JPH0782450A - Electrolyte sheet - Google Patents
Electrolyte sheetInfo
- Publication number
- JPH0782450A JPH0782450A JP5189207A JP18920793A JPH0782450A JP H0782450 A JPH0782450 A JP H0782450A JP 5189207 A JP5189207 A JP 5189207A JP 18920793 A JP18920793 A JP 18920793A JP H0782450 A JPH0782450 A JP H0782450A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte sheet
- powder
- copolymer
- salt
- electrically insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Primary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電池、キャパシター、
センサー、表示素子、記録素子等の電気化学素子に用い
られる電解質シートに関する。The present invention relates to a battery, a capacitor,
The present invention relates to an electrolyte sheet used in electrochemical devices such as sensors, display devices and recording devices.
【0002】[0002]
【従来の技術】シート状の電解質を用いることで、A4
版、B5版等の大面積でしかも薄形の電池、電気二重層
キャパシタ、あるいはエレクトロクロミック表示素子等
の電気化学デバイスを得ることができる。この様な目的
に合った電解質として、(a)リチウム塩を溶解した有
機溶媒をポリフッ化ビニリデンの共重合体でゲル化した
電解質(特開昭58ー75779号公報)や、(b)イ
オン伝導性の無機化合物に可塑性樹脂を複合化すること
で可撓性を付与し、機械的衝撃に対しても破損しにくい
固体電解質シートとする試み(特開昭63ー24587
1号公報)、(c)ポリエチレンオキシドとアルカリ金
属塩とからなるフィルム加工が可能な高分子固体電解質
("Fast Ion Transport in Solid" P.Vanishsta et.a
l., Eds. P.131(1979) North Holand Publishing Co.)
などが提案されている。2. Description of the Related Art By using a sheet-shaped electrolyte, A4
It is possible to obtain a large-area and thin battery such as a plate and B5 plate, an electric double layer capacitor, or an electrochemical device such as an electrochromic display element. As an electrolyte suitable for such a purpose, (a) an electrolyte in which an organic solvent in which a lithium salt is dissolved is gelled with a copolymer of polyvinylidene fluoride (JP-A-58-75779), and (b) ion conduction An attempt to provide a solid electrolyte sheet which is made flexible by adding a plastic resin to a water-soluble inorganic compound and which is not easily damaged by mechanical impact (Japanese Patent Laid-Open No. 63-24587).
No. 1), (c) a film-processable polymer solid electrolyte composed of polyethylene oxide and an alkali metal salt ("Fast Ion Transport in Solid" P. Vanishsta et.a.
l., Eds. P. 131 (1979) North Holand Publishing Co.)
Have been proposed.
【0003】[0003]
【発明が解決しようとする課題】上述の(a)は大面
積、たとえば100cm2で、かつ厚みが200μm程
度のシート状とした場合、それ自身で形状を保持するの
は困難であるし、長期に渡って保存していると溶媒の浸
み出しが起こり収縮が起こり形状が変化する欠点があ
る。また、(b)は溶媒を含んでいないので、通常の可
塑性樹脂フィルムと同様に大面積でかつ薄膜化が可能
で、また上述のような形状の変化は無いが、可塑性樹脂
と混合される無機化合物のイオン伝導度は大きいもので
も室温で10ー3S/cm程度であり、十分なシート形成
能を与えるために絶縁性の可塑性樹脂を大量に混合する
ので、さらに伝導度は一桁から二桁小さくなり、室温で
10ー4〜10ー5S/cm程度の伝導度がせいぜい得られ
るのみである。さらに、(c)はシート形成能が十分あ
り厚みが200μm以下であっても大面積のフィルムが
得られるが、イオン伝導度は(b)よりもさらに低く1
0ー5〜10ー6S/cm程度しか得られないと云う欠点が
ある。従って、本発明の目的は、厚みが200μm以下
であっても大面積で、保存中における溶媒の浸み出しが
起こらず形状の変化がなく、しかも室温で10-3S/c
m程度以上の高いイオン伝導度を有する電解質シートを
提供することである。In the case of (a) described above, if a sheet having a large area, for example, 100 cm 2 and a thickness of about 200 μm is formed, it is difficult to maintain the shape by itself, and it is difficult to maintain the shape for a long time. If it is stored over a period of time, there is a drawback that the solvent seeps out and contracts, resulting in a change in shape. In addition, since (b) does not contain a solvent, it can have a large area and can be thinned like an ordinary plastic resin film, and there is no change in shape as described above, but it is an inorganic material mixed with a plastic resin. Even if the compound has a large ionic conductivity, it is about 10 −3 S / cm at room temperature, and since a large amount of insulating plastic resin is mixed to give a sufficient sheet forming ability, the conductivity is further from one digit to two digits. digit decreases, 10 @ 4 -10 over 5 S / cm order of conductivity at room temperature is at most only obtained. Further, (c) has a sufficient sheet-forming ability and a large-area film can be obtained even when the thickness is 200 μm or less, but the ionic conductivity is lower than that of (b).
0 over 5 -10 over 6 S / cm only about it it is not obtained and referred drawbacks. Therefore, the object of the present invention is to provide a large area even if the thickness is 200 μm or less, to prevent solvent leaching during storage, to prevent change in shape, and to obtain 10 −3 S / c at room temperature.
An object is to provide an electrolyte sheet having a high ionic conductivity of about m or more.
【0004】[0004]
【課題を解決するための手段】上記目的を達成する本発
明の電解質シートは、アクリロニトリルとアクリル酸メ
チルもしくはメタクリル酸メチルまたは酢酸ビニルとの
共重合体と、塩を溶解した非プロトン性溶媒と、アルミ
ナあるいはシリカを含む電気絶縁性無機物質の粉末より
成ることを特徴とする。Means for Solving the Problems The electrolyte sheet of the present invention which achieves the above objects, comprises a copolymer of acrylonitrile and methyl acrylate or methyl methacrylate or vinyl acetate, and an aprotic solvent in which a salt is dissolved, It is characterized by being composed of powder of an electrically insulating inorganic substance containing alumina or silica.
