JPH078434B2 - Short-circuit transfer welding power source control method and apparatus - Google Patents

Short-circuit transfer welding power source control method and apparatus

Info

Publication number
JPH078434B2
JPH078434B2 JP58074531A JP7453183A JPH078434B2 JP H078434 B2 JPH078434 B2 JP H078434B2 JP 58074531 A JP58074531 A JP 58074531A JP 7453183 A JP7453183 A JP 7453183A JP H078434 B2 JPH078434 B2 JP H078434B2
Authority
JP
Japan
Prior art keywords
welding
voltage
current
circuit
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58074531A
Other languages
Japanese (ja)
Other versions
JPS59199175A (en
Inventor
隆明 小笠原
徳治 丸山
敬 斉藤
正晴 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58074531A priority Critical patent/JPH078434B2/en
Publication of JPS59199175A publication Critical patent/JPS59199175A/en
Publication of JPH078434B2 publication Critical patent/JPH078434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 この発明は短絡移行溶接に用いる溶接電極の制御方法と
装置に関する。
Description: TECHNICAL FIELD The present invention relates to a welding electrode control method and apparatus used for short-circuit transfer welding.

〔従来技術の問題点〕[Problems of conventional technology]

ガスシールド溶接において溶接ワイヤと母材間で短絡と
アーク発生とをくり返しながら溶接を行なう。
In gas shield welding, welding is performed while repeating short circuit and arc generation between the welding wire and the base material.

短絡移行溶接におけるスパツタの多くは、短絡が破れア
ーク再生する瞬間に発生し、またアーク再生時の電流が
高い程大粒のスパツタが発生することも明らかになつて
いる。ところが従来のリアクトルにより電流の上昇を遅
らせるだけの定電圧電源では第1図に示すようにアーク
再生時の電流が高いため非常にスパツタが多かつた。こ
の原因に着目してアーク再生時の電流を下げることが試
みられているがまた実用に至つていない。たとえばWeld
ing Research international Vol.4,No.2,1974には、大
電流通電期間と短絡期の中央期間に限定させ、大電流期
間中消耗電極ワイヤと母材間の電圧を検出し、アーク再
生の前兆としての溶滴のくびれが発生した時の電圧を設
定しておき、検出電圧がある設定電圧と等しくなつた時
大電流期間を終了させるようにプログラム制御してスパ
ツタを抑制する技術が開示されている。しかしながら、
前記文献にも記載されているように、実用にあたって
は、ワイヤ突出長の変動によつて、この部分の電圧降下
が変動するため、溶滴のくびれた時の電圧が一定になら
ず、大電流期間の終了を指示する時期に誤差を生じ、安
定してスパツタを防止することができない。
It has also been clarified that most of the spatters in the short circuit transfer welding occur at the moment when the short circuit is broken and the arc is regenerated, and that the larger the current at the time of arc regeneration is, the larger the spatters are. However, in the constant voltage power supply that merely delays the rise of the current by the conventional reactor, as shown in FIG. 1, the current at the time of arc regeneration is high, so that the amount of spatter is very large. Attention has been paid to this cause to reduce the current during arc regeneration, but it has not yet been put to practical use. For example Weld
In ing Research international Vol.4, No.2,1974, the voltage between the consumable electrode wire and the base metal was detected during the high current period and the voltage was limited to the central period of the high current conduction period, and the precursor of arc regeneration was detected. A technique for suppressing spatter by program control so as to end a large current period when a detection voltage becomes equal to a certain set voltage is set by previously setting a voltage when the constriction of droplets occurs. There is. However,
As described in the above-mentioned document, in practical use, the voltage drop at this portion fluctuates due to the fluctuation of the wire protrusion length, so that the voltage when the droplet is constricted does not become constant and a large current An error occurs at the time when the end of the period is instructed, and it is impossible to stably prevent spatter.

周知のようにこの種のスパツタの発生は溶接の品質を低
下させ、またスパツタを除去するために煩雑な作業が必
要であり溶接の作業能率を低下させる。
As is well known, the generation of such spatter deteriorates the quality of welding, and a complicated work is required to remove the spatter, which lowers the welding work efficiency.

発明の目的 この発明は従来の短絡移行溶接における上述の問題を解
決するためになされたものであつて、溶接ワイヤのくび
れが生じる時期を適確に検出して、溶接ワイヤ電流を抑
制することにより、スパツタの発生を防止し、溶接の品
質を向上させ、かつ溶接作業の能率向上を可能にする溶
接電源の制御方法と装置を提供することを目的とするも
のである。
An object of the present invention is to solve the above-mentioned problems in the conventional short-circuit transfer welding, by accurately detecting the time when the constriction of the welding wire occurs, and suppressing the welding wire current. It is an object of the present invention to provide a welding power source control method and apparatus capable of preventing the generation of spatter, improving the quality of welding, and improving the efficiency of welding work.

発明の概要 この発明に係る溶接電源の制御方法においては、短絡移
行溶接において、溶接ワイヤと母材間の電圧の時間に関
する微分値を検知し、その微分値が所定の値に達したと
き、溶接ワイヤ電流を低減させる。
SUMMARY OF THE INVENTION In a welding power source control method according to the present invention, in short-circuit transfer welding, a differential value with respect to time of a voltage between a welding wire and a base metal is detected, and when the differential value reaches a predetermined value, welding is performed. Reduce wire current.

またこの発明に係る溶接電源の制御装置においては溶接
ワイヤと母材間の電圧値を検出する検出手段と、電圧値
を微分する微分回路と、電圧の微分値が設定値に達した
ことを検出する比較回路と、電圧の微分値が設定値に達
したとき溶接ワイヤに流れる電流を低減させる制御手段
とを備えている。
Further, in the control device for the welding power source according to the present invention, the detection means for detecting the voltage value between the welding wire and the base metal, the differentiating circuit for differentiating the voltage value, and the fact that the differential value of the voltage has reached the set value are detected. And a control means for reducing the current flowing through the welding wire when the differential value of the voltage reaches a set value.

発明の原理 第2図は短絡移行溶接装置の概略を示しており、101は
溶接電源、102は給電ケーブル、103は図示されないモー
タで送給される溶接ワイヤであり、この溶接ワイヤ102
は溶接トーチ104を通つて母材106へ向かつて突出してお
り、母材106と溶接ワイヤ103間にアーク105が発生して
いる。溶接トーチ104からの溶接ワイヤ103は、母材106
との間で短絡とアーク発生とを適宜時間間隔でくり返し
て、公知の短絡移行溶接を行なう。
Principle of the Invention FIG. 2 shows an outline of a short-circuit transfer welding apparatus, 101 is a welding power source, 102 is a power supply cable, and 103 is a welding wire fed by a motor (not shown).
Protrudes through the welding torch 104 toward the base material 106, and an arc 105 is generated between the base material 106 and the welding wire 103. The welding wire 103 from the welding torch 104 is
A short circuit and arc generation are repeated at appropriate time intervals between and to perform the known short circuit transfer welding.

第3図は上述の短絡移行溶接時における溶接ワイヤ電圧
波形、電流波形ならびに溶接ワイヤ103と母材106との間
の位置関係を示したものであり、各図において、a,d,c,
d,eはそれぞれの溶接状態を示す。即ちアーク発生中a
から徐々にアーク長が短かくなり、短絡bに至る。この
とき電流を上昇させて、ある一定値に保持する。溶滴が
最も強固に、母材106に結合した時点cを経過した後、
溶接ワイヤ3の先端がくびれ始めたd点後、溶接電流を
急激に低下させて、電流が充分に低下した時点eにてア
ーク再生に移行する。
FIG. 3 shows the welding wire voltage waveform, current waveform, and positional relationship between the welding wire 103 and the base material 106 during the above-described short-circuit transfer welding. In each drawing, a, d, c,
d and e show the respective welding states. That is, during arcing a
From then on, the arc length gradually becomes shorter, leading to a short circuit b. At this time, the current is increased and maintained at a certain constant value. After the time point c when the droplet is most strongly bonded to the base material 106,
After the point d at which the tip of the welding wire 3 starts to be constricted, the welding current is rapidly reduced, and the arc regeneration is started at a time point e when the current is sufficiently reduced.

第3図から明らかなようにc点からd点に至る間電流が
一定であるにもかかわらず、電圧はd点近傍で上昇す
る。これはd点近傍では、溶接ワイヤのくびれが生じ、
ワイヤ先端の溶融部の断面積が減少し抵抗が増加したこ
とに主因がある。そこで短絡時の電圧を検出しその電圧
の時間的変化量すなわち電圧Vの微分値dv/dtがある所
定値に達した時に電流を下げればスパツタを抑制でき
る。
As is apparent from FIG. 3, although the current is constant from the point c to the point d, the voltage rises near the point d. This is due to the constriction of the welding wire near point d,
The main reason is that the cross-sectional area of the fusion zone at the tip of the wire decreased and the resistance increased. Therefore, if the voltage at the time of short circuit is detected and the amount of change over time of the voltage, that is, the differential value dv / dt of the voltage V reaches a predetermined value, the current can be reduced to suppress spatter.

実施例 以下にこの発明の実施例を図面とともに説明する。Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第4図において溶接トーチ104と母材106間の電圧Vを検
出する電圧検出器110の出力信号は微分回路113に印加さ
れ、この検出された電圧Vは微分回路113で時間tにつ
いて微分され、該微分回路113は を出力する。
In FIG. 4, the output signal of the voltage detector 110 for detecting the voltage V between the welding torch 104 and the base metal 106 is applied to the differentiating circuit 113, and the detected voltage V is differentiated with respect to the time t in the differentiating circuit 113. The differentiating circuit 113 Is output.

この は比較回路114に印加され、設定器115によつて設定され
た設定値と比較して電圧微分値が設定値より大となつた
とき、この比較器114は制御信号を溶接電源101に印加し
て、スイツチ120を低電流側の設定器121に切り換えて、
溶接電流101の出力電流、したがつて溶接ワイヤ103の電
流を低減させる。
this Is applied to the comparison circuit 114, and when the voltage differential value is larger than the set value compared with the set value set by the setter 115, the comparator 114 applies a control signal to the welding power source 101. Switch the switch 120 to the setting device 121 on the low current side,
The output current of the welding current 101 and hence the current of the welding wire 103 is reduced.

設定器115の設定値は溶接ワイヤにくびれが生じる時の
溶接ワイヤと母材間の電圧値の微分値に対応して定めら
れる。
The set value of the setter 115 is determined corresponding to the differential value of the voltage value between the welding wire and the base material when the welding wire is constricted.

なお122は溶接時の電流設定器であり、また溶接電源101
は誤差増幅器101aに電流設定器121,122のいずれかから
印加される設定値と電流検出器112から検出される溶接
ワイヤ電流との偏差に応じて電力制御回路101bの出力電
流を電流設定器121,122のいずれかで設定された値にな
るように制御する。
Reference numeral 122 is a current setting device for welding, and the welding power source 101
Is the output current of the power control circuit 101b according to the deviation between the set value applied to the error amplifier 101a from either the current setting device 121 or 122 and the welding wire current detected from the current detector 112. It is controlled so that it becomes the value set by.

上述の装置のよる溶接において、第3図のa,b,c,e部の
溶接電圧、溶接電流の制御方法は従来のものと同じであ
る。
In welding using the above-described apparatus, the method of controlling the welding voltage and welding current at the portions a, b, c and e of FIG. 3 is the same as the conventional method.

上述の設定器115から出力される設定値は以下のように
定められる。第5図のg1,h1,i1,l1は短絡時間が略2msec
の電流波形でjは短絡時間が3msecのものである。g1〜j
1は短絡電流が一定に制御されており、l1は短絡電流が
時間と共に増加している。第6図は、第5図の電流波形
g1,h1,i1,j1,k1に相当する電圧波形でワイヤ突出長が16
mm,20mm,12mm,16mm,17mmと異なつている。
The set value output from the setter 115 described above is determined as follows. The short circuit time of g 1 , h 1 , i 1 , l 1 in Fig. 5 is approximately 2 msec.
In the current waveform of, j has a short circuit time of 3 msec. g 1 ~ j
In 1 the short-circuit current is controlled to be constant, and in l 1, the short-circuit current increases with time. FIG. 6 shows the current waveform of FIG.
A voltage waveform corresponding to g 1 , h 1 , i 1 , j 1 , k 1 with a wire protrusion length of 16
Different from mm, 20mm, 12mm, 16mm, 17mm.

第7図は第6図の電圧を時間tで微分した波形である。FIG. 7 is a waveform obtained by differentiating the voltage of FIG. 6 with respect to time t.

短絡電流を下げても、アークが再生する溶滴のくびれ
は、電圧波形でG21,H21,I21,J21点である。G21〜J21
はワイヤ突出長と短絡時間により左右されることがわか
る。したがつて上述の設定器115によつて設定する設定
値、即ち、溶接ワイヤのくびれを検知するレベルをワイ
ヤ突出長や短絡時間に応じてG21〜J21に変えればよいが
ワイヤ突出長は溶接者の手ぶれにより時々刻々変化し、
短絡時間も溶融池の振動やワイヤ送給速度変動などによ
り主として1〜4msecの間で変動する。したがつて従来
のように単に溶接ワイヤの電圧を検出するだけでは正確
なくびれ検出はできない。
Even if the short-circuit current is lowered, the constriction of the droplet that the arc regenerates is G 21 , H 21 , I 21 , J 21 points in the voltage waveform. G 21 through J 21 points is found to be governed by the short time the wire protruding length. Therefore, the set value set by the above-mentioned setting device 115, that is, the level for detecting the constriction of the welding wire may be changed to G 21 to J 21 according to the wire protrusion length or the short circuit time, but the wire protrusion length is It changes from moment to moment due to camera shake of the welder,
The short circuit time also fluctuates mainly within 1 to 4 msec due to vibration of the molten pool and fluctuations in the wire feed speed. Therefore, it is not possible to detect the constriction accurately by simply detecting the voltage of the welding wire as in the conventional case.

それ故この発明においては上述のように により溶接ワイヤのくびれを検出する。その方法として
は (1) が一定値K1(たとえばG31〜J31の平均値)に達した時を
くびれが生じたものを判断し電流を下げれば、ワイヤ突
出長や短絡時間に大きく左右されずにスパツタを減少さ
せることができる。すなわち理想的なK1値はワイヤ突出
長、短絡時間によつてG31〜J31と変化するがその平均値
を用いてもよい。
Therefore, in the present invention, as described above, Detects the constriction of the welding wire. The method is (1) When the current reaches a constant value K 1 (for example, the average value of G 31 to J 31 ), if the constriction is detected and the current is reduced, the spatula is reduced without being greatly affected by the wire protrusion length or the short circuit time. be able to. That is, the ideal K 1 value changes from G 31 to J 31 depending on the wire protrusion length and the short circuit time, but the average value may be used.

(2) 更により確実にスパツタを減少させるために
は、ワイヤ突出長、短絡時間に応じた理想的なK1値すな
わちG31〜J31のうちくびれに起因する電圧微分量と溶接
ワイヤの温度上昇に伴なう抵抗変化による電圧微分値と
を分離する必要がある。
(2) In order to reduce the spatter even more reliably, the ideal K 1 value corresponding to the wire protrusion length and the short circuit time, that is, the voltage differential amount due to the constriction of G 31 to J 31 and the welding wire temperature. It is necessary to separate from the voltage differential value due to the resistance change accompanying the rise.

第6図に見られるようにくびれ発生点G21〜J21から遠い
部分においても電圧はわずかに上昇している。この電圧
上昇は溶接ワイヤのくびれに関係のないものであるがワ
イヤ突出長、短絡時間によつて変わつている。この電圧
変化量は、第7図の電圧微分値で表わすとそれぞれ、1m
sec付近における値G32〜J32である。この電圧微分値
は、後述するようにワイヤ突出長の抵抗が短絡電流によ
り上昇することから生じる。従つてくびれに起因した電
圧微分値をK2とすると K2≒G31−G32≒……≒J31−J32≒一定である。
As shown in Fig. 6, the voltage is slightly increased even in the part far from the constriction occurrence points G 21 to J 21 . This voltage rise is not related to the constriction of the welding wire, but it changes depending on the wire protrusion length and the short circuit time. This voltage change amount is 1 m when expressed by the voltage differential value in FIG.
Values G 32 to J 32 near sec. This voltage differential value arises from the fact that the resistance of the wire protrusion length increases due to the short-circuit current, as will be described later. The voltage differential value resulting from the slave connexion constriction is to the K 2 ≒ G 31 -G 32 ≒ ...... ≒ J 31 -J 32 ≒ constant and K 2.

ワイヤ突出長部の抵抗変化は、短絡電流によりこの部分
の温度が上昇し、鋼は温度が上昇すると抵抗が増加する
ために起こるもので、概ね下式にて表現される。
The resistance change of the wire protrusion length portion occurs because the temperature of this portion rises due to the short-circuit current, and the resistance of steel increases as the temperature rises, and is generally expressed by the following formula.

△R:抵抗変化 β:温度による抵抗変化率 R:短絡直流の抵抗 IP:短絡電流 J:4.2(定数) ρ:密度 C:比熱 d:ワイヤ径 いま短電流IPは一定になるように制御しており、かつワ
イヤ径が決まつているので とおくと △R=kR△tと表わされ、 △V=△R・IP=kR△t・IP=kV△t (3) (∵V=R・IP)とみなせる、すなわち、抵抗変化によ
る電圧微分値dv/dt=△v/△t=kvである。
△ R: resistance change beta: resistance change rate with temperature R: short-circuit DC resistance I P: short-circuit current J: 4.2 (constant) [rho: Density C: specific heat d: wire diameter now short current I P as is constant Since it is controlled and the wire diameter is fixed, Putting the △ expressed as R = kR △ t, △ V = △ R · I P = kR △ t · I P = kV △ t (3) can be regarded as (∵V = R · I P) , i.e., The voltage differential value dv / dt = Δv / Δt = kv due to the resistance change.

このkvは第6においてG32〜J32に相当している。従つて
設定器115の設定値として、溶接ワイヤ電圧V、ある定
数kを乗算した値kVを用いてdV/dt≧K2+kVの時くびれ
が生じたものと判断し、電流を下げれば突出長や短絡時
間に左右されずにスパツタを減少させることが更に確実
になる。
This kv corresponds to G 32 to J 32 in the sixth. Therefore, it is determined that a constriction has occurred when dV / dt ≧ K 2 + kV using the value kV obtained by multiplying the welding wire voltage V and a certain constant k as the set value of the setter 115, and if the current is lowered, the protrusion length is reduced. It becomes more reliable to reduce spatter regardless of the short circuit time.

(3) 式(1)のIPは平均溶接電流を変えると最適値
は変化してくる。平均電流はワイヤ送給速度に略比例す
るものであるからワイヤ送給速度により変化すると言つ
ても良い。IP=一定とした時に(2)式が成立したわけ
であるからIPが他の値になつた時は、設定器115の設定
値をIPに応じて変化してもよい。
(3) The optimum value of I P in equation (1) changes when the average welding current is changed. Since the average current is substantially proportional to the wire feeding speed, it may be said that it changes depending on the wire feeding speed. Since the equation (2) is satisfied when I P = constant, the set value of the setter 115 may be changed according to I P when the I P becomes another value.

(4) またワイヤ電流iが時間と共に増加する場合に
は、電流増加分による電圧増加分を除去するため電流i
の時間微分di/dtを求め、ある比例定数kを乗したkdi/d
tを演算し、定数k1を加えて設定器115の設定値として dV/dt≧K1+kdi/dtとなつたとき電流を低減してもよ
い。たとえば、第5図のl1のような電流波形の場合は電
流増加のため第6図のl2のような電圧波形を示す。第7
図のl3はくびれに関係ない電流増加による電圧微分値を
示しており kdi/dt=l3とし、K1としてG31〜J31の平均値(≒G31
を設定しておき dV/dt≧K1+kdi/dt=G31+l3のときくびれが生じたもの
とみなし電流を下げることでスパツタを減少させ得る。
(4) When the wire current i increases with time, the current i is increased to remove the voltage increase due to the current increase.
Kdi / d obtained by calculating the time derivative di / dt of
The current may be reduced when t is calculated and a constant k 1 is added and the set value of the setter 115 is dV / dt ≧ K 1 + kdi / dt. For example, in the case of a current waveform such as l 1 in FIG. 5, a voltage waveform such as l 2 in FIG. 6 is shown because the current increases. 7th
In the figure, l 3 shows the voltage differential value due to the current increase regardless of constriction, kdi / dt = l 3, and K 1 is the average value of G 31 to J 31 (≒ G 31 ).
When dV / dt ≧ K 1 + kdi / dt = G 31 + l 3 is set, it is considered that a constriction has occurred, and the current can be reduced to reduce the spatter.

上述の(1)設定値を得るためには、第4図における設
定器115を単なるポテンシオメータとすればよい。この
場合には電圧検出器110,電流検出器112の信号を設定器1
15に印加することは不要である。
In order to obtain the above-mentioned (1) set value, the setter 115 in FIG. 4 may be simply a potentiometer. In this case, the signals from the voltage detector 110 and the current detector 112 are set by the setting device 1.
Applying to 15 is unnecessary.

また(2)の設定値を得るためには設定器115は、第8
図に示すように、電圧検出器110の信号を定数kとして
増幅器130により増幅し、これを加算器131に印加して、
設定器132から印加される定数k2との和をとつてk2+kV
を出力すればよい。
Further, in order to obtain the set value of (2), the setter 115 is
As shown in the figure, the signal of the voltage detector 110 is amplified by the amplifier 130 with the constant k, and this is applied to the adder 131,
Take the sum of the constant k 2 applied from the setter 132 and k 2 + kV
Should be output.

さらに(4)の設定値を得るためには、設定器115は第
9図に示すように、電流検出器112の信号を微分回路140
で時間微分し、その を増幅器141で増幅して とし、これを加算器142に印加して、設定器143から印加
される定数k1との和をとり を出力すればよい。
Further, in order to obtain the set value of (4), the setter 115 changes the signal of the current detector 112 to the differentiation circuit 140 as shown in FIG.
Time derivative with Is amplified by amplifier 141 This is applied to the adder 142 and the sum with the constant k 1 applied from the setter 143 is calculated. Should be output.

なお、第4図の回路において溶接電源101が、チヨツパ
式或いはインバータ式であつて、その出力電圧はリツプ
ルを含む場合には電圧検出器110,電流検出器112にそれ
ぞれローパスフイルタを設ければよい。
If the welding power source 101 in the circuit of FIG. 4 is a tipper type or an inverter type and its output voltage includes ripples, the voltage detector 110 and the current detector 112 may be provided with low pass filters, respectively. .

実験結果 溶接電流を150A,溶接電圧を20V,溶接ワイヤ送給速度を2
0cm/min,シールドガスCO2 20/min,の条件で1.2mmφの
溶接ワイヤを用い、12mm厚の母材に半自動溶接でビード
オンプレート溶接を10分間行ないシールドノズルに付着
したスパツタ量を比較した。
Experimental results Welding current 150A, welding voltage 20V, welding wire feeding speed 2
Using 1.2 mmφ welding wire under the conditions of 0 cm / min and shielding gas CO 2 20 / min, the bead-on-plate welding was performed on the 12 mm thick base metal by semi-automatic welding for 10 minutes, and the amount of spatter adhered to the shield nozzle was compared. .

なお溶接電源として (I) 市販サイリスタ型溶接電源(くびれ検出による
溶接電流の制御なし) (II) 本発明による第1の装置、第3図のdのタイミ
ングにおいて溶接ワイヤと母材間の電圧Vについて となつたとき溶接ワイヤ電流を50Aに低下する。
As a welding power source (I) Commercially available thyristor type welding power source (no control of welding current by necking detection) (II) First device according to the present invention, voltage V between welding wire and base metal at timing d in FIG. about The welding wire current is reduced to 50A.

(III) 本発明による第2の装置:第3図のdのタイ
ミングにおいて となつたとき溶接ワイヤ電流を50Aに低下する。
(III) Second device according to the present invention: at timing d in FIG. The welding wire current is reduced to 50A.

この実験により下表のような結果を得た。From this experiment, the results shown in the table below were obtained.

発明の効果 以上詳述したようにこの発明は短絡移行溶接において、
短絡からアーク再発生の間に溶接ワイヤと母材間の電圧
Vの時間的変化 を検出し、この が設定値に達したとき溶接ワイヤの電流を低減するよう
にしたから溶接ワイヤのくびれの発生を確実に検知し、
これに対応して電流を低減することにより、スパツタの
発生を低減させることができ、結果的に高品質の溶接が
行なえるとともに、溶接作業能率を向上することができ
る。
Effects of the Invention As described in detail above, in the present invention, in short-circuit transfer welding,
Temporal change of voltage V between welding wire and base metal during short circuit and arc generation Detect this When the current reaches the set value, the current of the welding wire is reduced, so the occurrence of the constriction of the welding wire can be reliably detected,
By correspondingly reducing the current, it is possible to reduce the generation of spatter, and as a result, it is possible to perform high quality welding and improve the welding work efficiency.

【図面の簡単な説明】[Brief description of drawings]

第1図は短絡移行溶接の一例を示す波形図、第2図は溶
接装置の概略を示す電気回路図、第3図は短絡移行溶接
の電圧、電流波形を溶接ワイヤの状態と併せて示す図、
第4図はこの発明の一実施例を示すブロツク図、第5図
ないし第7図は溶接ワイヤの電流、電圧および電圧微分
値の変化を示すグラフ、第8図と第9図は第4図の実施
例の設定器の変形例を示すブロツク図である。 101……溶接電源、103……溶接ワイヤ、106……母材、1
10……電圧検出器、112……電流検出器、113……微分回
路、114……比較器。
FIG. 1 is a waveform diagram showing an example of short-circuit transition welding, FIG. 2 is an electric circuit diagram showing the outline of a welding apparatus, and FIG. 3 is a diagram showing voltage and current waveforms of short-circuit transition welding together with the state of the welding wire. ,
FIG. 4 is a block diagram showing an embodiment of the present invention, FIGS. 5 to 7 are graphs showing changes in current, voltage and voltage differential value of the welding wire, and FIGS. 8 and 9 are FIG. FIG. 13 is a block diagram showing a modified example of the setting device of the embodiment. 101 …… welding power source, 103 …… welding wire, 106 …… base metal, 1
10 ... voltage detector, 112 ... current detector, 113 ... differentiating circuit, 114 ... comparator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 正晴 神奈川県鎌倉市手広731−1 (56)参考文献 特開 昭58−29575(JP,A) 特開 昭57−199565(JP,A) 特開 昭55−8397(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaharu Sato 731-1 Tehiro, Kamakura City, Kanagawa Prefecture (56) References JP-A-58-29575 (JP, A) JP-A-57-199565 (JP, A) Special Kai 55-8397 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】短絡を伴う溶接に用いる電源の制御方法に
おいて、短絡時の溶接ワイヤと母材間の電圧Vの時間的
変化dv/dtが溶接ワイヤと母材間の電圧または電流の関
数である所定値に達したとき、電源の出力電流を低減す
ることを特徴とする短絡移行溶接電源の制御方法。
1. A method of controlling a power source used for welding with a short circuit, wherein the temporal change dv / dt of the voltage V between the welding wire and the base metal at the time of short circuit is a function of the voltage or current between the welding wire and the base metal. A method for controlling a short-circuit transfer welding power source, which comprises reducing an output current of the power source when a predetermined value is reached.
【請求項2】出力電流可変の溶接電源と、溶接ワイヤと
母材間の電圧を検出する電圧検出手段と検出された電圧
値の時間的変化量を演算する手段と、溶接ワイヤと母材
間の電圧を表す値と定数との和を出力する回路かまたは
溶接電流の微分値を表す値と定数との和を出力する回路
を有する設定手段と、電圧の時間的変化が設定手段で設
定された所定値を越えたことを検出する比較手段とを備
え比較手段の信号によって溶接電源の出力電流を低減す
ることを特徴とする短絡移行溶接電源の制御装置。
2. A welding power source having a variable output current, a voltage detecting means for detecting a voltage between the welding wire and the base material, a means for calculating a temporal change amount of the detected voltage value, and a welding wire and the base material. Setting means having a circuit for outputting the sum of the value representing the voltage and a constant or a circuit for outputting the sum of the value representing the differential value of the welding current and the constant, and the time change of the voltage is set by the setting means. And a comparison means for detecting that the predetermined value is exceeded, and the output current of the welding power supply is reduced by a signal from the comparison means.
JP58074531A 1983-04-26 1983-04-26 Short-circuit transfer welding power source control method and apparatus Expired - Lifetime JPH078434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58074531A JPH078434B2 (en) 1983-04-26 1983-04-26 Short-circuit transfer welding power source control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58074531A JPH078434B2 (en) 1983-04-26 1983-04-26 Short-circuit transfer welding power source control method and apparatus

Publications (2)

Publication Number Publication Date
JPS59199175A JPS59199175A (en) 1984-11-12
JPH078434B2 true JPH078434B2 (en) 1995-02-01

Family

ID=13549968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58074531A Expired - Lifetime JPH078434B2 (en) 1983-04-26 1983-04-26 Short-circuit transfer welding power source control method and apparatus

Country Status (1)

Country Link
JP (1) JPH078434B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10120744A1 (en) * 2001-04-20 2002-10-24 Univ Berlin Tech Process for minimizing the electric arc stream during refiring in a metal-protective gas welding process comprises activating an adjustment at the start of a short circuit and is active for the duration of the short circuit
JP4875390B2 (en) * 2006-03-27 2012-02-15 株式会社ダイヘン Constriction detection control method for consumable electrode arc welding
JP5082665B2 (en) * 2007-08-09 2012-11-28 パナソニック株式会社 Arc welding control method and arc welding machine
JP5822539B2 (en) * 2011-05-27 2015-11-24 株式会社ダイヘン Welding equipment
JP6055663B2 (en) * 2012-07-18 2016-12-27 株式会社ダイヘン Output control method of welding power source
JP6421321B2 (en) * 2014-05-16 2018-11-14 パナソニックIpマネジメント株式会社 Arc welding control method and arc welding apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE425222B (en) * 1978-05-30 1982-09-13 Thermal Dynamics Corp SHORT REAR WELDING DEVICE
JPS57199565A (en) * 1981-06-02 1982-12-07 Toyota Motor Corp Short circuit transfer arc welding machine
JPS5829575A (en) * 1981-08-13 1983-02-21 Murase Kogyo Kk Electric power source device for welding

Also Published As

Publication number Publication date
JPS59199175A (en) 1984-11-12

Similar Documents

Publication Publication Date Title
KR101642548B1 (en) Short arc welding system
US5225660A (en) Consumable-electrode ac gas shield arc welding method and apparatus therefor
CA2695215C (en) Method and device to clad, or hard-face for minimizing admixture
EP0342691B1 (en) Pulse arc discharge welding apparatus
JP3132409B2 (en) Consumable electrode type pulse arc welding machine controller
JP4181384B2 (en) Welding current control method for pulse arc welding
JPH078434B2 (en) Short-circuit transfer welding power source control method and apparatus
JPH11138265A (en) Dc pulsed mag welding method and its equipment
JPH0938772A (en) Ac self-shielded arc welding method
JP3195513B2 (en) Power control method of power supply for consumable electrode type gas shield pulse arc welding
JPH069741B2 (en) Short-circuit transfer welding power source control method and apparatus
JPS626775A (en) Consumable electrode type arc welding machine
JP3736065B2 (en) Output control device for consumable electrode arc welding machine
JP5871360B2 (en) Constriction detection control method for consumable electrode arc welding
JP2917055B2 (en) Consumable electrode arc welding equipment
JPS59202176A (en) Method and device for controlling current for short circuit transfer welding
JPS58224070A (en) Arc welding
JPH0570549B2 (en)
CN112643177A (en) Consumable electrode pulse arc welding method and welding apparatus
EP3388180A1 (en) Welding systems with short circuit welding using self-shielded electrode
JP4294149B2 (en) Arc current control method and welding apparatus
JP4331284B2 (en) Short-circuit transfer arc welding method
JPH0615105B2 (en) Short circuit transfer arc welder
JP3395591B2 (en) Electrode pulse arc welding machine
JPS61229472A (en) Method and apparatus for controlling consumable electrode type arc welding device