JPH0785873A - Negative electrode material for nickel-hydroxide secondary battery - Google Patents

Negative electrode material for nickel-hydroxide secondary battery

Info

Publication number
JPH0785873A
JPH0785873A JP5255069A JP25506993A JPH0785873A JP H0785873 A JPH0785873 A JP H0785873A JP 5255069 A JP5255069 A JP 5255069A JP 25506993 A JP25506993 A JP 25506993A JP H0785873 A JPH0785873 A JP H0785873A
Authority
JP
Japan
Prior art keywords
palladium
nickel
electrode material
electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5255069A
Other languages
Japanese (ja)
Inventor
Yoshiichi Sakamoto
芳一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP5255069A priority Critical patent/JPH0785873A/en
Publication of JPH0785873A publication Critical patent/JPH0785873A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain stabilized negative electrode material for a secondary battery which has a large discharge capacity, large quick charging/discharging performance and a large discharge capacity from the initial time of a cycle, by using nickel-hydroxide as the negative electrode material for the secondary battery. CONSTITUTION:An alloy is used which is composed of 0.5-20% rhodium by atomic % density and the residual % palladium or which is composed of 0.5-20% rhodium, 0.5-15% nickel and the residual % palladium by atomic % density. Surface of this alloy is desirably coated with two layers of palladium black and platinum black in this order in a range of 1-2mg/cm<2>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル−水素化物2次
電池で用いられる負極材料に関する。
FIELD OF THE INVENTION The present invention relates to a negative electrode material used in a nickel-hydride secondary battery.

【0002】[0002]

【従来の技術】正極にオキシ水酸化ニッケル(NiOO
H/Ni(OH)2 )を、負極に金属水素化物を用いる
アルカリ二次電池(蓄電池)は従来のニッケル−カドミ
ニウム二次電池に比べて放電容量が大きく、しかもサイ
クル寿命が長い等の特徴をもち、近年特に注目されてい
る。このような電池において、用いられている負極材料
はAB5 型ミッシュメタルをベースとした金属間化合物
やZr(Ti)をベースとしたAB2 型合金などの水素
吸蔵合金である。
2. Description of the Related Art Nickel oxyhydroxide (NiOO) is used for the positive electrode.
The alkaline secondary battery (storage battery) that uses H / Ni (OH) 2 ) and a metal hydride for the negative electrode has a large discharge capacity and a long cycle life compared to the conventional nickel-cadmium secondary battery. In recent years, it has received particular attention. In such a battery, the negative electrode material used is a hydrogen storage alloy such as an intermetallic compound based on AB 5 type misch metal or an AB 2 type alloy based on Zr (Ti).

【0003】[0003]

【発明が解決しようとする課題】ところがこれらの負極
合金はアルカリ電解質に対する耐食性、充放電サイクル
時に生成する水酸化物および急速充放電性能などの面で
問題がある。一方、パラジウムおよびパラジウム合金は
高価であるがアルカリ電解液に対する耐食性、耐充放電
劣化性にすぐれており、しかも急速充放電性に優れてい
る。
However, these negative electrode alloys have problems in corrosion resistance to alkaline electrolytes, hydroxides formed during charge / discharge cycles, and rapid charge / discharge performance. On the other hand, although palladium and palladium alloys are expensive, they have excellent corrosion resistance to alkaline electrolytes and resistance to charge and discharge deterioration, and are also excellent in rapid charge and discharge.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記問題点を
解決し、ニッケル−水素化物2次電池用負極材料として
用いた場合放電容量が大きく、初期放電特性が安定して
おり、しかも急速充放電性能が得られるニッケル−水素
化物2次電池用負極材料を提供することを目的とする。
The present invention has solved the above problems and has a large discharge capacity when used as a negative electrode material for nickel-hydride secondary batteries, stable initial discharge characteristics, and rapid charging. It is an object of the present invention to provide a negative electrode material for a nickel-hydride secondary battery that can obtain discharge performance.

