JPH0785763B2 - Method of removing dissolved oxygen - Google Patents

Method of removing dissolved oxygen

Info

Publication number
JPH0785763B2
JPH0785763B2 JP5876192A JP5876192A JPH0785763B2 JP H0785763 B2 JPH0785763 B2 JP H0785763B2 JP 5876192 A JP5876192 A JP 5876192A JP 5876192 A JP5876192 A JP 5876192A JP H0785763 B2 JPH0785763 B2 JP H0785763B2
Authority
JP
Japan
Prior art keywords
dissolved oxygen
hydrogen
water
gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5876192A
Other languages
Japanese (ja)
Other versions
JPH06106004A (en
Inventor
葉子 窪田
孝行 斉藤
健 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP5876192A priority Critical patent/JPH0785763B2/en
Publication of JPH06106004A publication Critical patent/JPH06106004A/en
Publication of JPH0785763B2 publication Critical patent/JPH0785763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液体中の溶存酸素の除去
方法に係り、特に比較的低濃度の溶存酸素の除去方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing dissolved oxygen in a liquid, and more particularly to a method for removing dissolved oxygen having a relatively low concentration.

【0002】[0002]

【従来の技術】水中の溶存酸素(以下DOと称す)を除
去する方法として、従来より充填塔または膜による真空
脱気、窒素ガスパージ等の物理的方法と、還元剤を添加
する化学的方法、及びこれらの組み合わせ方法等が知ら
れている。これらの方法を改良する目的で、本発明者ら
は、先に水中に水素を溶解した後、紫外線照射によって
酸素と水素とを反応させて、溶存酸素を除去する方法を
提案した。しかし、水素と酸素との接触確率は溶存酸素
濃度が低くなると小さくなり、かつこの反応で重要な波
長200nm以下の紫外線は、水による紫外線の吸収に
よって照射強度の減衰が大きいという問題点が見出され
た。
2. Description of the Related Art As a method for removing dissolved oxygen (hereinafter referred to as DO) in water, a physical method such as vacuum degassing by a packed tower or a membrane, nitrogen gas purging, etc., and a chemical method of adding a reducing agent, And methods of combining these are known. For the purpose of improving these methods, the present inventors have proposed a method of first dissolving hydrogen in water and then reacting oxygen with hydrogen by ultraviolet irradiation to remove dissolved oxygen. However, the contact probability between hydrogen and oxygen becomes smaller as the dissolved oxygen concentration becomes lower, and ultraviolet rays with a wavelength of 200 nm or less, which is important in this reaction, are greatly attenuated by the absorption of ultraviolet rays by water. Was done.

【0003】[0003]

【発明が解決しようとする課題】上記のように、水素の
存在下に紫外線を照射する方法においては、水素と酸素
との反応効率を大きくし、紫外線照射の効率を大きくす
ることが重要な問題であった。そこで本発明では、上記
問題点を解決し、より容易にかつ効率の高い溶存酸素の
除去方法を提供することを目的とする。
As described above, in the method of irradiating ultraviolet rays in the presence of hydrogen, it is important to increase the reaction efficiency between hydrogen and oxygen and increase the efficiency of ultraviolet ray irradiation. Met. Therefore, an object of the present invention is to solve the above-mentioned problems and to provide a method for removing dissolved oxygen more easily and efficiently.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明では液体中の溶存酸素を除去する方法におい
て、液体中に、水素と不活性ガスとの混合気体の気泡の
存在下で、紫外線を照射することとしたものである。こ
こで、不活性ガスとしては、紫外線を透過し、被照射液
体に対して不活性なガスであれば良く、窒素、アルゴン
ならびにCO2 等を用いることができる。混合気体の濃
度としては、水素の爆発限界に満たない濃度が望まし
く、かつ被処理水の溶存酸素濃度が低い場合、未反応の
水素が過剰に残留するのを抑制するためには、混合気体
の水素濃度を必要最小限小さくすることが望ましい。液
体中への混合気体の注入方法としては、散気管、散気ノ
ズル、エジェクター等任意の手段を用いることができ
る。また反応後、過剰の水素及び不活性ガスを液体から
分離しても良く、分離したガスを循環して再び液体中に
供給することもできる。紫外線光源としては、波長20
0nm以下の真空紫外線が照射可能な光源であれば良
く、通常、ランプ管及び保護管に合成石英を用いた低圧
水銀ランプを用いることができる。
In order to achieve the above object, in the present invention, in a method for removing dissolved oxygen in a liquid, in the presence of bubbles of a mixed gas of hydrogen and an inert gas in the liquid, It is intended to irradiate with ultraviolet rays. Here, as the inert gas, a gas that transmits ultraviolet rays and is inert to the liquid to be irradiated may be used, and nitrogen, argon, CO 2, or the like can be used. As the concentration of the mixed gas, a concentration below the explosion limit of hydrogen is desirable, and when the concentration of dissolved oxygen in the water to be treated is low, in order to suppress excess unreacted hydrogen remaining, It is desirable to reduce the hydrogen concentration to the necessary minimum. As a method for injecting the mixed gas into the liquid, any means such as an air diffuser, an air diffuser nozzle, and an ejector can be used. After the reaction, excess hydrogen and inert gas may be separated from the liquid, and the separated gas may be circulated and supplied again into the liquid. A wavelength of 20 for an ultraviolet light source
Any light source capable of irradiating vacuum ultraviolet rays of 0 nm or less may be used, and a low-pressure mercury lamp using synthetic quartz for the lamp tube and the protection tube can be usually used.

