JPH10144584A - Mask membrane for x-ray lithography - Google Patents

Mask membrane for x-ray lithography

Info

Publication number
JPH10144584A
JPH10144584A JP29622296A JP29622296A JPH10144584A JP H10144584 A JPH10144584 A JP H10144584A JP 29622296 A JP29622296 A JP 29622296A JP 29622296 A JP29622296 A JP 29622296A JP H10144584 A JPH10144584 A JP H10144584A
Authority
JP
Japan
Prior art keywords
film
stress
diamond
membrane
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29622296A
Other languages
Japanese (ja)
Other versions
JP3437389B2 (en
Inventor
Hitoshi Noguchi
仁 野口
Yasuyuki Takarada
恭之 寳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP29622296A priority Critical patent/JP3437389B2/en
Publication of JPH10144584A publication Critical patent/JPH10144584A/en
Application granted granted Critical
Publication of JP3437389B2 publication Critical patent/JP3437389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To satisfy two characteristics, i.e., high crystallinity and appropriate stress of film, simultaneously by employing a multilayer structure where a stress correction film is formed on one or both sides of a diamond film formed through vapor phase synthesis. SOLUTION: A stress correction film 2 having an appropriate stress is formed on one side of a diamond film 1 to obtain a membrane 6 having multilayer structure. Tensile stress of the multilayer film 6 comprising the diamond film 1 and the stress correction film 2 is corrected to 0.0-5.0×10<9> dyn/cm<2> . The stress correction film 2 may be formed on any or both surfaces of the diamond film 1. SiC, SiN or SiCN is employed as a material. The diamond film 1 and the stress correction film 2 have thickness tdia , tsic in the range of tdia /tsic >=1.0 and they are formed as thin as possible. According to the arrangement, mechanical strength and SOR light irradiation resistance substantially equivalent to those of diamond are ensured while having a visible light transmissive performance and an appropriate stress.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、X線リソグラフィ
用マスクメンブレンに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mask membrane for X-ray lithography.

【0002】[0002]

【従来の技術】半導体デバイス作製におけるパターン形
成の微細化に伴い、将来のリソグラフィ技術としてX線
リソグラフィ技術が有望視されている。一般的なX線リ
ソグラフィ用マスク基板の構造を図3に示す。図3のマ
スク基板は、吸収体パターン15、X線透過膜(以下、
メンブレンと記す)16、支持基板13、裏面保護膜1
4よりなるものである。
2. Description of the Related Art Along with miniaturization of pattern formation in semiconductor device fabrication, X-ray lithography technology is expected to be a promising lithography technology in the future. FIG. 3 shows the structure of a general mask substrate for X-ray lithography. The mask substrate of FIG. 3 includes an absorber pattern 15 and an X-ray transmission film (hereinafter, referred to as an X-ray transmission film).
16, support substrate 13, back surface protective film 1)
4

【0003】ここでメンブレンに要求される特性を以下
に示す。 1)機械的強度が高いこと。 2)高エネルギー電子線やシンクロトロン放射光(以
下、SOR光と略記する)のような高エネルギービーム
の照射に耐えること。 3)高精度なアライメントに必要な可視光透過性が高い
こと。 従来、X線リソグラフィ用マスクメンブレン材料として
は、窒化硼素(BN)、ボロンドープシリコン、窒化珪
素(SiN)、炭化珪素(SiC)、炭化窒化珪素(S
iCN)、ダイヤモンド等が提案されている。なかでも
結晶性の高いダイヤモンドは1)〜3)の特性に優れる
事から、X線リソグラフィ用マスクメンブレン材料とし
て最適と考えられる。
Here, the characteristics required for the membrane are shown below. 1) High mechanical strength. 2) Withstand irradiation of a high energy beam such as a high energy electron beam or synchrotron radiation (hereinafter abbreviated as SOR light). 3) High visible light transmittance required for high-precision alignment. Conventionally, mask membrane materials for X-ray lithography include boron nitride (BN), boron-doped silicon, silicon nitride (SiN), silicon carbide (SiC), and silicon carbonitride (S
iCN), diamond and the like have been proposed. Above all, diamond having high crystallinity is considered to be most suitable as a mask membrane material for X-ray lithography because it has excellent characteristics 1) to 3).