【0005】[0005]

【課題を解決するための手段】本発明のニッケル−水素
化物2次電池用負極材料は原子%濃度でロジウムを0.5
乃至20%、残部パラジウムより成る合金、又はロジウム
を 0.5乃至20%、ニッケルを 0.5乃至15%、残部パラジ
ウムより成る合金である。さらに本発明は上記合金上に
パラジウムブラックと白金ブラックとの重畳コーティン
グが施された2次電池用負極材料である。
The negative electrode material for a nickel-hydride secondary battery according to the present invention contains rhodium of 0.5% at an atomic% concentration.
Alloy containing 0.5 to 20% of the balance palladium, or an alloy of 0.5 to 20% rhodium, 0.5 to 15% nickel and the balance palladium. Furthermore, the present invention is a negative electrode material for a secondary battery, wherein the above alloy is coated with a superposition coating of palladium black and platinum black.

【0006】[0006]

【作用】ニッケル−水素化物2次電池用負極材料として
パラジウムを用いた場合、その電気化学特性に影響を与
える要因としては、パラジウムの(α+β)2相水素化
物共存相の大きさおよびそのαおよびβ相中の水素の拡
散係数の大きさなどが考えられる。パラジウムを負極と
したニッケル水素化物2次電池の充放電を行なった場
合、充電時、放電時初期に急激な電極電位の変化が一般
的に起こり、その後、引続き緩慢な電位変化が観測され
る。この急激な変化は電極表面の水素化物と電解液界面
での電荷移動によるものであり、また緩慢な変化は水素
化物からの水素の拡散過程によるものである。そして放
電特性、特に放電速度を高めるためには、その水素化物
電極からの水素の拡散速度を大きくすることが必要であ
り、そのためには負極の水素化物が不安定であり、水素
拡散係数が大きいことが必要とされる。
When palladium is used as the negative electrode material for a nickel-hydride secondary battery, factors affecting the electrochemical characteristics are the size of the (α + β) two-phase hydride coexisting phase of palladium and its α and The magnitude of the diffusion coefficient of hydrogen in the β phase can be considered. When a nickel hydride secondary battery using palladium as a negative electrode is charged and discharged, a rapid change in electrode potential generally occurs during charging and the initial stage of discharging, and thereafter, a slow change in potential is continuously observed. This abrupt change is due to charge transfer at the interface between the hydride on the electrode surface and the electrolyte, and the gradual change is due to the diffusion process of hydrogen from the hydride. In order to improve the discharge characteristics, especially the discharge rate, it is necessary to increase the diffusion rate of hydrogen from the hydride electrode, and for that reason, the hydride of the negative electrode is unstable and the hydrogen diffusion coefficient is large. Is needed.

【0007】ロジウムやニッケルをパラジウム中に添加
した場合、添加量の増加と共に水素化物は不安定にな
り、水素を脱離しやすくなるが、その反面、添加量の増
加と共に、パラジウム−ロジウム合金やパラジウム−ニ
ッケル合金中の水素の拡散係数は減少する。そのため、
水素化物の不安定さと水素拡散係数がちょうど釣合う量
のロジウムやニッケルを添加すると、優れた充放電特性
の電極となる。上記ロジウム及びニッケルの添加量の限
定理由はこのためであり、この範囲未満及び範囲を超え
たところでは放電特性が悪くなるものである。
When rhodium or nickel is added to palladium, the hydride becomes unstable with the increase of the addition amount and hydrogen is easily desorbed, but on the other hand, the addition amount of the palladium-rhodium alloy or palladium increases. -The diffusion coefficient of hydrogen in the nickel alloy is reduced. for that reason,
Addition of rhodium and nickel in an amount that exactly balances the instability of hydride and the hydrogen diffusion coefficient makes an electrode with excellent charge and discharge characteristics. This is the reason why the amounts of rhodium and nickel added are limited, and the discharge characteristics deteriorate when the amount is less than the above range or exceeds the above range.

【0008】また先に述べた電極表面の水素化物と電解
液界面での電荷移動を速くするために、電極表面に貴金
属のブラックを施すことにより、その電荷移動時の過電
圧を低くする。貴金属としてはパラジウムが用いられる
が、さらに望ましくはパラジウムブラック上にさらに白
金ブラックを施したものが、非常に優れた触媒活性を表
わすものである。これは白金ブラックを用いた場合、電
荷移動による活性化過電圧がパラジウムブラックに比べ
て、さらに低下するため、パラジウムブラック−白金ブ
ラックを重ねた電極はその電気化学的活性が非常に向上
するものである。
Further, in order to accelerate the charge transfer at the interface between the hydride on the electrode surface and the electrolytic solution, black of noble metal is applied to the electrode surface to reduce the overvoltage during the charge transfer. Palladium is used as the noble metal, and more preferably, palladium black is further coated with platinum black to exhibit extremely excellent catalytic activity. This is because when platinum black is used, the activation overvoltage due to charge transfer is further reduced as compared with palladium black, and therefore the electrode on which palladium black-platinum black is stacked has its electrochemical activity greatly improved. .

【0009】[0009]

【実施例】実施例及び従来例として表1のような構成の
電極を作製した。
EXAMPLE An electrode having a structure as shown in Table 1 was prepared as an example and a conventional example.

【0010】[0010]

【表1】 [Table 1]

【0011】なお電極の作製方法は、各合金を溶解して
圧延板とした後、厚さ60μm、面積1.5cm× 1.5cm、重
量 136〜180mg の箔とした。その後各サンプルは真空中
で850℃、2時間焼鈍を行なった。引続き、各サンプル
は下記組成のパラジウムメッキ浴を用いてパラジウムブ
ラックめっきを施して活性化を行ない、さらにそのパラ
ジウムブラックの上に下記組成の白金メッキ浴を用いて
白金ブラックめっきを施した。
The electrode was prepared by melting each alloy into a rolled plate, and then using a foil having a thickness of 60 μm, an area of 1.5 cm × 1.5 cm, and a weight of 136 to 180 mg. Thereafter, each sample was annealed in vacuum at 850 ° C. for 2 hours. Subsequently, each sample was subjected to palladium black plating using a palladium plating bath having the following composition for activation, and then platinum black plating was performed on the palladium black using a platinum plating bath having the following composition.

【0012】 (パラジウム めっき浴)塩化パラジウム(PdCl2 ) 2重量% 酢酸鉛 (Pb(CH3 COO)2)0.01重量% 0.1M塩酸 残 電流密度 150mA/cm2 温度 室温 (白金めっき浴) 塩化白金酸(H2 PtCl6 ・6H2 O)3重量% 酢酸鉛 (Pb(CH3 COO)2) 0.02重量% 水 残 電流密度 10mA/cm2 温度 室温 なお、上記のいずれのめっき時も陽極には白金板を用い
た。
(Palladium plating bath) Palladium chloride (PdCl 2 ) 2% by weight Lead acetate (Pb (CH 3 COO) 2 ) 0.01% by weight 0.1 M hydrochloric acid Residual current density 150 mA / cm 2 Temperature Room temperature (platinum plating bath) Platinum chloride Acid (H 2 PtCl 6 · 6H 2 O) 3% by weight Lead acetate (Pb (CH 3 COO) 2 ) 0.02% by weight Water residual current density 10 mA / cm 2 Temperature room temperature In addition, in any of the above plating A platinum plate was used.

【0013】充放電テストは電解セルとして開放系H型
セルを用い、電解液には6M水酸化カリウム溶液、参照
電極としてはHg/HgO電極、正極(対向電極)には
4cm×9cmのNiOOH−Ni(OH)2電極を用いて行
なった。電池充放電装置を用い、温度30± 0.3℃にて、
まず20mAの定電流でPd1-x x 0.7 (XはRh又は
Ni)の理論容量の 140%まで充電を行ない、10分間休
止後、5〜80mAの範囲内での所定の放電電流にて終止電
圧 0.8Vまで放電を行なった。その後10分間休止した
後、再度上記充放電テストを最高10回まで繰り返し、充
放電特性を調べた。
In the charge / discharge test, an open H-type cell was used as an electrolytic cell, a 6M potassium hydroxide solution was used as an electrolytic solution, a Hg / HgO electrode was used as a reference electrode, and a NiOOH-cell having a size of 4 cm × 9 cm was used as a positive electrode (counter electrode). It was performed using a Ni (OH) 2 electrode. Using a battery charging / discharging device at a temperature of 30 ± 0.3 ℃,
First, it was charged to 140% of the theoretical capacity of Pd 1-x X x H 0.7 (X is Rh or Ni) at a constant current of 20 mA, and after a 10-minute rest, it was discharged to a predetermined discharge current within the range of 5 to 80 mA. And discharged to a final voltage of 0.8V. Then, after resting for 10 minutes, the above charge / discharge test was repeated up to 10 times again to examine charge / discharge characteristics.

【0014】実施例としてNo. 1、2、3、4及び5
のPd合金電極を、また従来例としてNo.10 の純Pd電
極を用い、充放電をくり返したときの放電容量の変化を
調べた。その結果を図1に示す。なお放電電流は10mAで
行なった。パラジウムのみの電極に比べ、ロジウムを添
加したものは、放電容量が高くなっており、充放電を繰
り返しても一定の値を保っていた。
As examples, Nos. 1, 2, 3, 4 and 5
Using the Pd alloy electrode of No. 10 and the pure Pd electrode of No. 10 as a conventional example, changes in discharge capacity when charging and discharging were repeated were examined. The result is shown in FIG. The discharge current was 10 mA. Compared to the electrode containing only palladium, the electrode containing rhodium had a higher discharge capacity and maintained a constant value even after repeated charging and discharging.

【0015】実施例としてNo. 2、3、4及び5の電
極を、また従来例としてNo.10 の電極を用い、放電電流
を変化させたときの放電容量の変化を調べたものを図2
に示す。図2に示す通り、パラジウムのみの電極に比
べ、ロジウムを添加したものは放電電流を増加させた場
合の減少割合が少なくなっていた。
Using the No. 2, 3, 4 and 5 electrodes as an example and the No. 10 electrode as a conventional example, the change in discharge capacity when the discharge current was changed was examined.
Shown in. As shown in FIG. 2, as compared with the electrode containing only palladium, the electrode containing rhodium showed a smaller reduction rate when the discharge current was increased.

【0016】実施例としてNo. 6、7及び8の電極
を、また比較例としてNo. 3の電極、さらに従来例とし
てNo.10 の電極を用い、放電電流を変化させたときの放
電容量の変化を調べたものを図3に示す。このようにパ
ラジウムブラックの上にさらに白金ブラックを施した電
極は、高放電電流での放電容量がすぐれていた。
The electrodes of Nos. 6, 7 and 8 were used as examples, the electrode of No. 3 was used as a comparative example, and the electrode of No. 10 was used as a conventional example, and the discharge capacity when the discharge current was changed. What investigated the change is shown in FIG. Thus, the electrode obtained by further applying platinum black on palladium black had an excellent discharge capacity at a high discharge current.

【0017】実施例としてNo. 7、8及び9の電極
を、また比較例としてNo. 3の電極、従来例としてNo.1
0 の電極を用い、分極特性を調べたものを図4に示す。
ここに見られる通り、パラジウムブラックのみで活性化
した電極では、パラジウムのみの電極よりロジウムを添
加した電極の方が過電圧が低下しており、さらにパラジ
ウムブラックの上に白金ブラックを重ね被覆した電極は
一層過電圧が低下した。
The electrodes of Nos. 7, 8 and 9 were used as examples, the electrode of No. 3 was used as a comparative example, and No. 1 was used as a conventional example.
FIG. 4 shows the result of examining the polarization characteristics using the 0 electrode.
As seen here, in the electrode activated only with palladium black, the electrode with rhodium added had a lower overvoltage than the electrode with only palladium, and the electrode with platinum black overlaid on palladium black was The overvoltage dropped further.

【0018】[0018]

【発明の効果】以上述べたように、本発明の2次電池用
負極材料は、従来用いられているパラジウム等に比べ、
その放電容量、急速放電(高放電流での放電容量)、初
期放電特性に優れており、ニッケル−水素化物2次電池
を作製した場合、安定した放電特性が得られ、多用途で
の使用が可能となる。
As described above, the negative electrode material for a secondary battery of the present invention is superior to the conventionally used palladium or the like in
It excels in its discharge capacity, rapid discharge (discharge capacity at high discharge current), and initial discharge characteristics. When nickel-hydride secondary batteries are produced, stable discharge characteristics are obtained, and it can be used for various purposes. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電極材料及び、従来の電極材料で、充
放電を繰り返したときの放電容量の変化を示す図。
FIG. 1 is a diagram showing a change in discharge capacity when charging and discharging are repeated using an electrode material of the present invention and a conventional electrode material.

【図2】本発明の電極材料及び従来の電極材料で、放電
電流を変化させたときの放電容量の変化を示す図。
FIG. 2 is a diagram showing a change in discharge capacity when a discharge current is changed in the electrode material of the present invention and the conventional electrode material.

【図3】本発明の電極材料でパラジウムブラックのみで
活性化したもの、パラジウムブラック及び白金ブラック
で活性化したもの並びに従来の電極材料で、放電電流を
変化させたときの放電容量の変化を示す図。
FIG. 3 shows changes in discharge capacity when the discharge current is changed in the electrode material of the present invention that is activated only by palladium black, that activated by palladium black and platinum black, and the conventional electrode material. Fig.

【図4】本発明の電極材料及び従来の電極材料の分極曲
線。
FIG. 4 shows polarization curves of the electrode material of the present invention and the conventional electrode material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原子%濃度でロジウム 0.5乃至20%、残
部パラジウムより成る合金、又はロジウム 0.5乃至20
%、ニッケル 0.5乃至15%、残部パラジウムより成る合
金であるニッケル−水素化物2次電池用負極材料。
1. An alloy consisting of 0.5 to 20% rhodium at the atomic concentration and the balance palladium, or 0.5 to 20 rhodium.
%, Nickel 0.5 to 15%, the balance being palladium, a negative electrode material for nickel-hydride secondary batteries.
【請求項2】 上記合金の表面にパラジウムブラックが
1乃至2mg/cm2施され、さらにその上に白金ブラックを
1乃至2mg/cm2コーティングされている、請求項1記載
のニッケル−水素化物2次電池用負極材料。
2. The nickel-hydride 2 according to claim 1, wherein the surface of said alloy is coated with palladium black in an amount of 1 to 2 mg / cm 2 , and platinum black is further coated thereon in an amount of 1 to 2 mg / cm 2. Negative electrode material for secondary battery.
JP5255069A 1993-09-17 1993-09-17 Negative electrode material for nickel-hydroxide secondary battery Pending JPH0785873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5255069A JPH0785873A (en) 1993-09-17 1993-09-17 Negative electrode material for nickel-hydroxide secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5255069A JPH0785873A (en) 1993-09-17 1993-09-17 Negative electrode material for nickel-hydroxide secondary battery

Publications (1)

Publication Number Publication Date
JPH0785873A true JPH0785873A (en) 1995-03-31

Family

ID=17273708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5255069A Pending JPH0785873A (en) 1993-09-17 1993-09-17 Negative electrode material for nickel-hydroxide secondary battery

Country Status (1)

Country Link
JP (1) JPH0785873A (en)

Similar Documents

Publication Publication Date Title
CA2095036C (en) Metal hydride electrode, nickel electrode and nickel-hydrogen battery
AU2003292419B2 (en) Electrochemical cell suitable for use in electronic device
US4699856A (en) Electrochemical cell
US5451474A (en) Metal hydride hydrogen storage electrodes
US4621034A (en) Sealed metal oxide-hydrogen storage cell
JP2655810B2 (en) Manufacturing method of alkaline secondary battery and catalytic electrode body
Kaiya et al. Improvement in cycle life performance of high capacity nickel-metal hydride battery
JP3462878B2 (en) Improved metal hydride hydrogen storage electrode
JPH0785873A (en) Negative electrode material for nickel-hydroxide secondary battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JP3264168B2 (en) Nickel-metal hydride battery
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JP2847872B2 (en) Hydrogen storage electrode
JP3462673B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0513096A (en) Metal hydride storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPH04301045A (en) Hydrogen storage alloy electrode
JP2847873B2 (en) Hydrogen storage electrode
JPS62249364A (en) Nickel oxide-hydrogen secondary battery
JP2529898B2 (en) Hydrogen storage alloy electrode
JPH05263171A (en) Hydrogen-occluding alloy and its electrode as well as hydrogen storage alloy battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3176387B2 (en) Method for producing hydride secondary battery