【0005】[0005]
【作用】本発明の電解質シートは、特定の共重合体であ
るアクリロニトリルとアクリル酸メチルもしくはメタク
リル酸メチルまたは酢酸ビニルとの共重合体と、アルミ
ナあるいはシリカを含む電気絶縁性無機物質の粉末とを
含んでおり、塩を溶解した非プロトン性溶媒が共重合体
の作用によりゲル化した際、ゲル内に在ってアルミナあ
るいはシリカを含む電気絶縁性無機物質の粉末は、共重
合体の架橋点として作用し、共重合体分子が絡まった編
目構造が発達し、塩を溶解した非プロトン性溶媒を有効
に保持するため、長期間に渡り保存しておいても溶媒の
浸み出しは全く起こらない。アルミナあるいはシリカを
含む電気絶縁性無機物質の粉末が架橋点として作用する
ことにより、大面積で200μm以下の厚さであっても
可撓性に富んだ機械強度の高い自己支持性に優れた電解
質シートとなる。The electrolyte sheet of the present invention comprises a copolymer of acrylonitrile, which is a specific copolymer, and methyl acrylate or methyl methacrylate or vinyl acetate, and an electrically insulating inorganic substance powder containing alumina or silica. When an aprotic solvent containing a salt is gelled by the action of the copolymer, the powder of the electrically insulating inorganic substance containing alumina or silica in the gel is a cross-linking point of the copolymer. Acts as a solvent and develops a knitted structure in which the copolymer molecules are entangled, and effectively retains the aprotic solvent in which the salt is dissolved, so that the solvent does not seep out even when stored for a long period of time. Absent. The powder of electrically insulating inorganic material containing alumina or silica acts as a cross-linking point, so that the electrolyte is flexible and has high mechanical strength and excellent self-supporting property even if the area is 200 μm or less. It becomes a sheet.
【0006】本発明の電解質シートを得るには、先ず、
塩を溶解した非プロトン性の溶媒(以下、電解液と記
す)にアクリロニトリルとアクリル酸メチルもしくはメ
タクリル酸メチルまたは酢酸ビニルとの共重合体(以
下、PAN−MAもしくはPAN−MMAまたはPAN
−VAと記す)の粉末を溶解する。溶解して得られた粘
性液体中に、予め乾燥したアルミナあるいはシリカを含
む電気絶縁性無機物質の粉末を添加し、均一に分散す
る。得られた分散液をガラス板上に展開したのち0℃以
下に冷却することで作製する。To obtain the electrolyte sheet of the present invention, first,
A copolymer of acrylonitrile and methyl acrylate or methyl methacrylate or vinyl acetate (hereinafter referred to as PAN-MA or PAN-MMA or PAN) in an aprotic solvent in which a salt is dissolved (hereinafter referred to as an electrolytic solution)
-VA). A powder of an electrically insulating inorganic substance containing alumina or silica, which has been dried in advance, is added to the viscous liquid obtained by dissolution, and uniformly dispersed. It is prepared by spreading the obtained dispersion on a glass plate and then cooling it to 0 ° C. or lower.
【0007】PAN−MAもしくはPAN−MMAは、
平均分子量が2万〜10万のものが好ましい。2万より
小さいと、冷却してもゲル化が起こらず自己支持性のあ
るシートとならない。10万より大きいと、粘性液体の
粘度が高くなり、アルミナあるいはシリカを含む電気絶
縁性無機物質の粉末が均一分散されず均一な膜が得られ
ない。粘性液体の粘度を下げるのに、加熱、溶媒による
希釈が有効であるが、分子量が10万以上になると、加
熱温度を上げれば分散に必要な粘度に下がる前に共重合
体の熱分解が起こる。また、希釈剤を用いると凝固が起
こり、共重合体と溶媒とが分離する。PAN−MAもし
くはPAN−MMAの共重合モル比は、PAN:MAも
しくはMMA=95:5〜60:40が好ましい。この
範囲内であると、共重合体は電解液に溶解し、アルミナ
あるいはシリカを含む電気絶縁性無機物質の粉末の分散
に好適な粘度(約500〜3000cps)の粘性液体
が得られる。PAN-MA or PAN-MMA is
Those having an average molecular weight of 20,000 to 100,000 are preferable. If it is less than 20,000, gelation does not occur even when cooled and a sheet having a self-supporting property cannot be obtained. If it is more than 100,000, the viscosity of the viscous liquid becomes high, and the powder of the electrically insulating inorganic substance containing alumina or silica is not uniformly dispersed, and a uniform film cannot be obtained. Heating and dilution with a solvent are effective in reducing the viscosity of viscous liquids, but when the molecular weight is 100,000 or more, thermal decomposition of the copolymer occurs before the viscosity decreases to the level required for dispersion if the heating temperature is raised. . Further, when a diluent is used, coagulation occurs and the copolymer and the solvent are separated. The copolymerization molar ratio of PAN-MA or PAN-MMA is preferably PAN: MA or MMA = 95: 5 to 60:40. Within this range, the copolymer will dissolve in the electrolytic solution, and a viscous liquid having a viscosity (about 500 to 3000 cps) suitable for dispersing the powder of the electrically insulating inorganic substance containing alumina or silica can be obtained.
【0008】また、PAN−VAは、平均分子量が10
万〜100万のものが好ましい。10万より小さいと、
冷却してもゲル化が起こらず自己形状保持性のあるシー
トとならない。100万より大きいと、粘性液体の粘度
が高くなり、絶縁性無機物質の粉末が均一分散されず均
一な膜が得られない。粘性液体の粘度を下げるのに、加
熱、溶媒による希釈が有効であるが、分子量が100万
以上になると、加熱温度を上げれば分散に必要な粘度に
下がる前に共重合体の熱分解が起こる。また、希釈剤を
用いると凝固が起こり、共重合体と溶媒とが分離する。
PAN−MAの共重合モル比は、PAN:VA=99:
1〜80:20が好ましい。この範囲内であると、共重
合体は電解液に溶解し、絶縁性無機物質粉末の分散に好
適な粘度(約500〜3000cps)の粘性液体が得
られる。PAN-VA has an average molecular weight of 10
It is preferably from 1,000,000 to 1,000,000. If it is less than 100,000,
Even if cooled, gelation does not occur and a sheet having a self-shape retention is not obtained. When it is more than 1,000,000, the viscosity of the viscous liquid becomes high, the powder of the insulating inorganic substance is not uniformly dispersed, and a uniform film cannot be obtained. Although heating and dilution with a solvent are effective in reducing the viscosity of viscous liquids, when the molecular weight reaches 1,000,000 or more, thermal decomposition of the copolymer occurs before the viscosity decreases to that required for dispersion if the heating temperature is raised. . Further, when a diluent is used, coagulation occurs and the copolymer and the solvent are separated.
The copolymerization molar ratio of PAN-MA is PAN: VA = 99 :.
1 to 80:20 is preferable. Within this range, the copolymer will dissolve in the electrolytic solution, and a viscous liquid having a viscosity (about 500 to 3000 cps) suitable for dispersing the insulating inorganic substance powder can be obtained.
【0009】電解液に用いる塩としては、LiClO
4 、LiBF4 、LiPF6 、LiAsF6 、LiCF
3SO3 、LiI、NaBF4 、(C2H5)4NBF4、
安息香酸アンモニウム、あるいは酒石酸アンモニウム等
のアルカリ金属塩、アルカリ土類金属塩、アンモニウム
塩が用いられる。塩の濃度は0.5M〜1.5Mが最も
高いイオン伝導度が得られるので好ましい。電解液に用
いる非プロトン性の溶媒としては、ブチレンカーボネー
ト、プロピレンカーボネート、エチレンカーボネート、
ジエチルカーボネート、ジメチルカーボネート、スルホ
ラン、メチルスルホラン、ジメトキシエタン、ジメチル
ホルムアミド、ジメチルスルホキシド、テトラヒドロフ
ラン、アセトニトリルあるいはこれらの混合物が用いら
れる。LiClO is used as the salt for the electrolytic solution.
4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF
3 SO 3 , LiI, NaBF 4 , (C 2 H 5 ) 4 NBF 4 ,
An alkali metal salt such as ammonium benzoate or ammonium tartrate, an alkaline earth metal salt, or an ammonium salt is used. A salt concentration of 0.5 M to 1.5 M is preferable because the highest ionic conductivity is obtained. As the aprotic solvent used for the electrolytic solution, butylene carbonate, propylene carbonate, ethylene carbonate,
Diethyl carbonate, dimethyl carbonate, sulfolane, methyl sulfolane, dimethoxyethane, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, acetonitrile or a mixture thereof is used.
【0010】アルミナあるいはシリカを含む電気絶縁性
の無機物質の粉末としては、アルミナ粉末、シリカゲル
粉末、多孔質ガラス粉末、溶融ガラス粉末、硅酸アルミ
ニウム粉末などが好適に用いられる。これらの粉末の形
状は、球状、繊維状、板状いずれであってもよい。ま
た、表面がビニルモノマーの重合体で改質したこれらの
無機物質の粉末を用いることで、共重合体を溶解した粘
性の電解液内でのこれら粉末の均一分散が有効に達成で
きるとともに、より可撓性、弾性のある電解質シートと
することができる。ビニルモノマーとしては、メタクリ
ル酸メチル、アクリロニトリル、スチレン、酢酸ビニ
ル、塩化ビニル、ブタジエン、イソプレン等を用いるこ
とができる。中でも、ゲルを形成するPAN−MA、P
AN−MMAまたはPAN−VA共重合体の成分である
アクリル酸メチル、メタクリル酸メチルまたは酢酸ビニ
ルを用いると、さらに高い均一性と機械的強度が得られ
るので好ましい。As the powder of the electrically insulating inorganic substance containing alumina or silica, alumina powder, silica gel powder, porous glass powder, molten glass powder, aluminum silicate powder and the like are preferably used. The shape of these powders may be spherical, fibrous, or plate-like. Further, by using the powder of these inorganic substances whose surface is modified with a polymer of vinyl monomer, it is possible to effectively achieve the uniform dispersion of these powders in the viscous electrolytic solution in which the copolymer is dissolved, and The electrolyte sheet can be flexible and elastic. As the vinyl monomer, methyl methacrylate, acrylonitrile, styrene, vinyl acetate, vinyl chloride, butadiene, isoprene and the like can be used. Among them, PAN-MA, P that forms a gel
It is preferable to use methyl acrylate, methyl methacrylate or vinyl acetate, which is a component of the AN-MMA or PAN-VA copolymer, because higher homogeneity and mechanical strength can be obtained.
【0011】無機物質粉末の表面は、ビニルモノマーの
重合体により次のようにして改質される。無機物質粉末
を水媒体中に懸濁し、アルキルアンモニウム四級塩と過
硫酸カリウムあるいは過硫酸アンモニウムを加え、無機
物質粉末表面に難溶性の複塩を形成する。次に、ビニル
モノマーを懸濁液に加えると、複塩が重合開始剤として
作用し、粉体表面でビニルモノマーの重合が起こり、ビ
ニルモノマーの重合体により表面が被覆され改質され
る。あるいは複塩を形成することなく、無機物質粉末の
懸濁液にビニルモノマーを加えたのち、アミン類を重合
開始剤として用いてビニルモノマーの重合体を表面に形
成してもよい。無機粉末の添加量は特に制限はないが、
良好な機械強度と高いイオン伝導性を得るには、電解液
と共重合体の合計の重量に対し0.5%から10%の範
囲であることが好ましい。The surface of the inorganic substance powder is modified with a polymer of vinyl monomer as follows. The inorganic substance powder is suspended in an aqueous medium, and an alkylammonium quaternary salt and potassium persulfate or ammonium persulfate are added to form a sparingly soluble double salt on the surface of the inorganic substance powder. Next, when the vinyl monomer is added to the suspension, the double salt acts as a polymerization initiator, polymerization of the vinyl monomer occurs on the powder surface, and the surface is coated and modified by the vinyl monomer polymer. Alternatively, the vinyl monomer may be added to the suspension of the inorganic material powder without forming a double salt, and then a vinyl monomer polymer may be formed on the surface by using amines as a polymerization initiator. The addition amount of the inorganic powder is not particularly limited,
In order to obtain good mechanical strength and high ionic conductivity, it is preferably in the range of 0.5% to 10% based on the total weight of the electrolytic solution and the copolymer.
【0012】[0012]
【実施例】以下、実施例により本発明を更に詳しく説明
する。 [実施例1]LiBF4を4.6g溶かしたエチレンカ
ーボネート(以下、ECと記す)−スルホラン(以下、
SLと記す)(EC:SL=1:1容積比)混合溶媒よ
りなる電解液40g中に、PANとMAの共重合モル比
が90:10、平均分子量が45,000のPAN−M
A共重合体粉末を6.0g加え、150℃に加熱して透
明な粘性溶液とした後、アセトニトリル60gを加えて
希釈し、粘度が1550cpsの溶液を調製する。次
に、多孔性のシリカゲル粉末(富士デビソン社製サイロ
イド404、平均粒径5.2μm、比表面積300m2
/g)2gを、蒸留水50mlに分散したのち、セチル
トリエチルアンモニウムブロマイドを0.7mmol、
過硫酸カリウムを0.2mmol加え, さらにメタクリ
ル酸メチルを3.5mmolを加えた後、60℃で17
時間重合を行う。沈澱物をメタノールで洗浄した後、8
0℃で72時間真空乾燥して、表面を改質したシリカゲ
ル粉末を得る。The present invention will be described in more detail with reference to the following examples. Example 1 Ethylene carbonate (hereinafter referred to as EC) -sulfolane (hereinafter, referred to as EC) in which 4.6 g of LiBF 4 was dissolved
(Hereinafter referred to as SL) (EC: SL = 1: 1 volume ratio) In 40 g of an electrolytic solution composed of a mixed solvent, a PAN-M having a copolymerization molar ratio of PAN and MA of 90:10 and an average molecular weight of 45,000.
After adding 6.0 g of A copolymer powder and heating to 150 ° C. to make a transparent viscous solution, 60 g of acetonitrile is added to dilute it to prepare a solution having a viscosity of 1550 cps. Next, porous silica gel powder (Syroid 404 manufactured by Fuji Devison Co., average particle size 5.2 μm, specific surface area 300 m 2
/ G) 2 g was dispersed in 50 ml of distilled water, and then 0.7 mmol of cetyltriethylammonium bromide was added,
Add 0.2 mmol of potassium persulfate and 3.5 mmol of methyl methacrylate, and then add 17
Polymerize for a period of time. After washing the precipitate with methanol, 8
Vacuum-dry at 72 ° C. for 72 hours to obtain surface-modified silica gel powder.
【0013】このようにして調製したシリカゲル粉末
1.5gを先に調製した溶液に加え、ホモジナイザーで
均一に分散して懸濁液を得る。この懸濁液を、直径90
mmのガラスシャーレに流延し、40cmHgの減圧下
で60℃に加熱し、アセトニトリルを散逸させたのち、
マイナス20℃に冷却することで厚さ120μmの電解
質シートAを得る。電解質シートAは、ガラスシャーレ
から容易に剥がれ、可撓性に富んだ膜で、直径50mm
の円柱の外周に沿って折り曲げる試験を3000回繰り
返した後も破れることはなかった。このシートを直径1
2.5mmの円板に打ち抜き、リチウム円板に挟んで伝
導度を測定したところ、20℃で1×10-3S/cm、
マイナス20℃で2×10-4S/cmの高伝導度を与え
た。1.5 g of the silica gel powder thus prepared is added to the previously prepared solution and uniformly dispersed with a homogenizer to obtain a suspension. This suspension is
After casting on a glass petri dish of mm and heating to 60 ° C. under reduced pressure of 40 cmHg to dissipate acetonitrile,
By cooling to −20 ° C., an electrolyte sheet A having a thickness of 120 μm is obtained. The electrolyte sheet A is a flexible film that easily peels off from the glass petri dish and has a diameter of 50 mm.
Even after repeating the test of bending along the outer circumference of the column of 3000 times 3000 times, it did not break. This sheet has a diameter of 1
When punched into a 2.5 mm disc and sandwiched between lithium discs, the conductivity was measured and found to be 1 × 10 −3 S / cm at 20 ° C.
It gave a high conductivity of 2 × 10 −4 S / cm at −20 ° C.
【0014】[比較例1]LiBF4を4.6g溶かし
たEC−SL(EC:SL=1:1容積比)混合溶媒よ
りなる電解液40g中に、PANとMAの共重合モル比
が90:10、平均分子量が45,000のPAN−M
A共重合体粉末を6.0g加え、150℃に加熱して透
明な粘性溶液とした後、アセトニトリル60gを加えて
希釈し粘度が1550cpsの溶液を調製する。この溶
液を、直径90mmのガラスシャーレに流延し、40c
mHgの減圧下で60℃に加熱し、アセトニトリルを散
逸させたのち、マイナス20℃に冷却することで厚さ6
70μmの電解質シートBを得る。電解質シートBは、
直径90mmの膜としてガラスシャーレから剥がすこと
が可能であるが、電解質シートAに較べ破れや易く慎重
な取扱いが必要であった。流延する量を1/5に減らし
て、より薄い電解質シートの製膜を試みたが、できた膜
は、自己保持性に乏しく、ガラスシャーレから剥がすこ
とは困難で、また破れやすく取扱いが極めて困難であっ
た。[Comparative Example 1] In 40 g of an electrolytic solution composed of an EC-SL (EC: SL = 1: 1 volume ratio) mixed solvent in which 4.6 g of LiBF 4 was dissolved, a copolymerization molar ratio of PAN and MA was 90. : 10, PAN-M having an average molecular weight of 45,000
After adding 6.0 g of A copolymer powder and heating to 150 ° C. to make a transparent viscous solution, 60 g of acetonitrile is added to dilute to prepare a solution having a viscosity of 1550 cps. This solution was cast on a glass petri dish having a diameter of 90 mm to obtain 40c.
Heat to 60 ° C under reduced pressure of mHg to dissipate acetonitrile, then cool to -20 ° C to obtain a thickness of 6
An electrolyte sheet B having a thickness of 70 μm is obtained. The electrolyte sheet B is
It can be peeled off from a glass petri dish as a film having a diameter of 90 mm, but it is more liable to break than the electrolyte sheet A and requires careful handling. We tried to reduce the casting amount to 1/5 and tried to form a thinner electrolyte sheet. However, the resulting membrane has poor self-holding property, is difficult to peel from a glass petri dish, and is easy to tear and is extremely difficult to handle. It was difficult.
【0015】[実施例2]LiBF4を4.6g溶かし
たEC−プロピレンカーボネート(以下、PCと記す)
(EC:PC=1:1容積比)混合溶媒よりなる電解液
40g中に、PANとMAの共重合モル比が75:2
5、平均分子量が43,000のPAN−MA共重合体
粉末を6.0g加え、150℃に加熱して透明な粘性溶
液とした後、アセトニトリル60gを加えて希釈し、粘
度が2950cpsの溶液を調製する。次に、150℃
で17時間真空乾燥したアルミナ粉末(住友化学工業
製、低ソーダアルミナ粉末ALーM41、中心粒径1.
9μm)3gを、蒸留水50mlに分散したのち、セチ
ルトリエチルアンモニウムブロマイドを0.7mmo
l、過硫酸カリウムを0.2mmol加え, さらにスチ
レンを3.5mmolを加えた後、60℃で17時間重
合を行う。沈澱物をメタノールで洗浄した後、80℃で
72時間真空乾燥して、表面を改質したアルミナ粉末を
得る。[Example 2] EC-propylene carbonate (hereinafter referred to as PC) in which 4.6 g of LiBF 4 was dissolved
(EC: PC = 1: 1 volume ratio) The copolymerization molar ratio of PAN and MA was 75: 2 in 40 g of an electrolytic solution containing a mixed solvent.
5. After adding 6.0 g of PAN-MA copolymer powder having an average molecular weight of 43,000 and heating to 150 ° C. to give a transparent viscous solution, 60 g of acetonitrile was added to dilute the solution to obtain a solution having a viscosity of 2950 cps. Prepare. Next, 150 ℃
Alumina powder vacuum-dried for 17 hours (Sumitomo Chemical Co., Ltd., low soda alumina powder AL-M41, central particle size 1.
9 μm) 3 g was dispersed in 50 ml of distilled water, and 0.7 ml of cetyltriethylammonium bromide was added.
1, 0.2 mmol of potassium persulfate and 3.5 mmol of styrene were further added, followed by polymerization at 60 ° C. for 17 hours. The precipitate is washed with methanol and then vacuum dried at 80 ° C. for 72 hours to obtain a surface-modified alumina powder.
【0016】このようにして調製したアルミナ粉末1.
5gを先に調製した溶液に加え、ホモジナイザーで均一
に分散して懸濁液を得る。この懸濁液を、直径90mm
のガラスシャーレに流延し、40cmHgの減圧下で6
0℃に加熱し、アセトニトリルを散逸させたのち、マイ
ナス20℃に冷却することで厚さ160μmの電解質シ
ートCを得る。電解質シートCは、ガラスシャーレから
容易に剥がれ、可撓性に富んだ膜で、直径50mmの円
柱の外周に沿って折り曲げる試験を3000回繰り返し
た後も破れることはなかった。 このシートを直径1
2.5mmの円板に打ち抜き、リチウム円板に挟んで伝
導度を測定したところ、20℃で9×10-4S/cm、
マイナス20℃で8×10-5S/cmの高伝導度を与え
た。Alumina powder 1.
5 g is added to the previously prepared solution and uniformly dispersed with a homogenizer to obtain a suspension. This suspension has a diameter of 90 mm
Cast on a glass Petri dish of 6 and under reduced pressure of 40 cmHg.
After heating to 0 ° C. to dissipate the acetonitrile, it is cooled to −20 ° C. to obtain an electrolyte sheet C having a thickness of 160 μm. The electrolyte sheet C was a film that was easily peeled off from the glass petri dish and was highly flexible, and did not break even after the test of bending along the outer periphery of a cylinder having a diameter of 50 mm was repeated 3000 times. This sheet has a diameter of 1
It was punched into a 2.5 mm disc, sandwiched between lithium discs, and the conductivity was measured to be 9 × 10 −4 S / cm at 20 ° C.,
It gave a high conductivity of 8 × 10 −5 S / cm at −20 ° C.
【0017】[比較例2]実施例2と同様にして調製し
た、PAN−MA共重合体粉末を溶解し、アセトニトリ
ルで希釈した電解液を、直径90mmのガラスシャーレ
に流延し、40cmHgの減圧下で60℃に加熱し、ア
セトニトリルを散逸させたのち、マイナス20℃に冷却
することで厚さ550μmの電解質シートDを得る。電
解質シートDは、直径90mmの膜としてガラスシャー
レから剥がすことが可能であるが、電解質シートCに較
べ破れや易く慎重な取扱いが必要であった。流延する量
を1/5に減らして、より薄い電解質シートの製膜を試
みたが、できた膜は、自己保持性に乏しく、ガラスシャ
ーレから剥がすことは困難で、また破れやすく取扱いが
極めて困難であった。[Comparative Example 2] An electrolytic solution prepared by dissolving in the same manner as in Example 2 in which a PAN-MA copolymer powder was dissolved and diluted with acetonitrile was cast on a glass petri dish having a diameter of 90 mm, and the pressure was reduced to 40 cmHg. The mixture is heated to 60 ° C. below to dissipate acetonitrile, and then cooled to −20 ° C. to obtain an electrolyte sheet D having a thickness of 550 μm. The electrolyte sheet D can be peeled off from the glass petri dish as a film having a diameter of 90 mm, but it is more liable to break than the electrolyte sheet C and requires careful handling. We tried to reduce the casting amount to 1/5 and tried to form a thinner electrolyte sheet. However, the resulting membrane has poor self-holding property, is difficult to peel from a glass petri dish, and is easy to tear and is extremely difficult to handle. It was difficult.
【0018】[比較例3]PANとMAの共重合体粉末
に換えて平均分子量が51,000のポリアクリロニト
リル粉末を実施例2と同様の電解液中に加え、加熱した
ところ、150℃以上に熱しても粉末が溶解せずに一部
残り、加熱し続けると黄色に変色しはじめポリアクリロ
ニトリルの分解が起こった。一部未溶解のまま、アセト
ニトリル60mlを添加したところ、ポリアクリロニト
リルの凝固が起こり、白色の固形物と溶液に分離した。[Comparative Example 3] A polyacrylonitrile powder having an average molecular weight of 51,000 was added to the same electrolytic solution as in Example 2 in place of the copolymer powder of PAN and MA, and heated to 150 ° C or higher. Even when heated, the powder did not dissolve and remained partly, and when continued heating, it began to turn yellow and decomposition of polyacrylonitrile occurred. When 60 ml of acetonitrile was added while partially undissolved, coagulation of polyacrylonitrile occurred and a white solid matter and a solution were separated.
【0019】[実施例3]LiBF4を4.6g溶かし
たEC−SL(EC:SL=1:1容積比)混合溶媒よ
りなる電解液40g中に、PANとVAの共重合モル比
が97:3、平均分子量が200,000のPAN−V
A共重合体粉末を2.5g加え、150℃に加熱して透
明な粘性溶液とした後、アセトニトリル40gを加えて
希釈し、粘度が1250cpsの溶液を調製する。次
に、多孔性のシリカゲル粉末(富士デビソン社製サイロ
イド244、平均粒径1.8μm、比表面積300m2
/g)2.5gを蒸留水50mlに分散したのち、セチ
ルトリエチルアンモニウムブロマイドを0.7mmo
l、過硫酸カリウムを0.2mmol加え, さらに酢酸
ビニルを3.8mmolを加えた後、60℃で17時間
重合を行う。沈澱物をメタノールで洗浄した後、80℃
で72時間真空乾燥して、表面を改質したシリカゲル粉
末を得る。[Example 3] A copolymerization molar ratio of PAN and VA was 97 in 40 g of an electrolytic solution containing an EC-SL (EC: SL = 1: 1 volume ratio) mixed solvent in which 4.6 g of LiBF 4 was dissolved. : 3, PAN-V having an average molecular weight of 200,000
2.5 g of the A copolymer powder is added and heated to 150 ° C. to make a transparent viscous solution, and then 40 g of acetonitrile is added to dilute the solution to prepare a solution having a viscosity of 1250 cps. Next, porous silica gel powder (Syroid 244 manufactured by Fuji Devison Co., average particle size 1.8 μm, specific surface area 300 m 2
/ G) 2.5 g was dispersed in 50 ml of distilled water, and then 0.7 ml of cetyltriethylammonium bromide was added.
1, 0.2 mmol of potassium persulfate and 3.8 mmol of vinyl acetate were further added, followed by polymerization at 60 ° C. for 17 hours. After washing the precipitate with methanol, 80 ° C
After vacuum drying for 72 hours, a silica gel powder having a modified surface is obtained.
【0020】このようにして調製したシリカゲル粉末
0.5gを先に調製した溶液に加え、ホモジナイザーで
均一に分散して懸濁液を得る。この懸濁液を、直径90
mmのガラスシャーレに流延し、40cmHgの減圧下
で60℃に加熱し、アセトニトリルを散逸させたのち、
マイナス20℃に冷却することで厚さ110μmの電解
質シートEを得る。電解質シートEは、ガラスシャーレ
から容易に剥がれ、可撓性に富んだ膜で、直径50mm
の円柱の外周に沿って折り曲げる試験を5000回繰り
返した後も破れることはなかった。このシートを直径1
2.5mmの円板に打ち抜き、リチウム円板に挟んで伝
導度を測定したところ、20℃で8×10-4S/cm、
マイナス20℃で8×10-5S/cmの高伝導度を与え
た。0.5 g of the silica gel powder thus prepared is added to the previously prepared solution and uniformly dispersed with a homogenizer to obtain a suspension. This suspension is
After casting on a glass petri dish of mm and heating to 60 ° C. under reduced pressure of 40 cmHg to dissipate acetonitrile,
By cooling to −20 ° C., an electrolyte sheet E having a thickness of 110 μm is obtained. The electrolyte sheet E is a flexible film that easily peels off from the glass petri dish and has a diameter of 50 mm.
Even after repeating the test of bending along the outer periphery of the column of 5000 times 5000 times, it did not break. This sheet has a diameter of 1
When punched into a 2.5 mm disc and sandwiched between lithium discs, the conductivity was measured to be 8 × 10 −4 S / cm at 20 ° C.,
It gave a high conductivity of 8 × 10 −5 S / cm at −20 ° C.
【0021】[比較例4]実施例3と同様にして調製し
たアセトニトリルで希釈した電解液を、直径90mmの
ガラスシャーレに流延し、40cmHgの減圧下で60
℃に加熱し、アセトニトリルを散逸させたのち、マイナ
ス20℃に冷却することで厚さ620μmの電解質シー
トFを得る。電解質シートFは、直径90mmの膜とし
てガラスシャーレから剥がすことが可能であるが、電解
質シートEに較べ破れや易く慎重な取扱い必要であっ
た。流延する量を1/5に減らして、より薄い電解質シ
ートの製膜を試みたが、できた膜は、自己保持性に乏し
く、ガラスシャーレから剥がすことは困難で、また破れ
やすく取扱いが極めて困難であった。[Comparative Example 4] An electrolytic solution prepared in the same manner as in Example 3 and diluted with acetonitrile was cast on a glass petri dish having a diameter of 90 mm, and the pressure was reduced to 60 cm under a reduced pressure of 40 cmHg.
After heating to 0 ° C to dissipate the acetonitrile, it is cooled to -20 ° C to obtain an electrolyte sheet F having a thickness of 620 µm. The electrolyte sheet F can be peeled off from the glass petri dish as a film having a diameter of 90 mm, but it is more likely to be torn than the electrolyte sheet E and requires careful handling. We tried to reduce the casting amount to 1/5 and tried to form a thinner electrolyte sheet. However, the resulting membrane has poor self-holding property, is difficult to peel from a glass petri dish, and is easy to tear and is extremely difficult to handle. It was difficult.
【0022】[実施例4]LiBF4を4.6g溶かし
たEC−PC(EC:PC=1:1容積比)混合溶媒よ
りなる電解液40g中に、PANとVAの共重合モル比
が95:5、平均分子量が400,000のPAN−V
A共重合体粉末を2.0g加え、150℃に加熱して透
明な粘性溶液とした後、アセトニトリル40mlを加え
て希釈して、粘度が1650cpsの溶液を調製する。
次に、150℃で17時間真空乾燥したアルミナ粉末
(住友化学工業製、低ソーダアルミナ粉末ALーM4
3、中心粒径3.0μm)3gを、蒸留水50mlに分
散したのち、セチルトリエチルアンモニウムブロマイド
を0.7mmol、過硫酸カリウムを0.2mmol加
え, さらにスチレンを3.5mmolを加えた後、60
℃で17時間重合を行う。沈澱物をメタノールで洗浄し
た後、80℃で72時間真空乾燥して、表面を改質した
アルミナ粉末を得る。Example 4 In 40 g of an electrolytic solution containing an EC-PC (EC: PC = 1: 1 volume ratio) mixed solvent in which 4.6 g of LiBF 4 was dissolved, the molar ratio of copolymerization of PAN and VA was 95. : 5, PAN-V having an average molecular weight of 400,000
After adding 2.0 g of A copolymer powder and heating to 150 ° C. to make a transparent viscous solution, 40 ml of acetonitrile is added to dilute to prepare a solution having a viscosity of 1650 cps.
Next, alumina powder vacuum-dried at 150 ° C. for 17 hours (manufactured by Sumitomo Chemical Co., Ltd., low soda alumina powder AL-M4
3, the central particle size 3.0 μm) 3 g was dispersed in 50 ml of distilled water, and then 0.7 mmol of cetyltriethylammonium bromide, 0.2 mmol of potassium persulfate and 3.5 mmol of styrene were added, and then 60
Polymerization is carried out at ℃ for 17 hours. The precipitate is washed with methanol and then vacuum dried at 80 ° C. for 72 hours to obtain a surface-modified alumina powder.
【0023】このようにして調製したアルミナ粉末1.
5gを先に調製した溶液に加え、ホモジナイザーで均一
に分散して懸濁液を得る。この懸濁液を、直径90mm
のガラスシャーレに流延し、40cmHgの減圧下で6
0℃に加熱し、アセトニトリルを散逸させたのち、マイ
ナス20℃に冷却することで厚さ140μmの電解質シ
ートGを得る。電解質シートGは、ガラスシャーレから
容易に剥がれ、可撓性に富んだ膜で、直径50mmの円
柱の外周に沿って折り曲げる試験を1000回繰り返し
た後も破れることはなかった。 このシートを直径1
2.5mmの円板に打ち抜き、リチウム円板に挟んで伝
導度を測定したところ、20℃で6×10-4S/cm、
マイナス20℃で5×10-5S/cmの高伝導度を与え
た。Alumina powder 1.
5 g is added to the previously prepared solution and uniformly dispersed with a homogenizer to obtain a suspension. This suspension has a diameter of 90 mm
Cast on a glass Petri dish of 6 and under reduced pressure of 40 cmHg.
After heating to 0 ° C. to dissipate the acetonitrile, it is cooled to −20 ° C. to obtain an electrolyte sheet G having a thickness of 140 μm. The electrolyte sheet G was a film that was easily peeled off from the glass petri dish and was highly flexible, and did not break even after the test of bending along the outer periphery of a cylinder having a diameter of 50 mm was repeated 1000 times. This sheet has a diameter of 1
It was punched into a 2.5 mm disc, sandwiched between lithium discs, and the conductivity was measured to be 6 × 10 −4 S / cm at 20 ° C.
It gave a high conductivity of 5 × 10 −5 S / cm at −20 ° C.
【0024】[比較例5]実施例4と同様にして調製し
た、PAN−VA共重合体粉末を溶解し、アセトニトリ
ルで希釈した電解液を、直径90mmのガラスシャーレ
に流延し、40cmHgの減圧下で60℃に加熱し、ア
セトニトリルを散逸させたのち、マイナス20℃に冷却
することで厚さ680μmの電解質シートHを得る。電
解質シートHは、直径90mmの膜としてガラスシャー
レから剥がすことが可能であるが、電解質シートGに較
べ破れや易く慎重な取扱いが必要であった。流延する量
を1/5に減らして、より薄い電解質シートの製膜を試
みたが、できた膜は、自己保持性に乏しく、ガラスシャ
ーレから剥がすことは困難で、また破れやすく取扱いが
極めて困難であった。[Comparative Example 5] An electrolytic solution prepared by dissolving in the same manner as in Example 4 in which PAN-VA copolymer powder was dissolved and diluted with acetonitrile was cast on a glass petri dish having a diameter of 90 mm, and the pressure was reduced to 40 cmHg. The mixture is heated to 60 ° C. below to dissipate acetonitrile, and then cooled to −20 ° C. to obtain an electrolyte sheet H having a thickness of 680 μm. The electrolyte sheet H can be peeled off from the glass petri dish as a film having a diameter of 90 mm, but it is more liable to break than the electrolyte sheet G and requires careful handling. We tried to reduce the casting amount to 1/5 and tried to form a thinner electrolyte sheet. However, the resulting membrane has poor self-holding property, is difficult to peel from a glass petri dish, and is easy to tear and is extremely difficult to handle. It was difficult.
【0025】[比較例6]PAとVAの共重合体粉末に
換えて平均分子量が51,000のポリアクリロニトリ
ル粉末を実施例4と同様の電解液中に加え、加熱したと
ころ、150℃以上に熱しても粉末が溶解せずに一部残
り、加熱し続けると黄色に変色しはじめポリアクリロニ
トリルの分解が起こった。一部未溶解のまま、アセトニ
トリル60mlを添加したところ、ポリアクリロニトリ
ルの凝固が起こり、白色の固形物と溶液に分離した。[Comparative Example 6] A polyacrylonitrile powder having an average molecular weight of 51,000 was added to the same electrolytic solution as in Example 4 in place of the copolymer powder of PA and VA, and heated to 150 ° C or higher. Even when heated, the powder did not dissolve and remained partly, and when continued heating, it began to turn yellow and decomposition of polyacrylonitrile occurred. When 60 ml of acetonitrile was added while partially undissolved, coagulation of polyacrylonitrile occurred and a white solid matter and a solution were separated.
【0026】[0026]
【発明の効果】以上のように、本発明に従う電解質シー
トは、大面積でしかも200μm以下の薄膜状に製膜し
ても、自己形状保持性に富み、可撓性に優れ、しかも高
い伝導度を与える。優れた機械強度および電気特性を兼
ね備えた電解質シートであり、電池、電気二重層キャパ
シタ、エレクトロクロミック表示素子等の薄形大面積の
電気化学素子に有効に用いることができる。INDUSTRIAL APPLICABILITY As described above, the electrolyte sheet according to the present invention has excellent self-shape retention, excellent flexibility, and high conductivity even when formed into a thin film having a large area and 200 μm or less. give. It is an electrolyte sheet having both excellent mechanical strength and electrical characteristics, and can be effectively used for thin and large area electrochemical devices such as batteries, electric double layer capacitors and electrochromic display devices.
Claims (6)
るいはメタクリル酸メチルとの共重合体と、塩を溶解し
た非プロトン性溶媒と、アルミナあるいはシリカを含む
電気絶縁性無機物質の粉末よりなることを特徴とする電
解質シート。1. A copolymer of acrylonitrile and methyl acrylate or methyl methacrylate, an aprotic solvent in which a salt is dissolved, and a powder of an electrically insulating inorganic substance containing alumina or silica. Electrolyte sheet.
ルモノマーの重合体で改質されたアルミナあるいはシリ
カを含む請求項1記載の電解質シート。2. The electrolyte sheet according to claim 1, wherein the electrically insulating inorganic powder contains alumina or silica whose surface is modified with a polymer of a vinyl monomer.
あるいはメタクリル酸メチルである請求項2記載の電解
質シート。3. The electrolyte sheet according to claim 2, wherein the vinyl monomer is methyl acrylate or methyl methacrylate.
合体と、塩を溶解した非プロトン性溶媒と、アルミナあ
るいはシリカを含む電気絶縁性無機物質の粉末よりなる
ことを特徴とする電解質シート。4. An electrolyte sheet comprising a copolymer of acrylonitrile and vinyl acetate, an aprotic solvent in which a salt is dissolved, and a powder of an electrically insulating inorganic substance containing alumina or silica.
ルモノマーの重合体で改質されたアルミナあるいはシリ
カを含む請求項4記載の電解質シート。5. The electrolyte sheet according to claim 4, wherein the electrically insulating inorganic powder contains alumina or silica whose surface is modified with a polymer of a vinyl monomer.