【0004】一方、メンブレンはX線の吸収を最小限に
抑えるために、1〜2μm厚の自立膜である必要があ
る。したがってメンブレン作製のためには、メンブレン
の膜応力が 0.0〜 5.0×109dyn/cm2(引っ張り)でなけ
ればならないことが知られている。
On the other hand, the membrane needs to be a free-standing film having a thickness of 1 to 2 μm in order to minimize the absorption of X-rays. Therefore, it is known that in order to produce a membrane, the membrane stress of the membrane must be 0.0 to 5.0 × 10 9 dyn / cm 2 (tensile).

【0005】[0005]

【発明が解決しようとする課題】通常、ダイヤモンドの
製膜方法としては、1)DC、アーク放電、2)DC、
グロー放電、3)燃焼炎、4)高周波(13.56MHz)、
5)マイクロ波(2.45 GHz)、6)熱フィラメント等が
挙げられる。しかしながら、これらの製膜方法では、い
ずれもプラズマを利用していることから、多くの製膜パ
ラメータがプラズマ状態に互いに関係し合うため、所望
の膜を作製するのに必要なプラズマを得ることが困難で
ある。特に機械的強度、SOR光照射耐性、可視光透過
性を高めるための高い結晶性と、メンブレン作製のため
の膜応力との、二つの特性を同時に満足させることは極
めて困難であった。
Generally, diamond film forming methods include 1) DC, arc discharge, 2) DC,
Glow discharge, 3) combustion flame, 4) high frequency (13.56 MHz),
5) microwave (2.45 GHz); 6) hot filament. However, since all of these film forming methods use plasma, many film forming parameters are related to each other in the plasma state, so that it is possible to obtain plasma necessary for forming a desired film. Have difficulty. In particular, it has been extremely difficult to simultaneously satisfy the two characteristics of high crystallinity for enhancing mechanical strength, SOR light irradiation resistance, and visible light transmittance, and film stress for fabricating a membrane.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記問題点
に鑑み、鋭意検討を重ねた結果、気相合成ダイヤモンド
膜を主たるメンブレンの構成材料として、その片面もし
くは両面に応力補正のための膜を形成して積層構造とす
ることにより、上記の二特性を同時に満足できることに
着目し、本発明を完成させた。すなわち本発明は、気相
合成ダイヤモンド膜の片面もしくは両面に応力補正のた
めの膜を形成した積層構造からなるX線リソグラフィ用
マスクメンブレンを要旨とするものである。
Means for Solving the Problems In view of the above problems, the present inventors have made intensive studies and as a result, have found that a gas-phase synthetic diamond film is used as a main constituent material of a membrane for correcting stress on one or both surfaces. By focusing on the fact that the above two characteristics can be simultaneously satisfied by forming a film to form a laminated structure, the present invention has been completed. That is, the gist of the present invention is a mask membrane for X-ray lithography having a laminated structure in which a film for stress correction is formed on one or both surfaces of a vapor-phase synthetic diamond film.

【0007】[0007]

【発明の実施の形態】以下に、これを図について詳述す
る。図1、図2は、本発明によるX線リソグラフィ用マ
スク基板の構造を示す断面模式図である。本発明におい
ては、従来、メンブレン6の主たる構成材料であった高
結晶性ダイヤモンド膜1の応力がメンブレン作製に不適
当な値である時、すなわち 0.0〜 5.0×109dyn/cm2の引
っ張り応力の範囲にない場合には、その補正のために、
ダイヤモンド膜1の片面もしくは両面に、適当な応力を
有する応力補正膜2を形成してメンブレン6を積層構造
とする。これによって、ダイヤモンド膜1と、該応力補
正膜2とからなる積層膜の引っ張り応力を 0.0〜 5.0×
109dyn/cm2に補正する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 and 2 are cross-sectional schematic views showing the structure of a mask substrate for X-ray lithography according to the present invention. In the present invention, when the stress of the highly crystalline diamond film 1, which has conventionally been the main constituent material of the membrane 6, is an inappropriate value for fabricating the membrane, that is, a tensile stress of 0.0 to 5.0 × 10 9 dyn / cm 2 . If it is not within the range,
A stress correction film 2 having an appropriate stress is formed on one or both surfaces of the diamond film 1 to form a membrane 6 having a laminated structure. Thereby, the tensile stress of the laminated film composed of the diamond film 1 and the stress correction film 2 is reduced by 0.0 to 5.0 ×
Correct to 10 9 dyn / cm 2 .

【0008】応力補正のための膜2は、図1、図2に示
すようにダイヤモンド膜のいずれの面に形成してもよい
し、両面に形成してもよい。また材料として SiC、SiN
、SiCN等が挙げられるが、なかでも機械的強度やSO
R光照射耐性に優れている点から SiC膜が好ましい。
The film 2 for stress correction may be formed on any surface of the diamond film as shown in FIGS. 1 and 2, or may be formed on both surfaces. In addition, SiC, SiN
, SiCN, etc., among which mechanical strength and SO
A SiC film is preferred because it has excellent resistance to R light irradiation.

【0009】以下 SiC膜についてさらに詳述する。SiC
は、ダイヤモンドに比べて応力コントロールが容易であ
り、ダイヤモンドに次ぐ機械的強度、SOR光照射耐性
を有するものの、可視光透過性はダイヤモンドに比べて
やや低い。そこでダイヤモンド膜厚tdia と SiC膜厚t
SiC とを、膜厚比tdia /tSiC≧1.0 の範囲でできる
限り薄くすることで、実用上充分な可視光透過性を得る
ことができる。tdia /tSiC は1.0 未満ではダイヤモ
ンドの優れた特性が充分に利用できず、所望する機械的
強度、SOR光照射耐性、可視光透過性が得られないと
いう問題があるので、1.0 以上である必要がある。また
dia /tSiC が2000を超えると、ダイヤモンドの応力
補正用の SiC膜に極めて高い応力が必要となり、そのよ
うな高い応力の SiCにはクラックが発生しやすくなると
いった問題がある。
Hereinafter, the SiC film will be described in more detail. SiC
Is easier to control the stress than diamond and has mechanical strength and resistance to SOR light irradiation next to diamond, but has slightly lower visible light transmittance than diamond. Therefore, diamond film thickness t dia and SiC film thickness t
By making the thickness of SiC as thin as possible in the range of the film thickness ratio t dia / t SiC ≧ 1.0, practically sufficient visible light transmittance can be obtained. If t dia / t SiC is less than 1.0, the excellent properties of diamond cannot be sufficiently utilized, and there is a problem that desired mechanical strength, SOR light irradiation resistance, and visible light transmittance cannot be obtained. There is a need. If t dia / t SiC exceeds 2000, extremely high stress is required for the SiC film for stress correction of diamond, and there is a problem that cracks are easily generated in SiC having such a high stress.

【0010】また、tdia は0.01μm未満では機械的強
度の問題があり、 100μmを超えるとX線吸収の問題が
あるため、0.01〜 100μmが好ましく、0.01〜10μmが
より好ましい。tSiC は0.01μm未満では応力補正効果
が少ない問題があり、 100μmを超えるとピンホール欠
陥の問題があるため、0.01〜 100μmが好ましく、0.01
〜10μmがより好ましい。SiC膜は、スパッター法や熱
CVD法等の公知の方法で製膜すればよい。
If t dia is less than 0.01 μm, there is a problem of mechanical strength, and if t dia exceeds 100 μm, there is a problem of X-ray absorption. Therefore, t dia is preferably 0.01 to 100 μm, more preferably 0.01 to 10 μm. If t SiC is less than 0.01 μm, there is a problem that the stress correction effect is small, and if it exceeds 100 μm, there is a problem of pinhole defects. Therefore, 0.01 to 100 μm is preferable.
1010 μm is more preferred. The SiC film may be formed by a known method such as a sputtering method or a thermal CVD method.

【0011】[0011]

【実施例】次に、本発明の実施例について説明する。た
だし本発明はこれによって限定されるものではない。な
お、応力の測定はウェーハ曲率半径(wafer curveture)
法によって行った。 実施例1 図2に示す構造のX線リソグラフィ用マスク基板を作製
する。支持基板3には直径3インチで厚さ 600μmの両
面研磨シリコンウェーハ(100)を用いた。支持基板
3上第1層目には、マイクロ波プラズマCVD法によっ
て気相合成ダイヤモンド膜1を形成する。まず、製膜前
にダイヤモンドの核密度を高くする目的で、支持基板3
表面をダイヤモンド粒子の流動層で処理した。ダイヤモ
ンド粒子には粒径 400μmのものを用い、窒素ガスを流
速 366cm/secで流して3時間処理を行った。次に、この
前処理済基板3をマイクロ波CVDチャンバー内にセッ
トし、ロータリーポンプで10-3Torr以下のベースプレッ
シャーまで排気した後、原料ガスである水素希釈メタン
(0.5 容量%)を1000sccm導入した。排気系に通じるバ
ルブの開口度を調節してチャンバー内を30Torrにした
後、電力3000Wのマイクロ波を入力して20時間製膜を行
った。製膜中の基板表面は、パイロメータで測定したと
ころ、850 ℃であった。得られた膜厚は 1.5μmであ
り、膜応力は−5.0 ×109dyn/cm2(圧縮)であった。こ
のダイヤモンド膜はX線回折及びラマン分光分析で評価
した結果、高い結晶性を有する多結晶ダイヤモンドであ
ることが確認された。しかしながら上記応力では、バッ
クエッチングした場合にメンブレンにしわが発生した
り、さらにはメンブレンが壊れたりしてしまい、メンブ
レン作製は不可能である。
Next, an embodiment of the present invention will be described. However, the present invention is not limited by this. The measurement of stress is based on the wafer curvature radius.
Performed by law. Example 1 A mask substrate for X-ray lithography having a structure shown in FIG. 2 is manufactured. As the support substrate 3, a double-side polished silicon wafer (100) having a diameter of 3 inches and a thickness of 600 μm was used. On the first layer on the support substrate 3, a vapor-phase synthetic diamond film 1 is formed by a microwave plasma CVD method. First, in order to increase the nucleus density of diamond before film formation, the supporting substrate 3
The surface was treated with a fluidized bed of diamond particles. Diamond particles having a diameter of 400 μm were used, and the treatment was performed for 3 hours by flowing nitrogen gas at a flow rate of 366 cm / sec. Next, the pre-processed substrate 3 is set in a microwave CVD chamber, evacuated to a base pressure of 10 -3 Torr or less by a rotary pump, and then hydrogen-diluted methane (0.5% by volume) as a raw material gas is introduced at 1000 sccm. did. After adjusting the opening degree of a valve connected to the exhaust system to 30 Torr inside the chamber, a microwave of 3000 W power was input to perform film formation for 20 hours. The substrate surface during the film formation was 850 ° C. as measured with a pyrometer. The obtained film thickness was 1.5 μm, and the film stress was −5.0 × 10 9 dyn / cm 2 (compression). The diamond film was evaluated by X-ray diffraction and Raman spectroscopy, and as a result, was confirmed to be polycrystalline diamond having high crystallinity. However, with the above stress, wrinkles are generated in the membrane when back etching is performed, and further the membrane is broken, and it is impossible to fabricate the membrane.

【0012】そこで次に、第2層目に応力補正のための
SiC膜2を形成する。製膜には直径6インチ、厚さ5m
m、純度99.9%以上(C、O、Nを除く)の SiC焼結体
をターゲットとしたRF(13.56MHz)マグネトロンスパ
ッター法を用いた。ダイヤモンド膜を形成した基板を55
0 ℃に加熱し、ベースプレッシャーが1×10-7Torr以下
になるのを確認した後、アルゴンガスを10sccm導入し
た。排気系に通じるバルブの開口度を調節して8×10-3
Torrとした後、RF電力1600Wを入力して6分間製膜を
行った。得られた SiC膜は厚さ 0.3μm、応力が 3.1×
1010dyn/cm2 (引っ張り)であった。ダイヤモンド膜1
と SiC膜2との積層膜からなるメンブレン6は、厚さ
1.8μm、応力 1.6×109dyn/cm2(引っ張り)、膜厚比
dia /tSiC は5.0 となった。
Then, a second layer for stress correction is provided.
The SiC film 2 is formed. 6 inch diameter, 5m thick for film formation
An RF (13.56 MHz) magnetron sputtering method using a SiC sintered body having a m and a purity of 99.9% or more (excluding C, O, and N) was used. 55 substrates with diamond film
After heating to 0 ° C. and confirming that the base pressure was 1 × 10 −7 Torr or less, 10 sccm of argon gas was introduced. 8 × 10 -3 by adjusting the opening of the valve to the exhaust system
After the pressure was set to Torr, an RF power of 1600 W was input and a film was formed for 6 minutes. The resulting SiC film has a thickness of 0.3 μm and a stress of 3.1 ×
It was 10 10 dyn / cm 2 (tensile). Diamond film 1
Membrane 6 composed of a laminated film of SiC film 2 and SiC film 2 has a thickness of
1.8 μm, stress 1.6 × 10 9 dyn / cm 2 (tensile), and film thickness ratio t dia / t SiC was 5.0.

【0013】最後に、シリコン基板3の裏面中央35mm角
以外の領域に、裏面保護膜4としてアモルファスBN膜を
形成した後、中央35mm角領域を裏面から95℃の KOH水溶
液でエッチングして図2に示すX線リソグラフィ用マス
ク基板を完成させた。このX線リソグラフィ用マスクメ
ンブレンの可視光透過率は41%(波長 633nm)であっ
た。さらにメンブレンにSOR光を100 MJ/cm3照射した
結果、全くSOR光照射によるダメージが認められず、
極めてSOR光照射性に優れたメンブレンであることが
確認できた(表1参照)。
Finally, an amorphous BN film is formed as a back surface protective film 4 in a region other than the 35 mm square at the center of the back surface of the silicon substrate 3, and then the 35 mm square region at the center is etched from the back surface with a 95 ° C. KOH aqueous solution. Was completed. The visible light transmittance of the X-ray lithography mask membrane was 41% (wavelength: 633 nm). Further, as a result of irradiating the membrane with SOR light at 100 MJ / cm 3 , no damage due to the SOR light irradiation was observed,
It was confirmed that the membrane was extremely excellent in SOR light irradiation property (see Table 1).

【0014】比較例1 比較のために、 SiC膜を形成せず、かつダイヤモンド膜
の形成条件を、入力電力1000W、水素希釈メタン濃度
0.5容量%、製膜中基板温度 850℃とした以外は、実施
例1と同様にX線リソグラフィ用マスク基板を作製し、
メンブレンの特性を評価した。結果を実施例1の結果と
共に表1に併記する。
Comparative Example 1 For comparison, the conditions for forming a diamond film without forming a SiC film were as follows: an input power of 1000 W and a hydrogen-diluted methane concentration.
A mask substrate for X-ray lithography was prepared in the same manner as in Example 1 except that 0.5% by volume and the substrate temperature during film formation were 850 ° C.
The properties of the membrane were evaluated. The results are shown in Table 1 together with the results of Example 1.

【0015】比較例2 ダイヤモンド膜の形成条件を入力電力3000Wとした以外
は、比較例1と同様にX線リソグラフィ用マスク基板を
作製し、メンブレンの特性を評価した。結果を表1に併
記する。
Comparative Example 2 A mask substrate for X-ray lithography was prepared and the characteristics of the membrane were evaluated in the same manner as in Comparative Example 1 except that the formation conditions of the diamond film were changed to an input power of 3000 W. The results are also shown in Table 1.

【0016】比較例3 ダイヤモンド膜の形成条件を、入力電力3000W、製膜中
基板温度 950℃とした以外は、比較例1と同様にX線リ
ソグラフィ用マスク基板を作製し、メンブレンの特性を
評価した。結果を表1に併記する。
Comparative Example 3 A mask substrate for X-ray lithography was prepared in the same manner as in Comparative Example 1 except that the conditions for forming the diamond film were set at an input power of 3000 W and a substrate temperature during film formation of 950 ° C., and the characteristics of the membrane were evaluated. did. The results are also shown in Table 1.

【0017】比較例4 ダイヤモンド膜の形成条件を、入力電力3000W、水素希
釈メタン濃度 2.0容量%とした以外は、比較例1と同様
にX線リソグラフィ用マスク基板を作製し、メンブレン
の特性を評価した。結果を表1に併記する。
Comparative Example 4 A mask substrate for X-ray lithography was prepared in the same manner as in Comparative Example 1 except that the conditions for forming the diamond film were set to an input power of 3000 W and a hydrogen-diluted methane concentration of 2.0 vol%, and the characteristics of the membrane were evaluated. did. The results are also shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】表1から、比較例からは上記膜応力と結晶
性とを同時に満足するものは得られなかったことがわか
る。すなわち、比較例1〜3は膜応力が不適格であり、
一方比較例4はメンブレンが作製できる膜応力を有する
ものの、結晶性に劣る。
From Table 1, it can be seen that a film satisfying the above film stress and crystallinity at the same time was not obtained from the comparative example. That is, Comparative Examples 1 to 3 are unsuitable for film stress,
On the other hand, Comparative Example 4 has a film stress capable of producing a membrane, but is inferior in crystallinity.

【0020】[0020]

【発明の効果】本発明によれば、ダイヤモンドと SiCと
の積層膜からなるメンブレンは、ダイヤモンドとほぼ同
程度の機械的強度、SOR光照射耐性、可視光透過性に
おける性能を有する。さらに応力補正については、 SiC
によってメンブレンの応力は高精度にコントロールでき
ることになる。
According to the present invention, a membrane composed of a laminated film of diamond and SiC has substantially the same mechanical strength, resistance to SOR light irradiation, and visible light transmittance as diamond. For stress compensation, see SiC
Thereby, the stress of the membrane can be controlled with high precision.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるX線リソグラフィ用マスク基板の
一例の構造を示す断面模式図である。
FIG. 1 is a schematic sectional view showing the structure of an example of a mask substrate for X-ray lithography according to the present invention.

【図2】本発明によるX線リソグラフィ用マスク基板の
別の一例の構造を示す断面模式図である。
FIG. 2 is a schematic sectional view showing the structure of another example of the mask substrate for X-ray lithography according to the present invention.

【図3】従来のX線リソグラフィ用マスク基板の構造を
示す断面模式図である。
FIG. 3 is a schematic sectional view showing a structure of a conventional mask substrate for X-ray lithography.

【符号の説明】[Explanation of symbols]

1‥‥ ダイヤモンド膜 2‥‥ SiC 膜(応力補正膜) 3、13‥ 支持基板 4、14‥ 裏面保護膜 5、15‥ 吸収体パターン 6‥‥ メンブレン(積層膜) 16‥‥ メンブレン(ダイヤモンド膜) 1 diamond film 2 SiC film (stress correction film) 3, 13 support substrate 4, 14 back protective film 5, 15 absorber pattern 6 membrane (laminated film) 16 membrane (diamond film) )

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 気相合成ダイヤモンド膜の片面もしくは
両面に応力補正のための膜を形成した積層構造からなる
ことを特徴とするX線リソグラフィ用マスクメンブレ
ン。
1. A mask membrane for X-ray lithography comprising a laminated structure in which a film for stress correction is formed on one or both surfaces of a vapor-phase synthetic diamond film.
【請求項2】 請求項1に記載の応力補正のための膜が
炭化珪素であるX線リソグラフィ用マスクメンブレン。
2. A mask membrane for X-ray lithography, wherein the film for stress correction according to claim 1 is silicon carbide.
【請求項3】 請求項1または2に記載の気相合成ダイ
ヤモンド膜と、応力補正のための膜とで構成された積層
膜の応力が 0.0〜 5.0×109dyn/cm2(引っ張り)である
X線リソグラフィ用マスクメンブレン。
3. A laminated film comprising the vapor-phase synthetic diamond film according to claim 1 and a film for correcting stress has a stress of 0.0 to 5.0 × 10 9 dyn / cm 2 (tensile). A mask membrane for X-ray lithography.
【請求項4】 請求項2または3に記載の積層膜の構成
材料である気相合成ダイヤモンドの膜厚(tdia )と炭
化珪素の膜厚(tSiC )との比率が、tdia/tSiC
1.0 であるX線リソグラフィ用マスクメンブレン。
4. The ratio of the thickness (t dia ) of the vapor-phase synthetic diamond, which is a constituent material of the laminated film according to claim 2 to the thickness (t SiC ) of silicon carbide, is t dia / t. SiC
1.0 x-ray lithography mask membrane.
JP29622296A 1996-11-08 1996-11-08 Mask membrane for electron beam and X-ray lithography Expired - Fee Related JP3437389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29622296A JP3437389B2 (en) 1996-11-08 1996-11-08 Mask membrane for electron beam and X-ray lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29622296A JP3437389B2 (en) 1996-11-08 1996-11-08 Mask membrane for electron beam and X-ray lithography

Publications (2)

Publication Number Publication Date
JPH10144584A true JPH10144584A (en) 1998-05-29
JP3437389B2 JP3437389B2 (en) 2003-08-18

Family

ID=17830767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29622296A Expired - Fee Related JP3437389B2 (en) 1996-11-08 1996-11-08 Mask membrane for electron beam and X-ray lithography

Country Status (1)

Country Link
JP (1) JP3437389B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075727A2 (en) * 1999-06-07 2000-12-14 The Regents Of The University Of California Coatings on reflective mask substrates
KR100392191B1 (en) * 2001-04-30 2003-07-22 학교법인 한양학원 Method for manufacturing mask membrane
KR20200033337A (en) * 2017-08-08 2020-03-27 에어 워터 가부시키가이샤 Pelicle and a method of manufacturing the pellicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075727A2 (en) * 1999-06-07 2000-12-14 The Regents Of The University Of California Coatings on reflective mask substrates
WO2000075727A3 (en) * 1999-06-07 2001-05-17 Univ California Coatings on reflective mask substrates
US6352803B1 (en) 1999-06-07 2002-03-05 The Regents Of The University Of California Coatings on reflective mask substrates
JP2003501823A (en) * 1999-06-07 2003-01-14 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Reflective mask substrate coating
KR100805360B1 (en) * 1999-06-07 2008-02-20 더 리전트 오브 더 유니버시티 오브 캘리포니아 Coatings on reflective mask substrates
KR100392191B1 (en) * 2001-04-30 2003-07-22 학교법인 한양학원 Method for manufacturing mask membrane
KR20200033337A (en) * 2017-08-08 2020-03-27 에어 워터 가부시키가이샤 Pelicle and a method of manufacturing the pellicle

Also Published As

Publication number Publication date
JP3437389B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
TWI787234B (en) Base substrate for diamond film formation, and method for manufacturing diamond substrate using same
KR100358314B1 (en) A Rigid Carbon Film and A Substrate for Surface Acoustic Wave Device Coated Therewith
WO2006048957A1 (en) Single-crystal diamond
EP0473332B1 (en) X-Ray lithography mask and method for producing same
JPH10144584A (en) Mask membrane for x-ray lithography
JPH04341565A (en) Manufacture of silicon carbide film
JP3866912B2 (en) Lithographic mask substrate and method of manufacturing the same
JP3296134B2 (en) Diamond wafer and method for manufacturing the same
US5335256A (en) Semiconductor substrate including a single or multi-layer film having different densities in the thickness direction
JP3360269B2 (en) Diamond film for X-ray lithography and method for producing the same
KR940005278B1 (en) Membrane for x-ray mask and menufacturing method thereof
US6979520B2 (en) Stencil mask for ion implantation
JP4768967B2 (en) Stencil mask for ion implantation and manufacturing method thereof
JP3305458B2 (en) X-ray lithography mask
TW414957B (en) X-ray mask and method of fabricating the same
JP3124422B2 (en) Method of forming highly oriented diamond thin film
US6413681B1 (en) Diamond film for x-ray lithography and making method
JP3127037B2 (en) X-ray mask support, X-ray mask structure, and X-ray exposure method
EP4357492A1 (en) Diamond substrate and manufacturing method for same
JP3576932B2 (en) Diamond film for lithography and method for producing the same
JPH0636718A (en) X-ray tubular bulb for diffraction
Rousseaux et al. X-ray lithography at the Super-ACO storage ring of Orsay (France)
CN117130080A (en) 83.4nm reflector and manufacturing method thereof
JPH0715880B2 (en) SiC film for X-ray lithography, its manufacturing method and mask for X-ray lithography
JPS62216325A (en) Manufacture of x-ray mask

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees