanium, MgF, Ca.
F, Csl, CsBr, LiF, Nal, or diamond are used in the form of sintered pairs or in the form of plates cut and polished from single crystals. In another technology, thin films with different refractive indexes, absorption coefficients, and film thicknesses of materials are laminated into a multilayer structure, and the interference effect of multiple reflections of light is used to
It is used as a filter by making the transmittance in the infrared region higher than in the visible light region.

〔発明が解決しようとする課題} 弗化物やハロゲン化物結晶材料は、波長50ミクロン程
度まで透過率が高い材料で、赤外線透過窓としても用い
られているが、いずれも耐湿性が悪く、潮解性があるた
め高温高濃度環境下で使用する際の安定性に問題があり
、保管や使用方法に特別の注意が必要で、長期信頼性・
安定性に劣るという問題を持っている。シリコンやゲル
マニウムは波長■0ミクロン付近に吸収を持ったり、2
0ミクロン以上では吸収係数が大きく透過率が落ちると
いう問題がある。また、赤外線は物質中に吸収され、熱
に変わり易く、このため材料の温度上昇による熱変形、
さらには機械的破壊の問題も生じるため、吸収された熱
を速やかに拡散できるように、熱拡散率又は熱伝導率は
大きい方が好ましい。
[Problem to be solved by the invention] Fluoride and halide crystal materials have high transmittance up to a wavelength of about 50 microns and are also used as infrared transmitting windows, but they all have poor moisture resistance and are deliquescent. Because of this, there are problems with stability when used in high-temperature, high-concentration environments, and special care must be taken in storage and usage, resulting in long-term reliability and
It has a problem of poor stability. Silicon and germanium have absorption near the wavelength ■0 micron,
If the thickness is 0 micron or more, there is a problem in that the absorption coefficient is large and the transmittance is decreased. In addition, infrared rays are easily absorbed by materials and converted into heat, resulting in thermal deformation due to increased temperature of the material.
Furthermore, since the problem of mechanical breakage also occurs, it is preferable that the thermal diffusivity or thermal conductivity be large so that the absorbed heat can be quickly diffused.

ダイヤモンドは紫外領域から80ミクロン以上の波長付
近まで透明であり、熱伝導率も大きく、耐湿性や、耐熱
性にも優れた安定な材料であるが、高価であり、また面
積も最大で51III1程度のものしか容易に入手でき
ないという問題がある。またダイヤモンドは可視光や紫
外光に対しても透明で赤外線だけを透過させる用途には
不適当であるという問題もあった。
Diamond is transparent from the ultraviolet region to around wavelengths of 80 microns or more, has high thermal conductivity, and is a stable material with excellent moisture resistance and heat resistance, but it is expensive and has a maximum area of about 51III1. The problem is that only those that are readily available are available. Another problem is that diamond is transparent to visible light and ultraviolet light, making it unsuitable for applications that only transmit infrared light.

光の多重反射光の干渉効果を利用するものを用いる場合
にも、膜を構或する材料自身の屈折率、透過率は大幅に
調整することは不可能で、用いる材料によって利用でき
る波長領域はほぼ決められる。膜厚,屈折率の異なる材
料を多層化する必要があるため製造工程が複雑化する問
題もある。特に長波長領域で透明な材料には先に述べた
ような材料を用いる以外に方法はなく、実用上の種々の
問題点を解消することは不可能であった。
Even when using a device that utilizes the interference effect of multiple reflections of light, it is impossible to greatly adjust the refractive index and transmittance of the material that makes up the film, and the wavelength range that can be used depends on the material used. Almost decided. There is also the problem that the manufacturing process becomes complicated because it is necessary to use multiple layers of materials with different film thicknesses and refractive indexes. Especially for materials that are transparent in the long wavelength region, there is no other way than to use the materials mentioned above, and it has been impossible to solve the various practical problems.

本発明の目的は前記課題を解決した赤外線透過フィルタ
ー及びその製造方法を提供することにある。
An object of the present invention is to provide an infrared transmission filter that solves the above problems and a method for manufacturing the same.

【課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するため、本発明に係る赤外線透過フィ
ルターにおいては、所定形状の窓部にダイヤモンド多結
晶薄膜を形成したものである。また、本発明に係る赤外
線透過フィルターの製造方法においては、多結晶ダイヤ
モンド薄膜を基板上に或膜する工程と、該基板を部分的
に除去し、ダイヤモンド多結晶薄膜のみからなる赤外線
透過窓を形成する工程とを含むものである。
In order to achieve the above object, in the infrared transmission filter according to the present invention, a diamond polycrystalline thin film is formed in a window portion having a predetermined shape. Furthermore, the method for manufacturing an infrared transmitting filter according to the present invention includes a step of depositing a polycrystalline diamond thin film on a substrate, and partially removing the substrate to form an infrared transmitting window made only of the diamond polycrystalline thin film. The method includes the step of:

〔作用・原理J 以下に、本発明について説明する。[Action/Principle J The present invention will be explained below.

第1図(a)〜■は本発明に係る赤外線透過フィルター
の製造方法を示す工程図である。
FIGS. 1(a) to 1) are process diagrams showing a method for manufacturing an infrared transmitting filter according to the present invention.

第l図(イ)において、本発明は所定形状の窓部11a
にダイヤモンド多結晶薄膜l2を形成し、そのダイヤモ
ンド多結晶薄膜12として、0.1pm〜5pmの粒径
のダイヤモンド微細結晶粒子の集合体からなるダイヤモ
ンド多結晶薄膜を用い、膜の表面及び多結晶粒界ないし
は粒内に存在する不純物による光の散乱吸収を利用する
ことによって、先に述べた種々の欠点を解消するもので
ある。
In FIG. 1(a), the present invention has a window portion 11a having a predetermined shape.
A diamond polycrystalline thin film 12 is formed on the diamond polycrystalline thin film 12, and a diamond polycrystalline thin film consisting of an aggregate of diamond fine crystal grains with a grain size of 0.1 pm to 5 pm is used as the diamond polycrystalline thin film 12. By utilizing the scattering and absorption of light by impurities existing within the boundaries or within the grains, the various drawbacks mentioned above can be overcome.

次に本発明に係る赤外線透過フィルターの製造方法を説
明する。第1図(a)は基板11上にダイヤモンド多結
晶薄膜l2を形成する工程を示す。ダイヤモンド多結晶
薄膜l2の形成には、メタンガスと水素の混合ガスを用
いた特開昭58−91100号に記載のような、いわゆ
る熱フィラメント法気相合成技術ないしは、特開昭58
−11049号に記載のようなメタンと水素の混合ガス
のマイクロ波励起を利用するプラズマ気相合成法などが
利用できる。第2図は、熱フィラメント法気相合成装置
の概略を示したものである。第2図において、ダイヤモ
ンド多結晶薄膜を合成すべき基板2lは基板加熱装置2
2によって加熱し、約600℃〜900℃程度に保つ。
Next, a method for manufacturing an infrared transmitting filter according to the present invention will be explained. FIG. 1(a) shows the process of forming a diamond polycrystalline thin film l2 on a substrate 11. As shown in FIG. To form the diamond polycrystalline thin film l2, a so-called hot filament vapor phase synthesis technique as described in JP-A No. 58-91100 using a mixed gas of methane gas and hydrogen or JP-A-58
A plasma vapor phase synthesis method using microwave excitation of a mixed gas of methane and hydrogen as described in Japanese Patent No. 11049 can be used. FIG. 2 schematically shows a hot filament vapor phase synthesis apparatus. In FIG. 2, a substrate 2l on which a diamond polycrystalline thin film is to be synthesized is a substrate heating device 2.
2 and keep at about 600°C to 900°C.

メタンガス(C}I,)23及″び水素(H,)24の
混合ガスを合成反応装置25内に導入し、基板上方に設
けた約2000℃に加熱したタングステンフィラメント
26によって熱分解励起し、基板2l上にダイヤモンド
を析出させる。27は合成反応装置25内を真空排気す
る排気装置である。この方法によるメタンガスの熱分解
過程とダイヤモンドの生成過程の詳細は、現在もなお不
明の部分が多く、論議のあることろである。
A mixed gas of methane gas (C}I, ) 23 and hydrogen (H, ) 24 is introduced into the synthesis reaction device 25, and thermally excited by a tungsten filament 26 heated to about 2000° C. provided above the substrate, Diamond is deposited on the substrate 2l. 27 is an exhaust device that evacuates the inside of the synthesis reaction device 25. Many details of the thermal decomposition process of methane gas and the diamond production process by this method are still unknown. , is a controversial matter.

いずれにしても、要するにダイヤモンド多結晶薄膜が形
成できる方法であれば、どの方法でもよい。
In any case, any method may be used as long as it can form a diamond polycrystalline thin film.

薄膜を形成する結晶粒子の粒径と膜中の結晶粒界に存在
する不純物量は紫外光及び可視光線領域の光透過率特性
を決定するので、合成条件は特に重要である。本発明で
は、気相合成法によって作製したダイヤモンド多結晶薄
膜の構造としてはダイヤモンドの結晶粒子と非ダイヤモ
ンド物質、即ちグラファイトや水素を含有する非品質炭
素などからなるものを用いる。その比率は膜の合成条件
、例えばメタンガスと水素ガスの混合比率、基板温度、
ガス圧などのダイヤモンド多結晶薄膜の析出条件に依存
するので、合成条件は所望の特性が得られるように制御
する必要がある。薄膜の析出条件を制御することによっ
て得られるダイヤモンド多結晶薄膜で、0.1pm〜5
Ilm程度の粒径のダイヤモンド粒子と結晶粒界にグラ
ファイトや水素を含有する非晶質炭素を含むダイヤモン
ド多結晶薄膜は、表面の凹凸及び多結晶粒界での光の散
乱が可視光線領域で特に大きく、従って透過率は小さい
が、赤外光領域では透過率を大きくできる。
The synthesis conditions are particularly important because the grain size of the crystal grains forming the thin film and the amount of impurities present at the grain boundaries in the film determine the light transmittance characteristics in the ultraviolet and visible light regions. In the present invention, the structure of the diamond polycrystalline thin film produced by the vapor phase synthesis method is composed of diamond crystal particles and non-diamond materials, such as graphite and non-quality carbon containing hydrogen. The ratio depends on the film synthesis conditions, such as the mixing ratio of methane gas and hydrogen gas, the substrate temperature,
Since it depends on the deposition conditions of the diamond polycrystalline thin film, such as gas pressure, the synthesis conditions must be controlled so as to obtain the desired properties. A diamond polycrystalline thin film obtained by controlling the deposition conditions of the thin film.
A diamond polycrystalline thin film containing diamond grains with a grain size of approximately Ilm and amorphous carbon containing graphite and hydrogen at the grain boundaries has a rough surface and light scattering at the polycrystalline grain boundaries, especially in the visible light range. Although it is large and therefore has a low transmittance, the transmittance can be increased in the infrared light region.

第l図において、基板となる材料Uはシリコンを用いれ
ばよいが、必ずしもシリコン基板である必要はなく、第
l図に示す本発明のような製造工程を採用することが可
能な基板であれば特に問題はない。ダイヤモンド多結晶
薄膜l2の厚みは膜の機械的強度と赤外線の透過率の値
が所望の特性になるように選定すればよい。
In Figure 1, silicon may be used as the substrate material U, but it does not necessarily have to be a silicon substrate, as long as it is possible to adopt the manufacturing process of the present invention shown in Figure 1. There are no particular problems. The thickness of the diamond polycrystalline thin film l2 may be selected so that the film has desired mechanical strength and infrared transmittance values.

ダイヤモンド多結晶薄膜l2を形成した基板は、次にダ
イヤモンド多結晶薄膜l2のみを残し基板11を部分的
に除去するために、第1図6)に示すように、フォトレ
ジストl3を用いたパターン形成工程によってレジスト
パターンを形成する。次に、マスクl4を用いて基板の
エッチング工程によって所望の形状寸法に基板11をエ
ッチングによって除去して所定形状の窓部11aを形成
し、その窓部11aに対応してダイヤモンド多結晶薄膜
l2のみを残し、ダイヤモンド多結晶薄膜l2の単独膜
部分を形成する。基板I1のエッチングには、シリコン
基板の場合には弗酸と硝酸の混合溶液に浸漬することで
行えばよい。次に工程を経ることによってダイヤモンド
多結晶薄膜!2のみを基板11上に具備せる赤外線透過
フィルターが製造できる。
The substrate on which the diamond polycrystalline thin film l2 has been formed is then patterned using a photoresist l3, as shown in FIG. A resist pattern is formed through a process. Next, using the mask l4, the substrate 11 is removed by etching to a desired shape and dimension in a substrate etching process to form a window portion 11a of a predetermined shape, and only the diamond polycrystalline thin film l2 is removed corresponding to the window portion 11a. , and form a single film portion of the diamond polycrystalline thin film l2. In the case of a silicon substrate, the substrate I1 may be etched by immersing it in a mixed solution of hydrofluoric acid and nitric acid. The next step is to create a diamond polycrystalline thin film! It is possible to manufacture an infrared transmission filter in which only 2 is provided on the substrate 11.

以上述べたように、本発明によれば、ダイヤモンド多結
晶薄膜の、表面での光散乱・吸収、膜中のグラファイト
相などの存在する結晶粒界での光の散乱・吸収工の両者
を利用できるので、波長50ミクロン以上の赤外線領域
でも高い透過率を示し、可視光線領域では、透過率の低
い赤外線透過フィルターが容易に作製できる。
As described above, according to the present invention, both the light scattering and absorption at the surface of the diamond polycrystalline thin film and the light scattering and absorption at the crystal grain boundaries where graphite phase exists in the film are utilized. Therefore, it is possible to easily produce an infrared transmission filter that exhibits high transmittance even in the infrared region with a wavelength of 50 microns or more, and has low transmittance in the visible light region.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

(実施例1) ダイヤモンド多結晶薄膜の成膜には第2図に示すような
気相合成装置を用いた。反応時のガス条件は、水素ガス
中のメタン濃度を0.5%から5%とし、合成圧力をl
Oトール、基板温度はシリコン基板の表面で600℃〜
950℃とした。以上の条件でダイヤモンド多結晶薄膜
の厚みはほぼlO〜50ミクロンとした。膜の構造は透
過電子顕微鏡によって検査し、膜が0.1ミクロン−5
ミクロンの粒径のダイヤモンド粒子及び粒界に非品質炭
素ないしはグラファイト物質が存在することを確かめた
。次に、第1図に示す製造工程にしたがって、基板の表
面及び裏面にフォトレジストをスピンコーティング法に
より、2PII1の厚みにコーティングした後、裏面の
基板を除去すべき部分のみレジストを除去し,エッチン
グ窓を形成する。基板の除去には、l:1=2の混合比
率の弗酸(I4F),硝酸,酢酸の混合液に浸しエッチ
ングし、ダイヤモンド多結晶薄膜のみを残し、基板を完
全に除去したダイヤモンド多結晶薄膜の窓を形成した。
(Example 1) A vapor phase synthesis apparatus as shown in FIG. 2 was used to form a diamond polycrystalline thin film. The gas conditions during the reaction were such that the methane concentration in the hydrogen gas was 0.5% to 5%, and the synthesis pressure was 1
Otor, substrate temperature is 600℃~ on the surface of silicon substrate
The temperature was 950°C. Under the above conditions, the thickness of the diamond polycrystalline thin film was approximately 10 to 50 microns. The structure of the membrane was examined by transmission electron microscopy, and the membrane was 0.1 micron-5.
The presence of non-quality carbon or graphite material in micron-sized diamond grains and grain boundaries was confirmed. Next, according to the manufacturing process shown in Figure 1, photoresist is coated on the front and back surfaces of the substrate by spin coating to a thickness of 2 PII1, and then the resist is removed only from the portion of the back substrate that should be removed, and etching is performed. form a window. To remove the substrate, the diamond polycrystalline thin film was etched by immersing it in a mixed solution of hydrofluoric acid (I4F), nitric acid, and acetic acid with a mixing ratio of l:1=2, leaving only the diamond polycrystalline thin film and completely removing the substrate. formed a window.

その後レジスト剥離材により残留したレジストを除去し
、可視光から赤外先に対する透過率を評価した。
Thereafter, the remaining resist was removed using a resist remover, and the transmittance from visible light to infrared light was evaluated.

光の透過率は光源からの光を分光器で分光し、ダイヤモ
ンド多結晶薄膜の部分に照射し、透過した光の強度を測
定することで算定した。結果を第3図に示す。第3図に
示すように本発明の方法によって、可視光線領域では透
過率は低いが、赤外線領域での透過率は高い、赤外線透
過フィルターが作製できた。
The light transmittance was calculated by dividing the light from the light source with a spectrometer, irradiating it onto a portion of the diamond polycrystalline thin film, and measuring the intensity of the transmitted light. The results are shown in Figure 3. As shown in FIG. 3, by the method of the present invention, an infrared transmitting filter with low transmittance in the visible light region but high transmittance in the infrared region could be produced.

(実施例2) ダイヤモンド多結晶薄膜を形成する基板として、シリコ
ン基板上にタングステン膜及びモリブデン膜を基板温度
400℃でスパッタ法によって、3Ilmの厚みに成膜
したものを用いた。
(Example 2) As a substrate on which a diamond polycrystalline thin film was formed, a tungsten film and a molybdenum film were formed on a silicon substrate to a thickness of 3 Ilm by sputtering at a substrate temperature of 400° C.

ダイヤモンド多結晶薄膜の成膜には実施例1と同じ方法
を用いた。第l図に示す製造工程にしたがって、実施例
lの方法と同じ手法により、ダイヤモンドの多層薄膜の
みからなる窓を基板上に作製する。
The same method as in Example 1 was used to form the diamond polycrystalline thin film. According to the manufacturing process shown in FIG. 1 and using the same method as in Example 1, a window consisting only of a multilayer thin film of diamond is produced on a substrate.

光の透過率は光源からの光を分光器で分光し、ダイヤモ
ンド多結晶薄膜の部分に照射し、透過した光の強度を測
定することで算定し、実施例lとほぼ同様の性能の透過
率が得られた。このように本発明の方法によって、可視
光線領域では透過率は低いが、赤外線領域での透過率の
高い赤外線透過フィルターが下地基板の種類によらず、
作製できた。
The light transmittance was calculated by dividing the light from the light source with a spectrometer, irradiating it onto the diamond polycrystalline thin film, and measuring the intensity of the transmitted light. was gotten. As described above, by the method of the present invention, an infrared transmitting filter having low transmittance in the visible light region but high transmittance in the infrared region can be produced regardless of the type of base substrate.
I was able to create it.

【発明の効果〕【Effect of the invention〕

本発明によれば、特に基板材料の種類に関わらず、波長
50ミクロン以上の領域まで高い透過率を示し、耐湿性
や耐熱性に優れた安定な赤外線透過フィルターを安価に
作製できるので、実用上きわめて有益である。
According to the present invention, a stable infrared transmitting filter that exhibits high transmittance up to a wavelength region of 50 microns or more and has excellent moisture resistance and heat resistance can be produced at a low cost regardless of the type of substrate material, so it is practical. Extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a),(ロ), (C), (d)は本発明に
係る赤外線透過フィルターの製造方法を示す工程図、第
2図はダイヤモンド多結晶薄膜を形成する一方法を説明
する図、第3図は実施例1及び実施例2の方法によって
得られたフィルター特性を示す図である。 11・・・基板        11a・・・窓部l2
・・・ダイヤモンド多結晶薄膜
Figures 1 (a), (b), (C), and (d) are process diagrams showing a method for manufacturing an infrared transmitting filter according to the present invention, and Figure 2 explains one method for forming a diamond polycrystalline thin film. 3 are diagrams showing filter characteristics obtained by the methods of Example 1 and Example 2. 11... Board 11a... Window part l2
...Diamond polycrystalline thin film

Claims (2)

【特許請求の範囲】[Claims] (1)所定形状の窓部にダイヤモンド多結晶薄膜を形成
したことを特徴とする赤外線透過フィルター。
(1) An infrared transmitting filter characterized by forming a diamond polycrystalline thin film on a window portion of a predetermined shape.
(2)多結晶ダイヤモンド薄膜を基板上に成膜する工程
と、該基板を部分的に除去し、ダイヤモンド多結晶薄膜
のみからなる赤外線透過窓を形成する工程とを含むこと
を特徴とする赤外線透過フィルターの製造方法。
(2) Infrared transmission characterized by comprising a step of forming a polycrystalline diamond thin film on a substrate, and a step of partially removing the substrate to form an infrared transmission window consisting only of the diamond polycrystalline thin film. How to manufacture filters.
JP1309702A 1989-11-29 1989-11-29 Infrared-ray transmission filter and its manufacture Pending JPH03168701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309702A JPH03168701A (en) 1989-11-29 1989-11-29 Infrared-ray transmission filter and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309702A JPH03168701A (en) 1989-11-29 1989-11-29 Infrared-ray transmission filter and its manufacture

Publications (1)

Publication Number Publication Date
JPH03168701A true JPH03168701A (en) 1991-07-22

Family

ID=17996257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309702A Pending JPH03168701A (en) 1989-11-29 1989-11-29 Infrared-ray transmission filter and its manufacture

Country Status (1)

Country Link
JP (1) JPH03168701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2714489A1 (en) * 1993-12-27 1995-06-30 Centre Nat Rech Scient Optical device sensitive to polarization.
JP2013163600A (en) * 2012-02-09 2013-08-22 Nippon Telegr & Teleph Corp <Ntt> Method for producing graphite thin film
CN112458429A (en) * 2020-11-12 2021-03-09 山东省科学院海洋仪器仪表研究所 Sand erosion and rain erosion resistant diamond infrared window and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2714489A1 (en) * 1993-12-27 1995-06-30 Centre Nat Rech Scient Optical device sensitive to polarization.
WO1995018394A1 (en) * 1993-12-27 1995-07-06 Centre National De La Recherche Scientifique (C.N.R.S.) Optical polarizer with diamond plates
JP2013163600A (en) * 2012-02-09 2013-08-22 Nippon Telegr & Teleph Corp <Ntt> Method for producing graphite thin film
CN112458429A (en) * 2020-11-12 2021-03-09 山东省科学院海洋仪器仪表研究所 Sand erosion and rain erosion resistant diamond infrared window and preparation method thereof
CN112458429B (en) * 2020-11-12 2021-09-10 山东省科学院海洋仪器仪表研究所 Sand erosion and rain erosion resistant diamond infrared window and preparation method thereof

Similar Documents

Publication Publication Date Title
Hass Preparation, structure, and applications of thin films of silicon monoxide and titanium dioxide
US7135120B2 (en) Method of manufacturing a spectral filter for green and shorter wavelengths
Schulze et al. Density and refractive index of solid layers of noble gases and sulphur hexafluoride
EP1022614A1 (en) Photomask blank, photomask, methods of manufacturing the same, and method of forming micropattern
JPH0642456B2 (en) Surface light treatment method
Tanahashi et al. Effects of heat treatment on Ag particle growth and optical properties in Ag/SiO2 glass composite thin films
Dultsev et al. Structural and optical properties of vanadium pentoxide sol–gel films
JPH03168701A (en) Infrared-ray transmission filter and its manufacture
Edagawa et al. Growth and structure of Si oxide films on Si surface
JP2006519926A (en) Method for producing transparent titanium oxide film having rutile structure
Dawnay et al. Growth and characterization of semiconductor nanoparticles in porous sol-gel films
El-Nahass et al. Optical properties of thermally evaporated metal-free phthalocyanine (H 2 Pc) thin films
CN108375812B (en) Three-frequency absorber based on optical Tamm state
Hegab et al. Effect of annealing on the optical properties of In2Te3 thin films
Hammam et al. Optical constants of thermally evaporated arsenic triselenide using only transmission spectrum
JPH03170033A (en) X-ray transmission window and production thereof
JP2000109366A (en) Light non-transmittive high purity silicon carbide material, light shieldable material for semiconductor treating device, and semiconductor treating device
Morsy et al. Optical Properties of Thermally Deposited Bismuth Telluride in the Wavelength Range of 2.5-10 µm
Ulczynski et al. Diamond-coated glass substrates
Yuan et al. Temperature-dependent structure and optical properties of In2Se3 thin films
US4940851A (en) Membrane for use in X-ray mask and method for preparing the same
JPH11236298A (en) Crystal for use in photolithographic process and preconditioning method of the same, for enhancing capability of absorbing electromagnetic radiation
Bach et al. The reaction behavior of thin lead oxide layers on silica glass
JPH1036971A (en) Cvd device
JP2723582B2 (en) X-ray mask