【0005】[0005]

【作用】水素と不活性ガスとの混合気体の気泡の存在下
で液体中に紫外線を照射することには、以下のような作
用がある。気泡によって水の拡散・混合が促進される。
また、気泡表面で光の分散があり、かつ気泡が移動する
ため、照射強度の不均一さが減少する。また、紫外線透
過性の不活性ガスの添加により、照射装置内の液体の厚
さは実質的に小さくなる。さらに水素は、気相中では同
容積の液相中に比較して移動速度が大きく、かつ気泡自
体が液体に対して移動しているため、水中の溶存酸素と
の接触効率が高い。このため、通常混合ガス中の水素ガ
ス量は0.01〜4%程度でよい。また、接触時間は反
応容器により適宜調整すればよい。このように、水素と
不活性ガスとの混合気体の気泡の存在下で紫外線を照射
することにより、効率的に溶存酸素を除去できる。
The action of irradiating the liquid with ultraviolet rays in the presence of bubbles of a mixed gas of hydrogen and an inert gas has the following actions. The bubbles promote the diffusion and mixing of water.
Further, since light is dispersed on the surface of the bubble and the bubble moves, unevenness of irradiation intensity is reduced. In addition, the thickness of the liquid in the irradiation device is substantially reduced by the addition of the ultraviolet-transparent inert gas. Further, hydrogen has a higher moving speed in the gas phase than in the liquid phase of the same volume, and since the bubbles themselves move with respect to the liquid, the contact efficiency with dissolved oxygen in water is high. Therefore, the amount of hydrogen gas in the mixed gas is usually about 0.01 to 4%. Further, the contact time may be appropriately adjusted depending on the reaction container. Thus, by irradiating with ultraviolet rays in the presence of bubbles of a mixed gas of hydrogen and an inert gas, dissolved oxygen can be efficiently removed.

【0006】[0006]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるものではない。 実施例1 図1は本発明の実施態様の一例を示す概略模式図であ
る。図2は本発明の溶存酸素除去装置を組み込んだ2次
純水処理装置の一例を示す概略フロー図である。図1に
おいて、被処理水14は装置ジャケット1上方側壁に開
口した被処理水流入口4より本装置に導入される。脱酸
素用混合気体16はジャケット下方側壁に開口した混合
気体流入口6より、ディフューザー7を介して槽内に導
入される。而して、被処理水と該気体は向流接触しつ
つ、紫外線に曝露される。紫外線はN2 ガスによりパー
ジが行われた合成石英製のランプ保護管3中に挿入され
たUVランプ2より槽内に照射され、前記した作用によ
り効率的に溶存酸素の除去が行われる。ジャケット下部
の処理水流出口5より処理水が流出し、図2の加圧ポン
プ17により混床イオン交換塔12へと導入され、次い
で限外ろ過装置13で処理されて純水15となる。ま
た、接触し終わった水素含有ガスはパージ管8を経てパ
ージ槽9へ送られる。残余の該気体は再度混合気体流入
口6へ返送しても良い。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Example 1 FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention. FIG. 2 is a schematic flow chart showing an example of a secondary pure water treatment apparatus incorporating the dissolved oxygen removing apparatus of the present invention. In FIG. 1, the water 14 to be treated is introduced into the apparatus through a water inlet 4 to be treated which is opened on the upper side wall of the apparatus jacket 1. The deoxygenated mixed gas 16 is introduced into the tank through the diffuser 7 from the mixed gas inflow port 6 opened on the side wall below the jacket. Thus, the water to be treated and the gas are countercurrently contacted and exposed to ultraviolet rays. Ultraviolet rays are radiated into the tank from a UV lamp 2 inserted in a lamp protection tube 3 made of synthetic quartz and purged with N 2 gas, and the dissolved oxygen is efficiently removed by the above-mentioned action. The treated water flows out from the treated water outlet 5 at the bottom of the jacket, is introduced into the mixed bed ion exchange column 12 by the pressurizing pump 17 in FIG. 2, and is then treated by the ultrafiltration device 13 to become pure water 15. Further, the hydrogen-containing gas that has finished contacting is sent to the purge tank 9 through the purge pipe 8. The remaining gas may be returned to the mixed gas inflow port 6 again.