請求項5記載の電解質シート。6. The electrolyte sheet according to claim 5, wherein the vinyl monomer is vinyl acetate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05189207A JP3143273B2 (en) | 1993-06-30 | 1993-06-30 | Electrolyte sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05189207A JP3143273B2 (en) | 1993-06-30 | 1993-06-30 | Electrolyte sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0782450A true JPH0782450A (en) | 1995-03-28 |
JP3143273B2 JP3143273B2 (en) | 2001-03-07 |
Family
ID=16237334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05189207A Expired - Fee Related JP3143273B2 (en) | 1993-06-30 | 1993-06-30 | Electrolyte sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3143273B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2777699A1 (en) * | 1998-04-16 | 1999-10-22 | Alsthom Cge Alcatel | POLYMER SOLID POLYACRYLONITRILE ELECTROLYTE |
WO2001017051A1 (en) * | 1999-09-02 | 2001-03-08 | Lithium Power Technologies, Inc. | Solid polymer electrolytes |
US6316149B1 (en) | 1998-08-06 | 2001-11-13 | Minnesota Mining And Manufacturing | Solid polymer electrolyte compositions |
US6645667B1 (en) | 1999-08-06 | 2003-11-11 | Matsushita Electric Industrial Co., Ltd. | Lithium secondary cell |
KR100406794B1 (en) * | 2001-04-07 | 2003-11-21 | 삼성에스디아이 주식회사 | Lithium battery and preparing method thereof |
US6664006B1 (en) | 1999-09-02 | 2003-12-16 | Lithium Power Technologies, Inc. | All-solid-state electrochemical device and method of manufacturing |
US6806004B1 (en) | 1999-08-06 | 2004-10-19 | Matsushita Electric Industrial Co., Ltd. | Polymeric solid electrolyte and lithium secondary cell using the same |
JP2014029818A (en) * | 2011-08-23 | 2014-02-13 | Nippon Shokubai Co Ltd | Gel electrolyte or negative electrode mixture, and battery using the gel electrolyte or the negative electrode mixture |
JP2014207217A (en) * | 2013-03-19 | 2014-10-30 | ソニー株式会社 | Battery, electrolytic layer, battery pack, electronic device, electrically-powered vehicle, power storage device, and electric power system |
CN105375070A (en) * | 2011-08-23 | 2016-03-02 | 株式会社日本触媒 | Gel electrolyte and cell using same |
CN105826088A (en) * | 2016-05-10 | 2016-08-03 | 复旦大学 | Carbon aerogel/manganese dioxide combined electrode material with multi-level structure, and preparation method thereof |
CN105845455A (en) * | 2016-05-10 | 2016-08-10 | 复旦大学 | Polyacrylonitrile nanometer fiber/polyimide-based composite carbon aerogel electrode material and preparation method thereof |
-
1993
- 1993-06-30 JP JP05189207A patent/JP3143273B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0951088A3 (en) * | 1998-04-16 | 1999-11-03 | Alcatel | Polyacrylonitrile-based solid polymer electrolyte |
FR2777699A1 (en) * | 1998-04-16 | 1999-10-22 | Alsthom Cge Alcatel | POLYMER SOLID POLYACRYLONITRILE ELECTROLYTE |
US6316149B1 (en) | 1998-08-06 | 2001-11-13 | Minnesota Mining And Manufacturing | Solid polymer electrolyte compositions |
US6806004B1 (en) | 1999-08-06 | 2004-10-19 | Matsushita Electric Industrial Co., Ltd. | Polymeric solid electrolyte and lithium secondary cell using the same |
US6645667B1 (en) | 1999-08-06 | 2003-11-11 | Matsushita Electric Industrial Co., Ltd. | Lithium secondary cell |
US6645675B1 (en) | 1999-09-02 | 2003-11-11 | Lithium Power Technologies, Inc. | Solid polymer electrolytes |
US6664006B1 (en) | 1999-09-02 | 2003-12-16 | Lithium Power Technologies, Inc. | All-solid-state electrochemical device and method of manufacturing |
WO2001017051A1 (en) * | 1999-09-02 | 2001-03-08 | Lithium Power Technologies, Inc. | Solid polymer electrolytes |
KR100406794B1 (en) * | 2001-04-07 | 2003-11-21 | 삼성에스디아이 주식회사 | Lithium battery and preparing method thereof |
JP2014029818A (en) * | 2011-08-23 | 2014-02-13 | Nippon Shokubai Co Ltd | Gel electrolyte or negative electrode mixture, and battery using the gel electrolyte or the negative electrode mixture |
CN105375070A (en) * | 2011-08-23 | 2016-03-02 | 株式会社日本触媒 | Gel electrolyte and cell using same |
JP2014207217A (en) * | 2013-03-19 | 2014-10-30 | ソニー株式会社 | Battery, electrolytic layer, battery pack, electronic device, electrically-powered vehicle, power storage device, and electric power system |
CN105826088A (en) * | 2016-05-10 | 2016-08-03 | 复旦大学 | Carbon aerogel/manganese dioxide combined electrode material with multi-level structure, and preparation method thereof |
CN105845455A (en) * | 2016-05-10 | 2016-08-10 | 复旦大学 | Polyacrylonitrile nanometer fiber/polyimide-based composite carbon aerogel electrode material and preparation method thereof |
CN105826088B (en) * | 2016-05-10 | 2018-11-13 | 复旦大学 | A kind of carbon aerogels/manganese dioxide composite electrode material and preparation method thereof with multilevel hierarchy |
CN105845455B (en) * | 2016-05-10 | 2019-05-03 | 复旦大学 | Polyacrylonitrile/polyimide-based composite carbon gas gel electrode material and preparation method |
Also Published As
Publication number | Publication date |
---|---|
JP3143273B2 (en) | 2001-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI330191B (en) | Electrolyte comprising eutectic mixture and electrochemical device using the same | |
JP3143273B2 (en) | Electrolyte sheet | |
US5011751A (en) | Electrochemical device | |
KR101358474B1 (en) | Organic solid electrolyte and secondary battery | |
JP2019513171A (en) | Electrically conductive hydrophilic copolymer | |
SE512579C2 (en) | Polymer gel electrode, and process for its preparation | |
JP3579200B2 (en) | Heat-resistant polymer electrolyte gel and method for producing the same | |
JP2001176556A (en) | High molecular electrolyte gel | |
JP2000011757A (en) | Ion conductive gel and its manufacture | |
JP4985959B2 (en) | Organic solid electrolyte and secondary battery using the same | |
JP3152264B2 (en) | Polymer solid electrolyte and method for producing the same | |
JP3359389B2 (en) | Polymer electrolyte | |
JP2008204858A (en) | Electrode integrated polymer electrolyte membrane and electrochemical element using the same | |
JP3993424B2 (en) | Solidifying material for battery electrolyte solution and battery | |
JP2003142160A (en) | Lithium ion conductive gel-form electrolyte and polymer lithium ion secondary battery | |
JPH0757713A (en) | Electrolyte sheet | |
JP2000119336A (en) | Single ion conductive polymer solid electrolyte | |
JP3115165B2 (en) | Lithium secondary battery | |
JP2000223105A (en) | Gel electrolyte | |
JPH0564775B2 (en) | ||
JP3927645B2 (en) | Immobilized liquid film conductor | |
JP2003217344A (en) | Polymer solid electrolyte | |
JPH02258833A (en) | Production of aqueous dispersion of polyisothianaphthene and electroconductive polymeric material | |
JPH11273453A (en) | Manufacture of high polymer gel electrolyte | |
JPH0757714A (en) | Electrolyte sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |