JP2716448B2 - Fine particle dispersion and method for producing electrode using the same - Google Patents

Fine particle dispersion and method for producing electrode using the same

Info

Publication number
JP2716448B2
JP2716448B2 JP63044806A JP4480688A JP2716448B2 JP 2716448 B2 JP2716448 B2 JP 2716448B2 JP 63044806 A JP63044806 A JP 63044806A JP 4480688 A JP4480688 A JP 4480688A JP 2716448 B2 JP2716448 B2 JP 2716448B2
Authority
JP
Japan
Prior art keywords
metal complex
anion
fine particle
particle dispersion
soluble polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63044806A
Other languages
Japanese (ja)
Other versions
JPH01219723A (en
Inventor
憲治 本田
和幸 千葉
清人 大塚
卓司 岡谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Sagami Chemical Research Institute (Sagami CRI)
Original Assignee
Kuraray Co Ltd
Sagami Chemical Research Institute (Sagami CRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Sagami Chemical Research Institute (Sagami CRI) filed Critical Kuraray Co Ltd
Priority to JP63044806A priority Critical patent/JP2716448B2/en
Publication of JPH01219723A publication Critical patent/JPH01219723A/en
Application granted granted Critical
Publication of JP2716448B2 publication Critical patent/JP2716448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F2001/1517Cyano complex compounds, e.g. Prussian blue
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は二次電池や電気化学的表示装置に使用する電
極材料として有用な微粒子分散体に関するものである。
Description: TECHNICAL FIELD The present invention relates to a fine particle dispersion useful as an electrode material for use in secondary batteries and electrochemical display devices.

[従来の技術] 一般式M1x[M2(CN)(式中のM1およびM2はア
ルカリ金属元素を除く金属元素および半金属元素)で表
わされる金属錯体は結晶中に細孔を有しK+、Li+等のア
ルカリ金属イオン等のイオンの挿入放出反応により酸化
還元反応を可逆的かつ安定に行なえることはすでに知ら
れている[化学第37巻8号(1982)、P601〜607]。上
記金属錯体はエネルギー変換素子、電池用電極、電気化
学的表示素子として当業者らの間では積極的に研究が進
められてきた。例えば、特開昭57−15828号公報、特開
昭59−164383号公報には電解還元法によりプルシアンブ
ルー等の混合原子価錯体を皮膜状に形成することにより
エレクトロクロミツク表示素子を作成する方法が開示さ
れている。しかるに該方法は電着量が限定され、十分な
着色濃度を得るに至らない。このため、例えば第2のエ
レクトロクロミツク層を複素還共役系高分子等で構成す
ることにより上述の問題点を解決することが鉄案されて
いる(特開昭60−78428号公報)。
[Prior Art] A metal complex represented by the general formula M 1x [M 2 (CN) 6 ] y (where M 1 and M 2 are metal elements other than alkali metal elements and metalloid elements) is contained in a crystal. It is already known that a redox reaction can be performed reversibly and stably by insertion and release of ions such as alkali metal ions such as K + and Li + having holes [Chem. 37 No. 8 (1982)] , P601-607]. The metal complex has been actively studied by those skilled in the art as an energy conversion device, a battery electrode, and an electrochemical display device. For example, JP-A-57-15828 and JP-A-59-164383 disclose a method of forming an electrochromic display element by forming a mixed valence complex such as Prussian blue into a film by electrolytic reduction. Is disclosed. However, in this method, the amount of electrodeposition is limited, and a sufficient coloring density cannot be obtained. For this reason, it has been proposed to solve the above-mentioned problem by forming the second electrochromic layer with a complex conjugated polymer or the like (JP-A-60-78428).

[発明が解決しようとする課題] 錯体の有する有用な物性を外部への電気・光学的信号
として取り出すためには、錯体を適当な厚さ及び大きさ
の固体とする必要がある。これらの錯体は一般に水系溶
媒中ではコロイド状態で存在し、またアセトニトリル、
ニトロベンゼン等の非水系の極性溶媒中においても溶媒
中に微粒子となつて懸濁することが知られている。これ
らの錯体を溶媒中にコロイド状に分散させるために、低
分子の界面活性剤を用いることは容易であるが、コロイ
ドの安定性に問題があり、とくに高温での安定性は低い
と言わざるを得なかつた。そのためコロイド粒子の好ま
しからざる凝集を防止することは重要である。金属錯体
を適当な厚さ及び大きさの固体とするためにはこれらの
コロイド状態又は懸濁状態より溶媒を除去する手法が一
般的である。しかるに該方法で溶媒を除去することによ
り得られた皮膜は耐久性が悪いのみならずイオンの挿入
放出反応を行なう性能、特に応答速度が低下するという
欠点があつた。
[Problems to be Solved by the Invention] In order to extract useful physical properties of the complex as an external electrical / optical signal, the complex must be a solid having an appropriate thickness and size. These complexes generally exist in a colloidal state in an aqueous solvent, and may contain acetonitrile,
It is known that even non-aqueous polar solvents such as nitrobenzene are suspended as fine particles in the solvent. It is easy to use a low molecular surfactant to disperse these complexes in a colloidal form in a solvent, but there is a problem with the stability of the colloid, especially at high temperatures. I didn't get it. Therefore, it is important to prevent unwanted aggregation of the colloid particles. In order to make the metal complex into a solid having an appropriate thickness and size, a method of removing the solvent from these colloidal or suspended states is generally used. However, the film obtained by removing the solvent by this method has the drawback that not only the durability is poor but also the performance of ion insertion / release reaction, particularly the response speed, is reduced.

本発明の目的は金属錯体の性能(例えば応答速度や安
定性)を向上させることを目的とする。
An object of the present invention is to improve performance (for example, response speed and stability) of a metal complex.

[課題を解決するための手段] 本発明者らは上記の目的に鑑みて検討した結果、金属
錯体の微粒子分散体あるいはコロイド溶液の作成時に少
量のアニオン変性された水溶性高分子を共存させること
により得られた分散体溶液は微粒子の直径が小さく、し
かも分散体は安定で微粒子の凝集が起こりにくい特徴を
有していること、およびこれを常法に従いキヤストし溶
媒を除去した皮膜が優れた性能を有することを見出し本
発明に到達した。
[Means for Solving the Problems] The present inventors have studied in view of the above object, and have found that a small amount of an anion-modified water-soluble polymer can coexist when preparing a fine particle dispersion or colloid solution of a metal complex. The dispersion solution obtained by the method was characterized in that the diameter of the fine particles was small, the dispersion was stable and had a characteristic that the aggregation of the fine particles did not easily occur, and the film obtained by casting the solvent according to a conventional method and removing the solvent was excellent. The inventors have found that they have performance and arrived at the present invention.

本発明に従えば一般式M1x[M2(CN)(式中のM
1及びM2はアルカリ金属以外の金属元素又は半金属元素
であり、xは3〜4、yは2〜3を示す。)で表わされ
る微粒子状の金属錯体、媒質及びアニオン変性された水
溶性高分子よりなる金属錯体の微粒子分散体及び該分散
体を電極基板上にコートし、次いで媒質を除去すること
を特徴とする電極の製法を包含する。
According to the present invention, the general formula M 1x [M 2 (CN) 6 ] y (M in the formula
1 and M 2 are metal elements or metalloid elements other than alkali metals, x represents 3 to 4, and y represents 2 to 3. ), A fine particle dispersion of a metal complex comprising a fine particle-shaped metal complex, a medium and an anion-modified water-soluble polymer, and coating the dispersion on an electrode substrate, and then removing the medium. Includes electrode fabrication.

本発明において使用する水溶性高分子は後述するよう
に何でも良いというわけではなく、とくに好ましくない
のは意外にもポリアクリル酸およびその塩又はポリメタ
クリル酸およびその塩である。
The water-soluble polymer used in the present invention is not limited to any one as described later, and particularly unfavorable are polyacrylic acid and its salt or polymethacrylic acid and its salt.

本発明の微粒子金属錯体分散体は水中にコロイド状に
分散しているのがもっともよいが、各種アルコール、ア
セトニトリル、ニトロベンゼン、テトラハイドロフラ
ン、プロピレンカーボネート等の一種又は、二種以上の
混合物中に分散していても良く、これらの中に水が混合
されていても良い。
The fine particle metal complex dispersion of the present invention is best dispersed in water in a colloidal form, but is dispersed in one or a mixture of various alcohols, acetonitrile, nitrobenzene, tetrahydrofuran, propylene carbonate, and the like. And water may be mixed therein.

これらの分散体は金属イオンと金属錯イオンを同一の
溶媒中に混在させることにより得られる。ここで金属イ
オンとしてはFe3+、Cu2+、Ba2+、Mn2+、Cd2+、Hg2+、Co
2+、Ni2+、Ca2+、Sr2+、Al3+等が挙げられる。金属錯イ
オンとしては[Fe(CN)4-、[Cr(CN)3-
[Cr(CN)3-等を挙げることができる。
These dispersions can be obtained by mixing metal ions and metal complex ions in the same solvent. Here, as metal ions, Fe 3+ , Cu 2+ , Ba 2+ , Mn 2+ , Cd 2+ , Hg 2+ , Co
2+ , Ni 2+ , Ca 2+ , Sr 2+ , Al 3+ and the like. [Fe (CN) 6 ] 4- , [Cr (CN) 6 ] 3- ,
[Cr (CN) 6 ] 3- and the like.

水溶性高分子の添加時期はいつでもよいが金属イオン
と金属錯イオンとを反応させる前に水溶液中にあらかじ
め添加しておくのがよい。
The water-soluble polymer may be added at any time, but it is preferable to add the water-soluble polymer to the aqueous solution before reacting the metal ion with the metal complex ion.

本発明における上記金属錯体は、エネルギー変換素子
や電気化学的表示素子等の材料として近年有用性が認め
られつつある材料である。該金属錯体には異なる酸化数
の金属イオンを同一分子内に含む錯体(混合原子価錯
体)、同一の金属イオン、同じ配位子からなる酸化数の
みが異なる錯体(複核混合原子価錯体)、鉄シアノ混合
原子価錯体を含む。結晶内にアルカリ金属イオンの挿入
放出反応を行なうことのできる細孔を有している錯体は
好適に用いられる。それらの化合物を例示すると、Fe4
[Fe(CN)3,Cu3[Cr(CN)2,Ba3[Cr(C
N)2,Mn3[Cr(CN)2,Cd3[Cr(CN)2,Hg3
[Cr(CN)2,Co3[Cr(CN)2,Ni3[Cr(C
N)2,Ca3[Co(CN)2,Sr3[Cr(CN)2,Ba3
[Co(CN)2,Al4[Fe(CN)3,Ga4[Fe(C
N)3,Sb4[Fe(CN)3.Cd3[Fe(CN)
が一例として挙げられる。これらの金属錯体のうち、M1
がFe、Cu、Co、Cd、又はCr、M2がFe、Co、Cu、Cr、Osは
Ruの組合せがよい。具体的にはプルシアンブルーで代表
される鉄・シアノ混合原子価錯体であることがよい。プ
ルシアンブルーは結晶内に3.2Åの細孔を有し、K+、Li+
等のアルカリ金属イオンの挿入放出反応を酸化還元反応
を伴いながら安定的に行なうことができる。
The metal complex according to the present invention is a material that has recently been recognized as being useful as a material for an energy conversion device, an electrochemical display device, or the like. Examples of the metal complex include a complex containing metal ions having different oxidation numbers in the same molecule (mixed valence complex), a complex composed of the same metal ion and the same ligand and having only different oxidation numbers (binuclear mixed valence complex), Including iron cyano mixed valence complex. Complexes having pores capable of performing an insertion / release reaction of an alkali metal ion in the crystal are suitably used. To illustrate these compounds, Fe 4
[Fe (CN) 6 ] 3 , Cu 3 [Cr (CN) 6 ] 2 , Ba 3 [Cr (C
N) 6 ] 2 , Mn 3 [Cr (CN) 6 ] 2 , Cd 3 [Cr (CN) 6 ] 2 , Hg 3
[Cr (CN) 6 ] 2 , Co 3 [Cr (CN) 6 ] 2 , Ni 3 [Cr (C
N) 6 ] 2 , Ca 3 [Co (CN) 6 ] 2 , Sr 3 [Cr (CN) 6 ] 2 , Ba 3
[Co (CN) 6 ] 2 , Al 4 [Fe (CN) 6 ] 3 , Ga 4 [Fe (C
N) 6 ] 3 , Sb 4 [Fe (CN) 6 ] 3 .Cd 3 [Fe (CN) 6 ] 2 and the like. Of these metal complexes, M 1
But Fe, Cu, Co, Cd, or Cr, M 2 is Fe, Co, Cu, Cr, Os is
Ru combination is good. Specifically, a mixed valence complex of iron and cyano represented by Prussian blue is preferable. Prussian blue has 3.2Å pores in the crystal, K + , Li +
And the like can be stably performed while involving an oxidation-reduction reaction.

本発明で用いられる水溶性高分子材料は、一般に微粒
子を分散安定化させる能力があるものがよく、例えばポ
リアクリルアミド、アニオン変性ポリアクリルアミド、
ポリメチルビニルエーテル、ポリビニルピロリドン、メ
チルセルロース、カルボキシメチルセルロース、ヒドロ
キシエチルセルロース等が挙げられる。これらの中で少
量のアニオンで変性されたものが粒子の安定性がとくに
良好であり、しかも粒子径も小さいことが見出された。
とりわけ好効果を与えるものは少量のアニオンで変性さ
れたポリビニルアルコール(PVA)であり、この場合に
はコロイド粒子は0.03μあるいはそれ以下の微粒子とな
り、その安定性も極めて良好であつた。少量のアニオン
変性された水溶性高分子としてはアクリル酸変性ポリア
クリルアミド(アクリル酸含有率0.1〜10モル%)、メ
タリルスルホン酸変性ポリビニルピロリドン(メタスル
ホン酸含有率0.1〜5モル%)が例示される。
The water-soluble polymer material used in the present invention generally has good ability to stabilize the dispersion of fine particles, for example, polyacrylamide, anion-modified polyacrylamide,
Examples include polymethyl vinyl ether, polyvinyl pyrrolidone, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and the like. Among them, those modified with a small amount of anion were found to have particularly good particle stability and small particle size.
Particularly effective one is polyvinyl alcohol (PVA) modified with a small amount of anion. In this case, the colloid particles became fine particles of 0.03 μm or less, and the stability was extremely good. Examples of a small amount of an anion-modified water-soluble polymer include acrylic acid-modified polyacrylamide (acrylic acid content: 0.1 to 10 mol%) and methallylsulfonic acid-modified polyvinylpyrrolidone (methsulfonic acid content: 0.1 to 5 mol%). You.

該アニオン変性ポリビニルアルコールを用いたものは
微粒子分散体の高濃度分散体においても安定性が極めて
良く、また電極材料を作製した場合の性能も極めて良好
であることが認められた。好適なアニオン変性ポリビニ
ルアルコール系樹脂は、例えば(メタ)アクリル酸、無
水マレイン酸、クロトン酸、イタコン酸、フマル酸等の
カルボキシル基含有の単量体を酢酸ビニルと共重合した
後けん化する事により得られるものである。他にビニル
スルホン酸等のスルホン酸基を含有する単量体を共重合
した樹脂が例示される。なお、けん化度にはとくに制限
はない。
It was confirmed that the product using the anion-modified polyvinyl alcohol had extremely good stability even in a high-concentration dispersion of fine particle dispersion, and also had extremely good performance when an electrode material was produced. A suitable anion-modified polyvinyl alcohol resin is obtained by copolymerizing a monomer having a carboxyl group such as (meth) acrylic acid, maleic anhydride, crotonic acid, itaconic acid, and fumaric acid with vinyl acetate, followed by saponification. It is obtained. Other examples include a resin obtained by copolymerizing a monomer containing a sulfonic acid group such as vinyl sulfonic acid. There is no particular limitation on the degree of saponification.

カルボキシル基を含有する単量体単位の割合は0.1モ
ル%以上10モル%以下の範囲がよく、特に好ましくは0.
5モル%以上5モル%以下の範囲がよい。
The ratio of the carboxyl group-containing monomer unit is preferably in the range of 0.1 mol% to 10 mol%, and particularly preferably 0.1 mol% or less.
The range is preferably 5 mol% or more and 5 mol% or less.

共重合を行なつた後、けん化し、使用時にpH調製を行
なうことにより適当なアニオン変性PVAが得られる。
After copolymerization, saponification is performed and pH is adjusted at the time of use to obtain a suitable anion-modified PVA.

これらの樹脂の重合度は特に制限はないが、通常50〜
3000、好ましくは100〜2500の範囲から選択される。
The degree of polymerization of these resins is not particularly limited, but is usually 50 to
3000, preferably selected from the range of 100-2500.

コロイド溶液中における水溶性高分子の濃度には特に
制限はないが、0.05重量%〜20重量%、好ましくは0.2
重量%〜5重量%の範囲内で添加するのがよい。高分子
材料の濃度が低すぎる場合には分散安定化の効果が薄れ
る、また高すぎる場合には水溶液の粘度が挙がりすぎる
ために金属錯体の生成反応がおこりにくくなる。本発明
の微粒子分散体は二次電池や電気化学的表示装置用の電
極あるいは光記録剤中間原料として使用することができ
るが、とくに電気化学的表示装置用電極として使用した
場合には応答速度が格段に速くなるのでよい。電気化学
的表示装置用の電極の作製法はネサガラス(透明電極)
上への微粒子分散体のキヤスト、あるいは電着が用いら
れる。分散安定剤として添加した水溶性高分子材料は錯
体のバインダーとしても作用するためにネサガラスに対
する錯体の密着性が格段に向上するという効果も有す
る。
The concentration of the water-soluble polymer in the colloid solution is not particularly limited, but may be 0.05% by weight to 20% by weight, preferably 0.2% by weight.
It is preferable to add in the range of 5% by weight to 5% by weight. If the concentration of the polymer material is too low, the effect of stabilizing the dispersion is diminished. If the concentration is too high, the viscosity of the aqueous solution is too high, and the reaction of forming the metal complex hardly occurs. The fine particle dispersion of the present invention can be used as an electrode for a secondary battery or an electrochemical display device or as an intermediate material for an optical recording agent, and particularly when used as an electrode for an electrochemical display device, the response speed is high. It will be much faster. The method of manufacturing electrodes for electrochemical display devices is Nesa glass (transparent electrode)
Casting or electrodeposition of the fine particle dispersion on top is used. Since the water-soluble polymer material added as a dispersion stabilizer also acts as a binder for the complex, it also has the effect of significantly improving the adhesion of the complex to Nesa glass.

本発明の金属錯体を用いて二次電池を作製する場合に
は固体化した錯体をそのまま電極として使用してもよい
が、電極の電導性を上げるために電導性の向上材料であ
るカーボン粉末を5〜10重量%添加した後ペレツト状に
圧縮成形を行なうのがよい。さらにバインダーとしてテ
フロン結着剤等を混合してもよい。
When a secondary battery is manufactured using the metal complex of the present invention, the solidified complex may be used as an electrode as it is, but in order to increase the conductivity of the electrode, a carbon powder that is a material for improving conductivity is used. After adding 5 to 10% by weight, it is preferable to perform compression molding in a pellet shape. Further, a Teflon binder or the like may be mixed as a binder.

本発明の微粒子分散体より作成した電極を用いて電気
化学的表示装置あるいは二次電池を作る場合非水系の電
極溶媒に電解質を溶解させた溶液を用いるのがよい。非
水系の極性溶剤としてはプロピレンカーボネート、γ−
ブチロラクトン、ジメチルスルフオキシド、ジメチルフ
オルムアミド、エチレンカーボネート等を例示すること
ができる。添加する電解質としてはアルカリ金属の塩、
例えばLiClO4、LiBF4、KClO4、KBF4、LiPF6、KPF6等を
例示することができる。
When an electrochemical display or a secondary battery is manufactured using an electrode prepared from the fine particle dispersion of the present invention, a solution in which an electrolyte is dissolved in a nonaqueous electrode solvent is preferably used. Non-aqueous polar solvents include propylene carbonate and γ-
Butyrolactone, dimethyl sulfoxide, dimethylformamide, ethylene carbonate and the like can be exemplified. As an electrolyte to be added, an alkali metal salt,
For example, LiClO 4 , LiBF 4 , KClO 4 , KBF 4 , LiPF 6 , KPF 6 and the like can be exemplified.

(実施例) 以下実施例および参考例により本発明をより具体的に
説明する。
(Examples) Hereinafter, the present invention will be described more specifically with reference to Examples and Reference Examples.

参考例1 [プルシアンブルー(PB)超微粒子の作製] (株)クラレ製ポリビニルアルコール(重合度;170
0、ケン化度;88%)5重量%水溶液0.5ccに10mM/のFe
Cl21ccを加えた。30分後この溶液に10mM/のK3[Fe(C
N)]水溶液1cCを加え撹拌を行なつた。Fe2+イオンと
[Fe(CN)3-イオンとを混合することによつてPB特
有の青色の溶液となつた。この溶液をサンプル瓶に入れ
静止した状態で一週間放置してもPB粒子が瓶の底に沈降
することはなかつた。このことにより水溶液中のPBのコ
ロイドはポリビニルアルコールの添加により安定化され
ていることがわかつた。なお電子顕微鏡写真から微粒子
の直径は0.2μmであつた。
Reference Example 1 [Preparation of Prussian blue (PB) ultrafine particles] Kuraray Co., Ltd. polyvinyl alcohol (polymerization degree: 170
0, saponification degree; 88%) 10 mM / Fe in 0.5 cc of 5 wt% aqueous solution
1 cc of Cl 2 was added. After 30 minutes, 10 mM / K 3 [Fe (C
N) 6 ] 1 cC of an aqueous solution was added and the mixture was stirred. By mixing Fe 2+ ions and [Fe (CN) 6 ] 3− ions, a blue solution unique to PB was obtained. The PB particles did not settle to the bottom of the bottle even if this solution was placed in a sample bottle and left still for one week. It was found that the colloid of PB in the aqueous solution was stabilized by the addition of polyvinyl alcohol. From the electron micrograph, the diameter of the fine particles was 0.2 μm.

比較例1 (水溶性高分子を使用しない場合について) ポリビニルアルコールを添加しない以外は参考例1と
まつたく同様にしてPB溶液を作製した。この溶液をサン
プル瓶に入れ静止した状態で一週間放置したところPB粒
子が凝集し瓶の底に沈降した。微粒子の直径は平均1μ
mであつたが、凝集が多く観察された。
Comparative Example 1 (When no water-soluble polymer was used) A PB solution was prepared in the same manner as in Reference Example 1 except that polyvinyl alcohol was not added. When this solution was put in a sample bottle and left standing for one week in a stationary state, PB particles aggregated and settled at the bottom of the bottle. The average particle diameter is 1μ
However, many aggregations were observed.

参考例2 (水溶性高分子としてポリアクリルアミドを使用した場
合について) (株)住友化学製ポリアクリルアミド5wt%水溶液0.5
ccに10mM/のFeCl2を1cc加えた。30分後この溶液に10m
M/のK3[Fe(CN)]水溶液1ccを加え撹拌を行なつ
た。Fe2+イオンと[Fe(CN)3-イオンとを混合する
ことによつてPB特有の青色の溶液となつた。
Reference Example 2 (When polyacrylamide is used as the water-soluble polymer) Sumitomo Chemical Co., Ltd. polyacrylamide 5 wt% aqueous solution 0.5
1 cc of 10 mM / FeCl 2 was added to cc. After 30 minutes 10m
1 cc of M / K 3 [Fe (CN) 6 ] aqueous solution was added, and the mixture was stirred. By mixing Fe 2+ ions and [Fe (CN) 6 ] 3− ions, a blue solution unique to PB was obtained.

この溶液をサンプル瓶に入れ静止した状態で一週間放
置してもPB粒子が瓶の底に沈降することはなかつた。PB
のコロイドはポリアクリルアミドの添加により安定化さ
れていることがわかつた。なお粒子径は平均0.4μmで
あつた。
The PB particles did not settle to the bottom of the bottle even if this solution was placed in a sample bottle and left still for one week. PB
Was found to be stabilized by the addition of polyacrylamide. The average particle size was 0.4 μm.

実施例1 参考例1のポリビニルアルコールの代わりに、イタコ
ン酸変性ポリビニルアルコール(イタコン酸含有量1モ
ル%、重合度1700、ケン化度88%)を用いた以外は参考
例1とまつたく同様にしてPB溶液を得た。
Example 1 In the same manner as in Reference Example 1, except that itaconic acid-modified polyvinyl alcohol (itaconic acid content 1 mol%, degree of polymerization 1700, degree of saponification 88%) was used instead of the polyvinyl alcohol of Reference Example 1. To obtain a PB solution.

この溶液をサンプル瓶に入れ静止した状態で一週間放
置してもPB粒子が瓶の底に沈降することはなかつた。さ
らに70℃で5時間放置しても何の変化も認められなかつ
た。このコロイド溶液は参考例1の場合と異り、青色な
がら完全透明であり、粒子径は平均0.02μmと大層小さ
かつた。
The PB particles did not settle to the bottom of the bottle even if this solution was placed in a sample bottle and left still for one week. Further, no change was observed even after being left at 70 ° C. for 5 hours. Unlike the case of Reference Example 1, this colloid solution was completely transparent in spite of being blue, and the particle diameter was as large as 0.02 μm on average.

さらに最適な高分子の探索を行なつた。種々の水溶性
高分子を添加したPB溶液を参考例1と同様にして作製し
た。さらに得られたPB溶液をガラス板上に滴下した後室
温での放置により溶媒を乾燥除去した。このようにして
得られたPBの乾燥膜を倍率1000倍の光学顕微鏡で観察し
凝集の有無を見た。凝集の程度は◎,○,△,×の4段
階で評価した。(◎)は凝集がまったく認められないも
の、(○)はほんのわずかではあるが凝集が認められる
もの、(△)は凝集が認められるもの、(×)は多くの
凝集が認められるもの、以上の4段階である。水溶性高
分子を添加しないPB溶液を用いPB膜を作製した場合多く
の凝集が観察された、これを(×)とした。使用した高
分子により凝集がまったく観察されないものがあった、
これを(◎)とした。ポリアクリル酸(比較例2)、ポ
リビニルピロリドン(参考例3)、アニオン変性ポリア
クリルアミド(実施例2)の添加量は参考例1とまつた
く同じ量とした。
Further search for the most suitable polymer was conducted. PB solutions to which various water-soluble polymers were added were prepared in the same manner as in Reference Example 1. Further, the obtained PB solution was dropped on a glass plate, and then left at room temperature to dry and remove the solvent. The dried PB film thus obtained was observed under an optical microscope with a magnification of 1000 times to check for the presence or absence of aggregation. The degree of agglomeration was evaluated in four stages of ◎, △, Δ, ×. (◎): No aggregation was observed at all, (も の): Aggregation was observed slightly, (△): Aggregation was observed, (×): Many aggregations were observed, There are four stages. When a PB film was prepared using a PB solution to which no water-soluble polymer was added, a large amount of aggregation was observed. Some aggregates were not observed at all depending on the polymer used,
This was designated as (◎). The amounts of polyacrylic acid (Comparative Example 2), polyvinylpyrrolidone (Reference Example 3), and anion-modified polyacrylamide (Example 2) were the same as in Reference Example 1.

使用した高分子とPB粒子の凝集状態との関係を表1に
示す。各種の水溶性高分子の中でもPVAが優れた結果で
あり、特にアニオン変性PVAを用いた場合はPB粒子の凝
集がまつたく発生しなかつた。
Table 1 shows the relationship between the polymer used and the aggregation state of the PB particles. Among various water-soluble polymers, PVA was an excellent result. In particular, when anion-modified PVA was used, aggregation of PB particles did not occur.

(参考使用例) 以下微粒子分散体の使用例について説明する。(Reference Use Example) Hereinafter, a use example of the fine particle dispersion will be described.

参考使用例1 (エレクトロクロミツク素子の作製および評価) 参考例1で得られたB溶液をネサガラス4(10Ω/
□)上にキヤストし光透過率は着色状態で約5%とする
ことによりPB層を形成しこれをエレクトロクロミツク電
極1として使用し、第1図に断面図を示したエレクトロ
クロミツク素子を作製した。電解液5には過塩素酸リチ
ウム(LiClO4)のγ−ブチロラクトン(γ−BL)の1M/
溶液を用いた。対向極2には比表面積が2000m2/gの活
性炭素繊維(ACF)を用いた。セパレータ3にはガラス
繊維ろ紙を用いた。セルの中心部分のセパレータ3およ
びACFには直径3mmの穴をあけ光が透過するようにした。
Reference Use Example 1 (Preparation and Evaluation of Electrochromic Element) The B solution obtained in Reference Example 1 was applied to Nesa glass 4 (10Ω /
□) The PB layer was formed by casting on the substrate and setting the light transmittance to about 5% in a colored state, and this was used as the electrochromic electrode 1. The electrochromic device shown in the sectional view in FIG. Produced. The electrolytic solution 5 contains 1 M / gamma of γ-butyrolactone (γ-BL) of lithium perchlorate (LiClO 4 ).
The solution was used. Activated carbon fiber (ACF) having a specific surface area of 2000 m 2 / g was used for the counter electrode 2. Glass fiber filter paper was used for the separator 3. A hole having a diameter of 3 mm was formed in the separator 3 and the ACF at the center of the cell to allow light to pass therethrough.

顕微鏡およびフオトマルを用いて素子を応答速度を測
定した。消色状態から着色状態への光透過率と時間との
関係を第2図に示した。光透過率が消色状態の1/2にな
るまでの時間(τ 1/2)は0.8秒であつた。
The response speed of the device was measured using a microscope and a photomultiplier. FIG. 2 shows the relationship between the light transmittance from the decolored state to the colored state and time. The time required for the light transmittance to become 1/2 of the decolored state (τ1 / 2) was 0.8 seconds.

比較使用例1 比較例1で得られたPB溶液をネサガラス(10Ω/□)
上にキヤストしPB層を得た。これを用いた素子を参考使
用例1と同様にして作製し応答速度を測定した(第3
図)。τ 1/2は30秒であつた。
Comparative use example 1 Nesa glass (10Ω / □) was applied to the PB solution obtained in Comparative example 1.
The PB layer was cast on top. An element using this was fabricated in the same manner as in Reference Use Example 1, and the response speed was measured (third example).
Figure). τ 1/2 was 30 seconds.

用いた高分子と応答速度の関係を表1に示した。粒子
の凝集の程度と応答速度とは極めて高い相関があり、凝
集が発生しないもの程応答速度は速くなつていた。
Table 1 shows the relationship between the polymer used and the response speed. There was a very high correlation between the degree of particle aggregation and the response speed, and the response speed was faster as no aggregation occurred.

【図面の簡単な説明】[Brief description of the drawings]

第1図はエレクトロクロミツク素子の断面図、第2図は
本発明に従がう超微粒子化金属錯体を用いたエレクトロ
クロミツク素子の応答速度を示す図、第3図は通常の金
属錯体を用いたエレクトロクロミツク素子の応答速度を
示す図である。 1;PB層、2;対向極 3;セパレータ、4;ネサガラス 5;電解液、6;電源
FIG. 1 is a cross-sectional view of an electrochromic device, FIG. 2 is a diagram showing the response speed of an electrochromic device using an ultrafine metal complex according to the present invention, and FIG. FIG. 3 is a diagram showing a response speed of an electrochromic element used. 1; PB layer, 2; counter electrode 3; separator, 4; Nesa glass 5; electrolyte, 6; power supply

───────────────────────────────────────────────────── フロントページの続き 審査官 田部 元史 (56)参考文献 特開 昭62−115129(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page Examiner Motofumi Tabe (56) References JP-A-62-115129 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式M1x[M2(CN)(式中のM1
びM2はアルカリ金属以外の金属元素又は半金属元素であ
り、xは3〜4、yは2〜3を示す。)で表わされる微
粒子状の金属錯体、媒質及びアニオン変性された水溶性
高分子よりなる金属錯体の微粒子分散体。
1. A compound represented by the general formula: M 1x [M 2 (CN) 6 ] y (where M 1 and M 2 are metal elements or metalloid elements other than alkali metals, x is 3 to 4 and y is 2 To 3.) A fine particle dispersion of a fine metal complex represented by the formula (1), a metal complex comprising a medium and an anion-modified water-soluble polymer.
【請求項2】アニオン変性された水溶性高分子がアニオ
ン変性ポリビニルアルコール系樹脂である請求項1記載
の分散体。
2. The dispersion according to claim 1, wherein the anion-modified water-soluble polymer is an anion-modified polyvinyl alcohol resin.
【請求項3】金属錯体がプルシアンブルーである請求項
1又は2記載の分散体。
3. The dispersion according to claim 1, wherein the metal complex is Prussian blue.
【請求項4】媒質が水である請求項3記載の分散体。4. The dispersion according to claim 3, wherein the medium is water. 【請求項5】一般式M1x[M2(CN)(式中のM1
びM2はアルカリ金属以外の金属元素又は半金属元素であ
り、xは3〜4、yは2〜3を示す。)で表わされる微
粒子状の金属錯体、媒質及びアニオン変性された水溶性
高分子よりなる金属錯体の微粒子分散体を電極基板上に
コートし、次いで媒質を除去することを特徴とする電極
の製法。
5. A compound of the general formula M 1x [M 2 (CN) 6 ] y (where M 1 and M 2 are metal elements or metalloid elements other than alkali metals, x is 3 to 4 and y is 2 To 3). A fine particle dispersion of a fine metal complex, a medium and a metal complex comprising an anion-modified water-soluble polymer is coated on an electrode substrate, and then the medium is removed. Electrode manufacturing method.
JP63044806A 1988-02-26 1988-02-26 Fine particle dispersion and method for producing electrode using the same Expired - Lifetime JP2716448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63044806A JP2716448B2 (en) 1988-02-26 1988-02-26 Fine particle dispersion and method for producing electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63044806A JP2716448B2 (en) 1988-02-26 1988-02-26 Fine particle dispersion and method for producing electrode using the same

Publications (2)

Publication Number Publication Date
JPH01219723A JPH01219723A (en) 1989-09-01
JP2716448B2 true JP2716448B2 (en) 1998-02-18

Family

ID=12701672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63044806A Expired - Lifetime JP2716448B2 (en) 1988-02-26 1988-02-26 Fine particle dispersion and method for producing electrode using the same

Country Status (1)

Country Link
JP (1) JP2716448B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529146A (en) * 2006-03-06 2009-08-13 エスケイシー・カンパニー・リミテッド Method for producing Prussian blue coating film for electrochromic device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU643093B2 (en) * 1990-12-26 1993-11-04 Ppg Industries Ohio, Inc. Solid-state electrochromic device with protong-conducting polymer electrolyte
JP3227424B2 (en) * 1998-02-13 2001-11-12 大日精化工業株式会社 Lawn colorant composition with growing effect
JP5035767B2 (en) * 2005-02-17 2012-09-26 独立行政法人産業技術総合研究所 Prussian blue-type metal complex ultrafine particles, dispersion thereof, and production method thereof
WO2006087950A1 (en) * 2005-02-17 2006-08-24 National Institute Of Advanced Industrial Science And Technology Ultrafine particle of prussian blue-type metal complex, dispersion liquid thereof, and their production methods
US20080266643A1 (en) * 2005-08-19 2008-10-30 National Institute Of Advanced Industrial Science And Technology Electrode for Reversible Color Change Display Device and Method of Producing the Same, and Reversible Color Change Display Device and Reversible Color Change Lighting Control Device
JP4889015B2 (en) * 2006-08-16 2012-02-29 独立行政法人産業技術総合研究所 Sensor electrode body, sensor and sensing system using the same, and method for manufacturing sensor electrode body
JP5282259B2 (en) * 2007-02-16 2013-09-04 国立大学法人名古屋大学 Molecular cluster secondary battery
US8658251B2 (en) 2008-06-27 2014-02-25 National Institute Of Advanced Industrial Science And Technology Method of producing structural member having prussian blue-type metal complex nanoparticles, structural member obtained by the method, substrate, electrochromic device, rectifying device, and photo responding device, using the structural member
JP2010218793A (en) * 2009-03-16 2010-09-30 Denki Kagaku Kogyo Kk Lithium ion secondary battery and method of manufacturing the same
JP6004540B2 (en) * 2011-03-18 2016-10-12 国立大学法人 筑波大学 Binder-free battery
US10138171B2 (en) 2015-01-18 2018-11-27 Stacie Z. Berg Method for altering photosynthetic growth
CN108539170B (en) * 2018-04-16 2020-05-19 江西师范大学 Method for forming nano-sheet negative electrode material of lithium ion battery
JP7194255B2 (en) * 2020-01-06 2022-12-21 ヴィトロ フラット グラス リミテッド ライアビリティ カンパニー Electrochromic device and method of manufacturing electrochromic device
JP6997812B2 (en) * 2020-01-06 2022-02-10 ヴィトロ フラット グラス リミテッド ライアビリティ カンパニー Electrochromic devices and methods for manufacturing electrochromic devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115129A (en) * 1985-11-13 1987-05-26 Alps Electric Co Ltd Electrochromic display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529146A (en) * 2006-03-06 2009-08-13 エスケイシー・カンパニー・リミテッド Method for producing Prussian blue coating film for electrochromic device

Also Published As

Publication number Publication date
JPH01219723A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
JP2716448B2 (en) Fine particle dispersion and method for producing electrode using the same
TWI542068B (en) A protective film and a composition for producing the same, a slurry, and a power storage device
KR100450109B1 (en) Non-aqueous electrolyte secondary battery and production method thereof
CN102473898A (en) Electrode for secondary battery, slurry for secondary battery electrode, and secondary battery
KR20180083339A (en) A composition for a non-aqueous secondary battery adhesion layer, an adhesive layer for a non-aqueous secondary battery, a laminate and a non-
JP6192019B2 (en) Lithium battery and manufacturing method thereof
KR20000019944A (en) Solid-state secondary battery composed of thin film type multiple material anode
KR20100093489A (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US5665492A (en) Composite Electrode including organic disulfide compound, method of producing the same, and lithium secondary battery utilizing the same
JP6569548B2 (en) Method for producing carbon black dispersion for lithium ion secondary battery
CN104380498A (en) Coating fluid, laminated porous film, and non-aqueous electrolyte secondary battery
JPH09259864A (en) Electrode containing organic disulfide compound, and manufacture thereof
KR20170129732A (en) METHOD FOR PRODUCING SLIDE COMPOSITION FOR SECONDARY CELL FOR SECONDARY BATTERY,
JPH11214008A (en) Compound electrode, manufacture thereof, and lithium secondary battery
TWI740221B (en) Improved solid electrolyte for organic batteries
TW202211522A (en) Binder composition for secondary battery
TW201444167A (en) Electricity storage device, electrode used therein, and porous sheet
JP3143273B2 (en) Electrolyte sheet
US5580680A (en) Catalyst containing solid electrolytes
Perera et al. Copper-ion conducting solid-polymer electrolytes based on polyacrylonitrile (PAN)
JP4543442B2 (en) Polymer particles, polymer dispersion composition, slurry for battery electrode, electrode and battery
TW522601B (en) nonaqueous organic secondary cell
JP6618030B2 (en) Secondary battery electrode binder, secondary battery electrode slurry using the same, secondary battery electrode, and secondary battery
JPS60264048A (en) Manufacture of positive electrode of battery
JP2002319400A (en) Electrode, manufacturing method therefor, and lithium battery using the same