【0007】実験は、水道水を精密ろ過、RO処理、イ
オン交換及び膜脱気処理して得られた純水を被処理水と
し、2次純水処理装置に流量1m3 /hで通水して行っ
た。添加する混合気体としては、0.9%の水素を含む
窒素ガスを用い、流量0.2m3 /hで、散気管方式で
添加した。紫外線照射装置としては、合成石英を用いた
出力70wの低圧水銀ランプ3本を用いた。結果を表1
に示す。なお、不活性ガスとしては、窒素ガスの他アル
ゴン、二酸化炭素等を適宜使用しても良く、同様の結果
が得られる。
In the experiment, pure water obtained by subjecting tap water to microfiltration, RO treatment, ion exchange and membrane degassing treatment was used as treated water, and water was passed through a secondary pure water treatment device at a flow rate of 1 m 3 / h. I went. As a mixed gas to be added, nitrogen gas containing 0.9% of hydrogen was used, and the mixed gas was added at a flow rate of 0.2 m 3 / h by a diffuser tube method. As the ultraviolet irradiation device, three low-pressure mercury lamps made of synthetic quartz and having an output of 70 w were used. The results are shown in Table 1.
Shown in. As the inert gas, argon gas, carbon dioxide or the like may be appropriately used in addition to nitrogen gas, and the same result is obtained.

【0008】比較例1 図3は比較例に用いた二次純水処理装置の概略フロー図
である。図3において21は脱気膜、22は水素添加膜
で23が溶存酸素除去装置であり、被処理水14の一部
に水素を溶存させて、溶存酸素除去装置23で紫外線照
射される。実験は、実施例と同様の純水を被処理水とし
て用い、流量1m3 /hで通水した。純水素を気体透過
膜を介して約30ml/min で添加し、実施例と同様の
紫外線照射装置を用いて行った。結果を表1に示す。
Comparative Example 1 FIG. 3 is a schematic flow chart of the secondary pure water treatment apparatus used in the comparative example. In FIG. 3, reference numeral 21 is a degassing film, 22 is a hydrogenation film, and 23 is a dissolved oxygen removing device. Hydrogen is dissolved in a part of the water 14 to be treated, and the dissolved oxygen removing device 23 irradiates ultraviolet rays. In the experiment, pure water similar to that used in the example was used as water to be treated, and water was passed at a flow rate of 1 m 3 / h. Pure hydrogen was added at a rate of about 30 ml / min through the gas permeable membrane, and the same ultraviolet irradiation device as in the example was used. The results are shown in Table 1.

【表1】 [Table 1]

【0009】[0009]

【効果】上記のように、水素と不活性ガスとの混合気体
の気泡の存在下で紫外線を照射することによって、装置
内の水の混合状態を改善して水素と酸素との接触効率が
高くなり、水中の溶存酸素を効率的に除去することが出
来る。
[Effect] As described above, by irradiating with ultraviolet light in the presence of bubbles of a mixed gas of hydrogen and an inert gas, the mixing state of water in the device is improved and the contact efficiency between hydrogen and oxygen is increased. Therefore, dissolved oxygen in water can be efficiently removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の溶存酸素除去方法に用いる装置の一例
を示す概略模式図である。
FIG. 1 is a schematic diagram showing an example of an apparatus used in the method for removing dissolved oxygen of the present invention.

【図2】本発明の溶存酸素除去方法を用いた二次純水処
理装置の一例を示す概略フロー図である。
FIG. 2 is a schematic flow chart showing an example of a secondary pure water treatment apparatus using the dissolved oxygen removing method of the present invention.

【図3】膜による水素添加、紫外線照射による溶存酸素
除去装置を用いた二次純水処理装置の概略フロー図であ
る。
FIG. 3 is a schematic flow diagram of a secondary deionized water treatment apparatus using a hydrogenation by a membrane and a dissolved oxygen removal apparatus by ultraviolet irradiation.

【符号の説明】 1:ジャケット、2:UVランプ、3:ランプ保護管、
4:被処理水流入口、5:処理水流出口、6:混合気体
流入口、7:ディフューザー、8:パージ管、9:パー
ジ槽、11:溶存酸素除去装置(本発明)、12:混床
イオン交換塔、13:限外ろ過装置、14:被処理水、
15:処理水(純水)、16:混合気体、17:加圧ポ
ンプ、21:脱気膜、22:水素添加膜、23:溶存酸
素除去装置。
[Explanation of symbols] 1: Jacket, 2: UV lamp, 3: Lamp protection tube,
4: treated water inlet, 5 treated water outlet, 6: mixed gas inlet, 7: diffuser, 8: purge pipe, 9: purge tank, 11: dissolved oxygen removing device (present invention), 12: mixed bed ion Exchange tower, 13: ultrafiltration device, 14: treated water,
15: treated water (pure water), 16: mixed gas, 17: pressure pump, 21: degassing film, 22: hydrogenation film, 23: dissolved oxygen removing device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 健 東京都港区港南1丁目6番27号 荏原イン フィルコ株式会社内 (56)参考文献 特開 昭63−236593(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ken Nakajima Ken 6-6 27 Konan, Minato-ku, Tokyo Ebara Infilco Co., Ltd. (56) Reference JP-A-63-236593 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 液体中の溶存酸素を除去する方法におい
て、液体中に、水素と不活性ガスとの混合気体の気泡の
存在下で、紫外線を照射することを特徴とする溶存酸素
の除去方法。
1. A method for removing dissolved oxygen in a liquid, which comprises irradiating with ultraviolet rays in the presence of bubbles of a mixed gas of hydrogen and an inert gas in the liquid. .
JP5876192A 1992-02-13 1992-02-13 Method of removing dissolved oxygen Expired - Fee Related JPH0785763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5876192A JPH0785763B2 (en) 1992-02-13 1992-02-13 Method of removing dissolved oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5876192A JPH0785763B2 (en) 1992-02-13 1992-02-13 Method of removing dissolved oxygen

Publications (2)

Publication Number Publication Date
JPH06106004A JPH06106004A (en) 1994-04-19
JPH0785763B2 true JPH0785763B2 (en) 1995-09-20

Family

ID=13093529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5876192A Expired - Fee Related JPH0785763B2 (en) 1992-02-13 1992-02-13 Method of removing dissolved oxygen

Country Status (1)

Country Link
JP (1) JPH0785763B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114176A2 (en) * 2004-05-19 2005-12-01 University Of Florida Methods and systems for detecting hydrogen
WO2006063026A1 (en) 2004-12-07 2006-06-15 Westlake Petrochemicals L.P. Boiler feed water deaerator method and apparatus

Also Published As

Publication number Publication date
JPH06106004A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
HU212078B (en) Method and apparatous for treating of liquids contain dangerous material
TWI732969B (en) Water treatment method and apparatus
CN109906206B (en) Water treatment method and apparatus
JPH1199395A (en) Treatment of organic matter containing water
JP2014168743A (en) Pure water manufacturing method
JP5512357B2 (en) Pure water production method and apparatus
JPH02164490A (en) Water treatment method and apparatus
JPH0785763B2 (en) Method of removing dissolved oxygen
JP3849766B2 (en) Apparatus and method for treating water containing organic matter
JP2865452B2 (en) Removal device for dissolved gas in raw water
JPH0671594B2 (en) Method and apparatus for removing dissolved oxygen in water
JPH11226569A (en) Apparatus for removing organic substance in water and apparatus for producing ultrapure water
JP4034519B2 (en) Wafer cleaning apparatus and wafer cleaning method
JPS5924671B2 (en) Complex cyanide processing equipment
JPH09192658A (en) Manufacturing device of ultrapure water
JP2002307080A (en) Apparatus for producing ultrapure water
JP2004152842A (en) Processing method by ultraviolet irradiation and ultraviolet irradiation device
JP4538702B2 (en) Ozone dissolved water supply device
JP3645007B2 (en) Ultrapure water production equipment
JP3452471B2 (en) Pure water supply system, cleaning device and gas dissolving device
JPS58193788A (en) Treatment of waste water of complex iron cyanide
JPH09253639A (en) Ultrapure water making apparatus
JPH10180243A (en) Ultrapure water production device
JP3580648B2 (en) Ultrapure water production equipment
JP3849765B2 (en) Apparatus and method for treating water containing organic matter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees