JP3437389B2 - Mask membrane for electron beam and X-ray lithography - Google Patents

Mask membrane for electron beam and X-ray lithography

Info

Publication number
JP3437389B2
JP3437389B2 JP29622296A JP29622296A JP3437389B2 JP 3437389 B2 JP3437389 B2 JP 3437389B2 JP 29622296 A JP29622296 A JP 29622296A JP 29622296 A JP29622296 A JP 29622296A JP 3437389 B2 JP3437389 B2 JP 3437389B2
Authority
JP
Japan
Prior art keywords
film
stress
membrane
ray lithography
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29622296A
Other languages
Japanese (ja)
Other versions
JPH10144584A (en
Inventor
仁 野口
恭之 寳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP29622296A priority Critical patent/JP3437389B2/en
Publication of JPH10144584A publication Critical patent/JPH10144584A/en
Application granted granted Critical
Publication of JP3437389B2 publication Critical patent/JP3437389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子線およびX線
リソグラフィ用マスクメンブレンに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mask membrane for electron beam and X-ray lithography.

【0002】[0002]

【従来の技術】半導体デバイス作製におけるパターン形
成の微細化に伴い、将来のリソグラフィ技術としてX線
リソグラフィ技術が有望視されている。一般的なX線リ
ソグラフィ用マスク基板の構造を図3に示す。図3のマ
スク基板は、吸収体パターン15、X線透過膜(以下、
メンブレンと記す)16、支持基板13、裏面保護膜1
4よりなるものである。
2. Description of the Related Art With the miniaturization of pattern formation in the fabrication of semiconductor devices, X-ray lithography technology is regarded as a promising future lithography technology. The structure of a general mask substrate for X-ray lithography is shown in FIG. The mask substrate of FIG. 3 has an absorber pattern 15, an X-ray transparent film (hereinafter,
Membrane) 16, support substrate 13, backside protective film 1
It consists of 4.

【0003】ここでメンブレンに要求される特性を以下
に示す。1)機械的強度が高いこと。2)高エネルギー
電子線やシンクロトロン放射光(以下、SOR光と略記
する)のような高エネルギービームの照射に耐えるこ
と。3)高精度なアライメントに必要な可視光透過性が
高いこと。従来、X線リソグラフィ用マスクメンブレン
材料としては、窒化硼素(BN)、ボロンドープシリコ
ン、窒化珪素(SiN)、炭化珪素(SiC)、炭化窒
化珪素(SiCN)、ダイヤモンド等が提案されてい
る。なかでも結晶性の高いダイヤモンドは1)〜3)の
特性に優れる事から、X線リソグラフィ用マスクメンブ
レン材料として最適と考えられる。
The characteristics required for the membrane are shown below. 1) High mechanical strength. 2) Withstand irradiation of high energy beams such as high energy electron beams and synchrotron radiation (hereinafter abbreviated as SOR light). 3) High visible light transparency required for highly accurate alignment. Conventionally, as a mask membrane material for X-ray lithography, boron nitride (BN), boron-doped silicon, silicon nitride (SiN), silicon carbide (SiC), silicon carbonitride (SiCN), diamond and the like have been proposed. Among them, diamond having high crystallinity is excellent in the characteristics 1) to 3), and is considered to be most suitable as a mask membrane material for X-ray lithography.

【0004】一方、メンブレンはX線の吸収を最小限に
抑えるために、1〜2μm厚の自立膜である必要があ
る。したがってメンブレン作製のためには、メンブレン
の膜応力が 0.0〜 5.0×109dyn/cm2(引っ張り)でなけ
ればならないことが知られている。
On the other hand, the membrane needs to be a self-supporting film having a thickness of 1 to 2 μm in order to minimize the absorption of X-rays. Therefore, it is known that the membrane stress of the membrane must be 0.0 to 5.0 × 10 9 dyn / cm 2 (tensile force) in order to manufacture the membrane.

【0005】[0005]

【発明が解決しようとする課題】通常、ダイヤモンドの
製膜方法としては、1)DC、アーク放電、2)DC、
グロー放電、3)燃焼炎、4)高周波(13.56MHz)、
5)マイクロ波(2.45 GHz)、6)熱フィラメント等が
挙げられる。しかしながら、これらの製膜方法では、い
ずれもプラズマを利用していることから、多くの製膜パ
ラメータがプラズマ状態に互いに関係し合うため、所望
の膜を作製するのに必要なプラズマを得ることが困難で
ある。特に機械的強度、SOR光照射耐性、可視光透過
性を高めるための高い結晶性と、メンブレン作製のため
の膜応力との、二つの特性を同時に満足させることは極
めて困難であった。
Generally, as a method for forming a diamond film, 1) DC, arc discharge, 2) DC,
Glow discharge, 3) combustion flame, 4) high frequency (13.56MHz),
5) microwave (2.45 GHz), 6) hot filament, etc. However, in all of these film forming methods, since plasma is used, many film forming parameters are related to the plasma state, so that plasma necessary for forming a desired film can be obtained. Have difficulty. In particular, it has been extremely difficult to simultaneously satisfy the two characteristics of mechanical strength, SOR light irradiation resistance, high crystallinity for enhancing visible light transmittance, and film stress for membrane formation.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記問題点
に鑑み、鋭意検討を重ねた結果、気相合成ダイヤモンド
膜を主たるメンブレンの構成材料として、その片面もし
くは両面に応力補正のための膜を形成して積層構造とす
ることにより、上記の二特性を同時に満足できることに
着目し、本発明を完成させた。すなわち本発明は、気相
合成ダイヤモンド膜の片面もしくは両面に応力補正のた
めの膜を形成した積層構造からなり、該応力補正のため
の膜が炭化珪素または窒化珪素あるいは炭化窒化珪素か
らなるマスクメンブレンであって、前記積層構造からな
る積層膜の応力が 0.0〜 5.0×10 9 dyn/cm 2 (引っ張り)
であるか、及び/又は前記気相合成ダイヤモンド膜の膜
厚(t dia )と応力補正のための膜厚(t Si )との比
率がt dia /t Si ≧1.0であることを特徴とする電子線
およびX線リソグラフィ用マスクメンブレン(以下、単
に、X線リソグラフィ用マスクメンブレンと称する)を
要旨とするものである。なお、上式においてt Si は、応
力補正のための炭化珪素膜または窒化珪素膜あるいは炭
化窒化珪素膜の膜厚である。
The inventors of the present invention have made extensive studies in view of the above problems, and as a result, as a main constituent material of a membrane, a vapor phase synthetic diamond film is used for stress correction on one side or both sides. The present invention has been completed, focusing on the fact that the above two characteristics can be satisfied at the same time by forming a film to form a laminated structure. That is, the present invention is Ri Do a laminated structure film was formed for the stress compensation on one or both surfaces of the CVD diamond film, for the stress compensation
The film is silicon carbide, silicon nitride, or silicon carbonitride
A mask membrane consisting of the above laminated structure.
The stress of the laminated film is 0.0 to 5.0 × 10 9 dyn / cm 2 (tensile)
And / or a film of said vapor phase synthetic diamond film
Ratio of thickness (t dia ) to film thickness (t Si ) for stress compensation
The gist is a mask membrane for electron beam and X-ray lithography (hereinafter, simply referred to as a mask membrane for X-ray lithography), which has a ratio of t dia / t Si ≧ 1.0 . In the above equation, t Si is
Silicon carbide film or silicon nitride film or charcoal for force correction
This is the film thickness of the silicon nitride film.

【0007】[0007]

【発明の実施の形態】以下に、これを図について詳述す
る。図1、図2は、本発明によるX線リソグラフィ用マ
スク基板の構造を示す断面模式図である。本発明におい
ては、従来、メンブレン6の主たる構成材料であった高
結晶性ダイヤモンド膜1の応力がメンブレン作製に不適
当な値である時、すなわち 0.0〜 5.0×109dyn/cm2の引
っ張り応力の範囲にない場合には、その補正のために、
ダイヤモンド膜1の片面もしくは両面に、適当な応力を
有する応力補正膜2を形成してメンブレン6を積層構造
とする。これによって、ダイヤモンド膜1と、該応力補
正膜2とからなる積層膜の引っ張り応力を 0.0〜 5.0×
109dyn/cm2に補正する。
DETAILED DESCRIPTION OF THE INVENTION This will be described in detail with reference to the drawings. 1 and 2 are schematic sectional views showing the structure of a mask substrate for X-ray lithography according to the present invention. In the present invention, when the stress of the highly crystalline diamond film 1, which has been the main constituent material of the membrane 6 in the past, is an unsuitable value for membrane production, that is, the tensile stress of 0.0 to 5.0 × 10 9 dyn / cm 2 If it is not within the range of,
The stress correction film 2 having an appropriate stress is formed on one side or both sides of the diamond film 1 to form the membrane 6 in a laminated structure. Thereby, the tensile stress of the laminated film composed of the diamond film 1 and the stress correction film 2 is 0.0 to 5.0 ×.
Correct to 10 9 dyn / cm 2 .

【0008】応力補正のための膜2は、図1、図2に示
すようにダイヤモンド膜のいずれの面に形成してもよい
し、両面に形成してもよい。また材料として SiC、SiN
、SiCN等が挙げられるが、なかでも機械的強度やSO
R光照射耐性に優れている点から SiC膜が好ましい。
The film 2 for stress compensation may be formed on either surface of the diamond film as shown in FIGS. 1 and 2, or may be formed on both surfaces. Also, as materials, SiC, SiN
, SiCN, etc., among which mechanical strength and SO
A SiC film is preferable because it has excellent resistance to R light irradiation.

【0009】以下 SiC膜についてさらに詳述する。SiC
は、ダイヤモンドに比べて応力コントロールが容易であ
り、ダイヤモンドに次ぐ機械的強度、SOR光照射耐性
を有するものの、可視光透過性はダイヤモンドに比べて
やや低い。そこでダイヤモンド膜厚tdia と SiC膜厚t
SiC とを、膜厚比tdia /tSiC≧1.0 の範囲でできる
限り薄くすることで、実用上充分な可視光透過性を得る
ことができる。tdia /tSiC は1.0 未満ではダイヤモ
ンドの優れた特性が充分に利用できず、所望する機械的
強度、SOR光照射耐性、可視光透過性が得られないと
いう問題があるので、1.0 以上である必要がある。また
dia /tSiC が2000を超えると、ダイヤモンドの応力
補正用の SiC膜に極めて高い応力が必要となり、そのよ
うな高い応力の SiCにはクラックが発生しやすくなると
いった問題がある。
The SiC film will be described in more detail below. SiC
Although it is easier to control stress than diamond and has mechanical strength and SOR light irradiation resistance second to diamond, visible light transmission is slightly lower than that of diamond. Therefore, diamond film thickness t dia and SiC film thickness t
By making SiC as thin as possible within the range of the film thickness ratio t dia / t SiC ≧ 1.0, it is possible to obtain practically sufficient visible light transmittance. If t dia / t SiC is less than 1.0, the excellent properties of diamond cannot be fully utilized, and there is a problem that desired mechanical strength, SOR light irradiation resistance, and visible light transmission cannot be obtained, so it is 1.0 or more. There is a need. Further, when t dia / t SiC exceeds 2000, a very high stress is required for the SiC film for diamond stress correction, and there is a problem that cracks easily occur in such a high stress SiC.

【0010】また、tdia は0.01μm未満では機械的強
度の問題があり、 100μmを超えるとX線吸収の問題が
あるため、0.01〜 100μmが好ましく、0.01〜10μmが
より好ましい。tSiC は0.01μm未満では応力補正効果
が少ない問題があり、 100μmを超えるとピンホール欠
陥の問題があるため、0.01〜 100μmが好ましく、0.01
〜10μmがより好ましい。SiC膜は、スパッター法や熱
CVD法等の公知の方法で製膜すればよい。
When t dia is less than 0.01 μm, there is a problem of mechanical strength, and when it exceeds 100 μm, there is a problem of X-ray absorption. Therefore, 0.01 to 100 μm is preferable, and 0.01 to 10 μm is more preferable. If tSiC is less than 0.01 μm, the stress correction effect is small, and if it exceeds 100 μm, there is a problem of pinhole defects.
˜10 μm is more preferred. The SiC film may be formed by a known method such as a sputtering method or a thermal CVD method.

【0011】[0011]

【実施例】次に、本発明の実施例について説明する。た
だし本発明はこれによって限定されるものではない。な
お、応力の測定はウェーハ曲率半径(wafer curveture)
法によって行った。実施例1図2に示す構造のX線リソ
グラフィ用マスク基板を作製する。支持基板3には直径
3インチで厚さ 600μmの両面研磨シリコンウェーハ
(100)を用いた。支持基板3上第1層目には、マイ
クロ波プラズマCVD法によって気相合成ダイヤモンド
膜1を形成する。まず、製膜前にダイヤモンドの核密度
を高くする目的で、支持基板3表面をダイヤモンド粒子
の流動層で処理した。ダイヤモンド粒子には粒径 400μ
mのものを用い、窒素ガスを流速 366cm/secで流して3
時間処理を行った。次に、この前処理済基板3をマイク
ロ波CVDチャンバー内にセットし、ロータリーポンプ
で10-3Torr以下のベースプレッシャーまで排気した後、
原料ガスである水素希釈メタン(0.5 容量%)を1000sc
cm導入した。排気系に通じるバルブの開口度を調節して
チャンバー内を30Torrにした後、電力3000Wのマイクロ
波を入力して20時間製膜を行った。製膜中の基板表面
は、パイロメータで測定したところ、850 ℃であった。
得られた膜厚は 1.5μmであり、膜応力は−5.0 ×109d
yn/cm2(圧縮)であった。このダイヤモンド膜はX線回
折及びラマン分光分析で評価した結果、高い結晶性を有
する多結晶ダイヤモンドであることが確認された。しか
しながら上記応力では、バックエッチングした場合にメ
ンブレンにしわが発生したり、さらにはメンブレンが壊
れたりしてしまい、メンブレン作製は不可能である。
EXAMPLES Next, examples of the present invention will be described. However, the present invention is not limited to this. Note that the stress is measured by the wafer curvature radius.
Done by law. Example 1 An X-ray lithography mask substrate having the structure shown in FIG. 2 is produced. A double-side polished silicon wafer (100) having a diameter of 3 inches and a thickness of 600 μm was used as the supporting substrate 3. On the first layer on the support substrate 3, the vapor phase synthetic diamond film 1 is formed by the microwave plasma CVD method. First, the surface of the supporting substrate 3 was treated with a fluidized bed of diamond particles for the purpose of increasing the nucleus density of diamond before film formation. 400μ for diamond particles
3m by flowing nitrogen gas at a flow rate of 366cm / sec.
Time processing was performed. Next, the pretreated substrate 3 is set in a microwave CVD chamber and evacuated to a base pressure of 10 −3 Torr or less by a rotary pump,
1000 sc of hydrogen diluted methane (0.5% by volume), which is the source gas
cm introduced. After adjusting the opening degree of the valve communicating with the exhaust system to 30 Torr in the chamber, microwaves with an electric power of 3000 W were input to perform film formation for 20 hours. The substrate surface during film formation was 850 ° C. as measured by a pyrometer.
The obtained film thickness is 1.5 μm, and the film stress is −5.0 × 10 9 d.
It was yn / cm 2 (compressed). As a result of evaluation by X-ray diffraction and Raman spectroscopy, this diamond film was confirmed to be polycrystalline diamond having high crystallinity. However, with the above-mentioned stress, when the back etching is performed, wrinkles are generated in the membrane, or the membrane is broken, so that the membrane cannot be manufactured.

【0012】そこで次に、第2層目に応力補正のための
SiC膜2を形成する。製膜には直径6インチ、厚さ5m
m、純度99.9%以上(C、O、Nを除く)の SiC焼結体
をターゲットとしたRF(13.56MHz)マグネトロンスパ
ッター法を用いた。ダイヤモンド膜を形成した基板を55
0 ℃に加熱し、ベースプレッシャーが1×10-7Torr以下
になるのを確認した後、アルゴンガスを10sccm導入し
た。排気系に通じるバルブの開口度を調節して8×10-3
Torrとした後、RF電力1600Wを入力して6分間製膜を
行った。得られた SiC膜は厚さ 0.3μm、応力が 3.1×
1010dyn/cm2 (引っ張り)であった。ダイヤモンド膜1
と SiC膜2との積層膜からなるメンブレン6は、厚さ
1.8μm、応力 1.6×109dyn/cm2(引っ張り)、膜厚比
dia /tSiC は5.0 となった。
Then, the second layer for stress compensation is
The SiC film 2 is formed. 6 inch diameter and 5 m thickness
An RF (13.56 MHz) magnetron sputtering method was used with a target of a SiC sintered body having m and a purity of 99.9% or more (excluding C, O, and N). 55 substrates with diamond film formed
After heating to 0 ° C. and confirming that the base pressure was 1 × 10 −7 Torr or less, argon gas was introduced at 10 sccm. Adjust the opening of the valve leading to the exhaust system to 8 x 10 -3
After setting to Torr, RF power of 1600 W was input and film formation was performed for 6 minutes. The obtained SiC film has a thickness of 0.3 μm and a stress of 3.1 ×
It was 10 10 dyn / cm 2 (pull). Diamond film 1
The thickness of the membrane 6 made of a laminated film of
The thickness was 1.8 μm, the stress was 1.6 × 10 9 dyn / cm 2 (tensile), and the film thickness ratio t dia / t SiC was 5.0.

【0013】最後に、シリコン基板3の裏面中央35mm角
以外の領域に、裏面保護膜4としてアモルファスBN膜を
形成した後、中央35mm角領域を裏面から95℃の KOH水溶
液でエッチングして図2に示すX線リソグラフィ用マス
ク基板を完成させた。このX線リソグラフィ用マスクメ
ンブレンの可視光透過率は41%(波長 633nm)であっ
た。さらにメンブレンにSOR光を100 MJ/cm3照射した
結果、全くSOR光照射によるダメージが認められず、
極めてSOR光照射性に優れたメンブレンであることが
確認できた(表1参照)。
Finally, after forming an amorphous BN film as the back surface protective film 4 on the area other than the central 35 mm square of the rear surface of the silicon substrate 3, the central 35 mm square area is etched from the rear surface with a KOH aqueous solution at 95 ° C. The mask substrate for X-ray lithography shown in (4) was completed. The visible light transmittance of this X-ray lithography mask membrane was 41% (wavelength 633 nm). Furthermore, as a result of irradiating the membrane with SOR light at 100 MJ / cm 3 , no damage due to SOR light irradiation was observed,
It was confirmed that the membrane was extremely excellent in SOR light irradiation (see Table 1).

【0014】比較例1 比較のために、 SiC膜を形成せず、かつダイヤモンド膜
の形成条件を、入力電力1000W、水素希釈メタン濃度
0.5容量%、製膜中基板温度 850℃とした以外は、実施
例1と同様にX線リソグラフィ用マスク基板を作製し、
メンブレンの特性を評価した。結果を実施例1の結果と
共に表1に併記する。
Comparative Example 1 For comparison, the conditions for forming a diamond film without forming a SiC film were as follows: input power 1000 W, hydrogen diluted methane concentration.
A mask substrate for X-ray lithography was prepared in the same manner as in Example 1 except that 0.5% by volume and the substrate temperature during film formation were 850 ° C.
The characteristics of the membrane were evaluated. The results are shown in Table 1 together with the results of Example 1.

【0015】比較例2 ダイヤモンド膜の形成条件を入力電力3000Wとした以外
は、比較例1と同様にX線リソグラフィ用マスク基板を
作製し、メンブレンの特性を評価した。結果を表1に併
記する。
Comparative Example 2 An X-ray lithography mask substrate was prepared in the same manner as in Comparative Example 1 except that the diamond film forming conditions were input power of 3000 W, and the characteristics of the membrane were evaluated. The results are also shown in Table 1.

【0016】比較例3 ダイヤモンド膜の形成条件を、入力電力3000W、製膜中
基板温度 950℃とした以外は、比較例1と同様にX線リ
ソグラフィ用マスク基板を作製し、メンブレンの特性を
評価した。結果を表1に併記する。
Comparative Example 3 An X-ray lithography mask substrate was prepared in the same manner as in Comparative Example 1 except that the diamond film formation conditions were an input power of 3000 W and a substrate temperature during film formation of 950 ° C., and the characteristics of the membrane were evaluated. did. The results are also shown in Table 1.

【0017】比較例4 ダイヤモンド膜の形成条件を、入力電力3000W、水素希
釈メタン濃度 2.0容量%とした以外は、比較例1と同様
にX線リソグラフィ用マスク基板を作製し、メンブレン
の特性を評価した。結果を表1に併記する。
Comparative Example 4 An X-ray lithography mask substrate was prepared in the same manner as in Comparative Example 1 except that the diamond film formation conditions were an input power of 3000 W and a hydrogen diluted methane concentration of 2.0% by volume, and the characteristics of the membrane were evaluated. did. The results are also shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】表1から、比較例からは上記膜応力と結晶
性とを同時に満足するものは得られなかったことがわか
る。すなわち、比較例1〜3は膜応力が不適格であり、
一方比較例4はメンブレンが作製できる膜応力を有する
ものの、結晶性に劣る。
It can be seen from Table 1 that none of the comparative examples satisfy both the film stress and the crystallinity at the same time. That is, Comparative Examples 1 to 3 are not suitable for film stress,
On the other hand, Comparative Example 4 has a film stress capable of producing a membrane, but has poor crystallinity.

【0020】[0020]

【発明の効果】本発明によれば、ダイヤモンドと SiC
またはSiN あるいはSiCNとの積層膜からなるメンブレン
は、ダイヤモンドとほぼ同程度の機械的強度、SOR光
照射耐性、可視光透過性における性能を有する。さらに
応力補正については、 SiCまたはSiN あるいはSiCNによ
ってメンブレンの応力は高精度にコントロールできるこ
とになる。
According to the present invention, and the diamond, SiC
Alternatively , a membrane composed of a laminated film of SiN or SiCN has mechanical strength, resistance to SOR light irradiation, and visible light transmission that are almost the same as diamond. Furthermore, for stress compensation, the stress of the membrane can be controlled with high precision using SiC, SiN, or SiCN .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるX線リソグラフィ用マスク基板の
一例の構造を示す断面模式図である。
FIG. 1 is a schematic sectional view showing the structure of an example of a mask substrate for X-ray lithography according to the present invention.

【図2】本発明によるX線リソグラフィ用マスク基板の
別の一例の構造を示す断面模式図である。
FIG. 2 is a schematic sectional view showing the structure of another example of the mask substrate for X-ray lithography according to the present invention.

【図3】従来のX線リソグラフィ用マスク基板の構造を
示す断面模式図である。
FIG. 3 is a schematic sectional view showing a structure of a conventional mask substrate for X-ray lithography.

【符号の説明】[Explanation of symbols]

1‥‥ ダイヤモンド膜 2‥‥ SiC 膜(応力補正膜) 3、13‥ 支持基板 4、14‥ 裏面保護膜 5、15‥ 吸収体パターン 6‥‥ メンブレン(積層膜) 16‥‥ メンブレン(ダイヤモンド膜) 1 ... Diamond film 2 SiC film (stress correction film) 3, 13 ... Supporting substrate 4, 14 ... Backside protective film 5, 15 ... Absorber pattern 6 Membrane (laminated film) 16: Membrane (diamond film)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−338628(JP,A) 特開 平7−74078(JP,A) 特開 平7−99154(JP,A) 特開 平8−54726(JP,A) 特開 平8−250392(JP,A) 特開 昭61−32425(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 G03F 1/16 G03F 7/20 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-4-338628 (JP, A) JP-A-7-74078 (JP, A) JP-A-7-99154 (JP, A) JP-A-8- 54726 (JP, A) JP-A 8-250392 (JP, A) JP-A 61-32425 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 21/027 G03F 1 / 16 G03F 7/20

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 気相合成ダイヤモンド膜の片面もしくは
両面に応力補正のための膜を形成した積層構造から
り、該応力補正のための膜が炭化珪素または窒化珪素あ
るいは炭化窒化珪素からなるマスクメンブレンであっ
て、前記積層構造からなる積層膜の応力が 0.0〜 5.0×
10 9 dyn/cm 2 (引っ張り)であることを特徴とする電子線
およびX線リソグラフィ用マスクメンブレン。
1. A ne from the membrane formed was laminated structure for one or both surfaces to stress correction of CVD diamond films
The film for the stress correction is made of silicon carbide or silicon nitride.
It is a mask membrane made of silicon carbide nitride.
The stress of the laminated film having the above laminated structure is 0.0 to 5.0 ×
A mask membrane for electron beam and X-ray lithography, which is 10 9 dyn / cm 2 (pull) .
【請求項2】 気相合成ダイヤモンド膜の片面もしくは
両面に応力補正のための膜を形成した積層構造からな
り、該応力補正のための膜が炭化珪素または窒化珪素あ
るいは炭化窒化珪素からなるマスクメンブレンであっ
て、前記気相合成ダイヤモンド膜の膜厚(t dia )と応
力補正のための膜厚(t Si )との比率がt dia /t Si
≧1.0 であることを特徴とする電子線およびX線リソグ
ラフィ用マスクメンブレン。
2. One side of a vapor phase synthetic diamond film or
It consists of a laminated structure with a film for stress compensation on both sides.
Ri, a mask membrane made of a film of silicon carbide or silicon nitride, or carbide of silicon nitride for the stress compensation
And the film thickness (t dia ) of the vapor phase synthetic diamond film
The ratio with the film thickness (t Si ) for force correction is t dia / t Si
A mask membrane for electron beam and X-ray lithography, wherein ≧ 1.0 .
【請求項3】 気相合成ダイヤモンド膜の片面もしくは
両面に応力補正のための膜を形成した積層構造からな
り、該応力補正のための膜が炭化珪素または窒化珪素あ
るいは炭化窒化珪素からなるマスクメンブレンであっ
て、前記積層構造からなる積層膜の応力が 0.0〜 5.0×
10 9 dyn/cm 2 (引っ張り)であり、前記気相合成ダイヤモ
ンド膜の膜厚(t dia )と応力補正のための膜厚(t Si
)との比率がt dia /t Si ≧1.0であることを特徴と
する電子線およびX線リソグラフィ用マスクメンブレ
ン。
3. One side of a vapor phase synthetic diamond film or
It consists of a laminated structure with a film for stress compensation on both sides.
The film for the stress correction is made of silicon carbide or silicon nitride.
It is a mask membrane made of silicon carbide nitride.
The stress of the laminated film having the above laminated structure is 0.0 to 5.0 ×
10 9 dyn / cm 2 (pull), and the vapor phase synthetic diamond
Film thickness (t dia ) and film thickness for stress correction (t Si
) And the ratio t dia / t Si ≧ 1.0
A mask membrane for electron beam and X-ray lithography.
JP29622296A 1996-11-08 1996-11-08 Mask membrane for electron beam and X-ray lithography Expired - Fee Related JP3437389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29622296A JP3437389B2 (en) 1996-11-08 1996-11-08 Mask membrane for electron beam and X-ray lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29622296A JP3437389B2 (en) 1996-11-08 1996-11-08 Mask membrane for electron beam and X-ray lithography

Publications (2)

Publication Number Publication Date
JPH10144584A JPH10144584A (en) 1998-05-29
JP3437389B2 true JP3437389B2 (en) 2003-08-18

Family

ID=17830767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29622296A Expired - Fee Related JP3437389B2 (en) 1996-11-08 1996-11-08 Mask membrane for electron beam and X-ray lithography

Country Status (1)

Country Link
JP (1) JP3437389B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352803B1 (en) 1999-06-07 2002-03-05 The Regents Of The University Of California Coatings on reflective mask substrates
KR100392191B1 (en) * 2001-04-30 2003-07-22 학교법인 한양학원 Method for manufacturing mask membrane
JP6787851B2 (en) * 2017-08-08 2020-11-18 エア・ウォーター株式会社 Pellicle and method of manufacturing pellicle

Also Published As

Publication number Publication date
JPH10144584A (en) 1998-05-29

Similar Documents

Publication Publication Date Title
JPH0334312A (en) Manufacture of x-ray mask and internal stress controller for thin film
JPH07294700A (en) X-ray window
WO2006048957A1 (en) Single-crystal diamond
EP0473332B1 (en) X-Ray lithography mask and method for producing same
JP3437389B2 (en) Mask membrane for electron beam and X-ray lithography
JP2534406B2 (en) Method for producing silicon carbide film
EP0371145B1 (en) Process for vapor-phase synthesis of diamond
EP0332130B1 (en) X-ray exposure masks
JP3866912B2 (en) Lithographic mask substrate and method of manufacturing the same
US6875708B2 (en) Method of producing diamond film and diamond film produced thereby
Vargheese et al. Ion-assisted deposition of silicon nitride films using electron cyclotron resonance plasma
JP3360269B2 (en) Diamond film for X-ray lithography and method for producing the same
US5335256A (en) Semiconductor substrate including a single or multi-layer film having different densities in the thickness direction
JPH0712017B2 (en) SiC / Si for X-ray lithography Lower 3 Lower N 4 Film forming method
JP3305458B2 (en) X-ray lithography mask
JPH10172884A (en) Mask membrane for x-ray lithography and its manufacture
US6979520B2 (en) Stencil mask for ion implantation
JP3124422B2 (en) Method of forming highly oriented diamond thin film
TW414957B (en) X-ray mask and method of fabricating the same
US5246802A (en) X-ray permeable membrane for X-ray lithographic mask
JP4768967B2 (en) Stencil mask for ion implantation and manufacturing method thereof
JPH06262525A (en) Grinding wheel and its manufacture
US6413681B1 (en) Diamond film for x-ray lithography and making method
JPH0715880B2 (en) SiC film for X-ray lithography, its manufacturing method and mask for X-ray lithography
JP3127037B2 (en) X-ray mask support, X-ray mask structure, and X-ray exposure method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees