JP3143273B2 - Electrolyte sheet - Google Patents

Electrolyte sheet

Info

Publication number
JP3143273B2
JP3143273B2 JP05189207A JP18920793A JP3143273B2 JP 3143273 B2 JP3143273 B2 JP 3143273B2 JP 05189207 A JP05189207 A JP 05189207A JP 18920793 A JP18920793 A JP 18920793A JP 3143273 B2 JP3143273 B2 JP 3143273B2
Authority
JP
Japan
Prior art keywords
powder
copolymer
electrolyte sheet
electrolyte
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05189207A
Other languages
Japanese (ja)
Other versions
JPH0782450A (en
Inventor
正 外邨
佳子 宮本
裕史 上町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP05189207A priority Critical patent/JP3143273B2/en
Publication of JPH0782450A publication Critical patent/JPH0782450A/en
Application granted granted Critical
Publication of JP3143273B2 publication Critical patent/JP3143273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To provide an electrolyte sheet formable to a thin and large-area sheet, having excellent conductivity and usable as an electrochemical element such as battery, electric double layer capacitor, etc. CONSTITUTION:This electrolyte sheet is composed of a copolymer of acrylonitrile and methyl acrylate, methyl methacrylate or vinyl acetate, an aprotic solvent solution of a salt and powder of electrically insulating inorganic substance containing alumina or silica. The electrically insulating inorganic substance powder containing alumina or silica acts as cross-linking points in a gelatinous substance formed by the copolymer and the aprotic solvent containing a salt as a solute to give an electrolyte sheet having excellent shape-retaining property and high mechanical strength without lowering the conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電池、キャパシター、
センサー、表示素子、記録素子等の電気化学素子に用い
られる電解質シートに関する。
The present invention relates to batteries, capacitors,
The present invention relates to an electrolyte sheet used for an electrochemical device such as a sensor, a display device, and a recording device.

【0002】[0002]

【従来の技術】シート状の電解質を用いることで、A4
版、B5版等の大面積でしかも薄形の電池、電気二重層
キャパシタ、あるいはエレクトロクロミック表示素子等
の電気化学デバイスを得ることができる。この様な目的
に合った電解質として、(a)リチウム塩を溶解した有
機溶媒をポリフッ化ビニリデンの共重合体でゲル化した
電解質(特開昭58ー75779号公報)や、(b)イ
オン伝導性の無機化合物に可塑性樹脂を複合化すること
で可撓性を付与し、機械的衝撃に対しても破損しにくい
固体電解質シートとする試み(特開昭63ー24587
1号公報)、(c)ポリエチレンオキシドとアルカリ金
属塩とからなるフィルム加工が可能な高分子固体電解質
("Fast Ion Transport in Solid" P.Vanishsta et.a
l., Eds. P.131(1979) North Holand Publishing Co.)
などが提案されている。
2. Description of the Related Art By using a sheet-like electrolyte, A4
It is possible to obtain an electrochemical device such as a battery, an electric double layer capacitor, or an electrochromic display element having a large area and a thin shape such as a plate, a B5 plate or the like. Examples of electrolytes suitable for such purposes include (a) an electrolyte obtained by gelling an organic solvent in which a lithium salt is dissolved with a copolymer of polyvinylidene fluoride (JP-A-58-75779), and (b) an ion conductor. Attempts to provide a solid electrolyte sheet that is flexible by imparting flexibility by compounding a plastic resin with a non-reactive inorganic compound and that is hardly damaged by mechanical impact (Japanese Patent Laid-Open No. 24587/1988).
No. 1), and (c) a polymer solid electrolyte comprising polyethylene oxide and an alkali metal salt, which can be processed into a film ("Fast Ion Transport in Solid" P. Vanishsta et.a.
l., Eds. P. 131 (1979) North Holand Publishing Co.)
And so on.

【0003】[0003]

【発明が解決しようとする課題】上述の(a)は大面
積、たとえば100cm2で、かつ厚みが200μm程
度のシート状とした場合、それ自身で形状を保持するの
は困難であるし、長期に渡って保存していると溶媒の浸
み出しが起こり収縮が起こり形状が変化する欠点があ
る。また、(b)は溶媒を含んでいないので、通常の可
塑性樹脂フィルムと同様に大面積でかつ薄膜化が可能
で、また上述のような形状の変化は無いが、可塑性樹脂
と混合される無機化合物のイオン伝導度は大きいもので
も室温で10ー3S/cm程度であり、十分なシート形成
能を与えるために絶縁性の可塑性樹脂を大量に混合する
ので、さらに伝導度は一桁から二桁小さくなり、室温で
10ー4〜10ー5S/cm程度の伝導度がせいぜい得られ
るのみである。さらに、(c)はシート形成能が十分あ
り厚みが200μm以下であっても大面積のフィルムが
得られるが、イオン伝導度は(b)よりもさらに低く1
ー5〜10ー6S/cm程度しか得られないと云う欠点が
ある。従って、本発明の目的は、厚みが200μm以下
であっても大面積で、保存中における溶媒の浸み出しが
起こらず形状の変化がなく、しかも室温で10-3S/c
m程度以上の高いイオン伝導度を有する電解質シートを
提供することである。
In the case of (a) described above, when a sheet having a large area, for example, 100 cm 2 and a thickness of about 200 μm is formed, it is difficult to maintain the shape by itself, When stored over a period of time, there is a drawback that the solvent oozes out and shrinks to change the shape. Further, since (b) does not contain a solvent, it can have a large area and a thin film similarly to a normal plastic resin film, and there is no change in the shape as described above. Even if the ionic conductivity of the compound is large, it is about 10-3 S / cm at room temperature, and a large amount of insulating plastic resin is mixed to give sufficient sheet forming ability. digit decreases, 10 @ 4 -10 over 5 S / cm order of conductivity at room temperature is at most only obtained. Further, (c) has a sufficient sheet-forming ability and a large-area film can be obtained even when the thickness is 200 μm or less, but the ion conductivity is lower than that of (b).
0 over 5 -10 over 6 S / cm only about it it is not obtained and referred drawbacks. Therefore, an object of the present invention is to provide a large area even if the thickness is 200 μm or less, no leaching of the solvent during storage, no change in shape, and 10 −3 S / c at room temperature.
An object of the present invention is to provide an electrolyte sheet having a high ionic conductivity of about m or more.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する本発
明の電解質シートは、アクリロニトリルとアクリル酸メ
チルもしくはメタクリル酸メチルまたは酢酸ビニルとの
共重合体と、塩を溶解した非プロトン性溶媒からなる電
解液と、アルミナあるいはシリカを含む電気絶縁性無機
物質の粉末より成り、前記粉末が前記共重合体の架橋点
として前記共重合体および前記電解液の合計重量に対し
0.5〜10重量%含まれていることを特徴とする。
The electrolyte sheet of the present invention to achieve the above object, according to an aspect of the acrylonitrile and the copolymers of methyl acrylate or methyl methacrylate or vinyl acetate, made of aprotic solvent to dissolve the salt Electric
Solution solution and, Ri powder from forming the electrically insulating inorganic material containing alumina or silica, the powder crosslinking point of the copolymer
With respect to the total weight of the copolymer and the electrolytic solution
Characterized that you have included 0.5 to 10 wt%.

【0005】[0005]

【作用】本発明の電解質シートは、特定の共重合体であ
るアクリロニトリルとアクリル酸メチルもしくはメタク
リル酸メチルまたは酢酸ビニルとの共重合体と、アルミ
ナあるいはシリカを含む電気絶縁性無機物質の粉末とを
含んでおり、塩を溶解した非プロトン性溶媒が共重合体
の作用によりゲル化した際、ゲル内に在ってアルミナあ
るいはシリカを含む電気絶縁性無機物質の粉末は、共重
合体の架橋点として作用し、共重合体分子が絡まった編
目構造が発達し、塩を溶解した非プロトン性溶媒を有効
に保持するため、長期間に渡り保存しておいても溶媒の
浸み出しは全く起こらない。アルミナあるいはシリカを
含む電気絶縁性無機物質の粉末が架橋点として作用する
ことにより、大面積で200μm以下の厚さであっても
可撓性に富んだ機械強度の高い自己支持性に優れた電解
質シートとなる。
The electrolyte sheet of the present invention comprises a copolymer of acrylonitrile and a copolymer of methyl acrylate or methyl methacrylate or vinyl acetate, and a powder of an electrically insulating inorganic substance containing alumina or silica. When the aprotic solvent in which the salt is dissolved is gelled by the action of the copolymer, the powder of the electrically insulating inorganic substance containing alumina or silica in the gel forms a cross-linking point of the copolymer. As a result, a stitch structure in which the copolymer molecules are entangled develops, and in order to effectively retain the aprotic solvent in which the salt is dissolved, no solvent seeps out even when stored for a long period of time. Absent. An electrically insulating inorganic substance powder containing alumina or silica acts as a cross-linking point, so that even if the area is 200 μm or less in a large area, the electrolyte is rich in flexibility, has high mechanical strength, and has excellent self-supporting properties. It becomes a sheet.

【0006】本発明の電解質シートを得るには、先ず、
塩を溶解した非プロトン性の溶媒(以下、電解液と記
す)にアクリロニトリルとアクリル酸メチルもしくはメ
タクリル酸メチルまたは酢酸ビニルとの共重合体(以
下、PAN−MAもしくはPAN−MMAまたはPAN
−VAと記す)の粉末を溶解する。溶解して得られた粘
性液体中に、予め乾燥したアルミナあるいはシリカを含
む電気絶縁性無機物質の粉末を添加し、均一に分散す
る。得られた分散液をガラス板上に展開したのち0℃以
下に冷却することで作製する。
In order to obtain the electrolyte sheet of the present invention, first,
A copolymer of acrylonitrile and methyl acrylate or methyl methacrylate or vinyl acetate (hereinafter PAN-MA or PAN-MMA or PAN) is mixed with an aprotic solvent in which a salt is dissolved (hereinafter referred to as an electrolyte).
-VA). A powder of an electrically insulating inorganic substance containing alumina or silica, which has been dried in advance, is added to the viscous liquid obtained by dissolution, and uniformly dispersed. It is prepared by spreading the obtained dispersion on a glass plate and cooling it to 0 ° C. or lower.

【0007】PAN−MAもしくはPAN−MMAは、
平均分子量が2万〜10万のものが好ましい。2万より
小さいと、冷却してもゲル化が起こらず自己支持性のあ
るシートとならない。10万より大きいと、粘性液体の
粘度が高くなり、アルミナあるいはシリカを含む電気絶
縁性無機物質の粉末が均一分散されず均一な膜が得られ
ない。粘性液体の粘度を下げるのに、加熱、溶媒による
希釈が有効であるが、分子量が10万以上になると、加
熱温度を上げれば分散に必要な粘度に下がる前に共重合
体の熱分解が起こる。また、希釈剤を用いると凝固が起
こり、共重合体と溶媒とが分離する。PAN−MAもし
くはPAN−MMAの共重合モル比は、PAN:MAも
しくはMMA=95:5〜60:40が好ましい。この
範囲内であると、共重合体は電解液に溶解し、アルミナ
あるいはシリカを含む電気絶縁性無機物質の粉末の分散
に好適な粘度(約500〜3000cps)の粘性液体
が得られる。
[0007] PAN-MA or PAN-MMA is
Those having an average molecular weight of 20,000 to 100,000 are preferred. If it is smaller than 20,000, gelling does not occur even when cooled, and the sheet does not become self-supporting. If it is larger than 100,000, the viscosity of the viscous liquid becomes high, and the powder of the electrically insulating inorganic substance containing alumina or silica is not uniformly dispersed, so that a uniform film cannot be obtained. Heating and dilution with a solvent are effective in lowering the viscosity of the viscous liquid, but when the molecular weight exceeds 100,000, thermal decomposition of the copolymer occurs before the viscosity required for dispersion decreases when the heating temperature is increased. . When a diluent is used, coagulation occurs, and the copolymer and the solvent are separated. The copolymerization molar ratio of PAN-MA or PAN-MMA is preferably PAN: MA or MMA = 95: 5 to 60:40. Within this range, the copolymer dissolves in the electrolytic solution to obtain a viscous liquid (approximately 500 to 3000 cps) suitable for dispersing powder of an electrically insulating inorganic substance containing alumina or silica.

【0008】また、PAN−VAは、平均分子量が10
万〜100万のものが好ましい。10万より小さいと、
冷却してもゲル化が起こらず自己形状保持性のあるシー
トとならない。100万より大きいと、粘性液体の粘度
が高くなり、絶縁性無機物質の粉末が均一分散されず均
一な膜が得られない。粘性液体の粘度を下げるのに、加
熱、溶媒による希釈が有効であるが、分子量が100万
以上になると、加熱温度を上げれば分散に必要な粘度に
下がる前に共重合体の熱分解が起こる。また、希釈剤を
用いると凝固が起こり、共重合体と溶媒とが分離する。
PAN−MAの共重合モル比は、PAN:VA=99:
1〜80:20が好ましい。この範囲内であると、共重
合体は電解液に溶解し、絶縁性無機物質粉末の分散に好
適な粘度(約500〜3000cps)の粘性液体が得
られる。
PAN-VA has an average molecular weight of 10
Thousands to one million are preferred. If it is smaller than 100,000,
Gelling does not occur even when cooled, and the sheet does not have self-shape retention. If it is larger than 1,000,000, the viscosity of the viscous liquid becomes high, and the powder of the insulating inorganic substance is not uniformly dispersed, so that a uniform film cannot be obtained. Heating and dilution with a solvent are effective in lowering the viscosity of the viscous liquid, but when the molecular weight exceeds 1,000,000, thermal decomposition of the copolymer occurs before the viscosity required for dispersion decreases when the heating temperature is increased. . When a diluent is used, coagulation occurs, and the copolymer and the solvent are separated.
The copolymerization molar ratio of PAN-MA is PAN: VA = 99:
1-80: 20 is preferred. Within this range, the copolymer dissolves in the electrolytic solution to obtain a viscous liquid having a viscosity suitable for dispersion of the insulating inorganic substance powder (about 500 to 3000 cps).

【0009】電解液に用いる塩としては、LiClO
4 、LiBF4 、LiPF6 、LiAsF6 、LiCF
3SO3 、LiI、NaBF4 、(C254NBF4
安息香酸アンモニウム、あるいは酒石酸アンモニウム等
のアルカリ金属塩、アルカリ土類金属塩、アンモニウム
塩が用いられる。塩の濃度は0.5M〜1.5Mが最も
高いイオン伝導度が得られるので好ましい。電解液に用
いる非プロトン性の溶媒としては、ブチレンカーボネー
ト、プロピレンカーボネート、エチレンカーボネート、
ジエチルカーボネート、ジメチルカーボネート、スルホ
ラン、メチルスルホラン、ジメトキシエタン、ジメチル
ホルムアミド、ジメチルスルホキシド、テトラヒドロフ
ラン、アセトニトリルあるいはこれらの混合物が用いら
れる。
The salt used in the electrolyte is LiClO.
4, LiBF 4, LiPF 6, LiAsF 6, LiCF
3 SO 3 , LiI, NaBF 4 , (C 2 H 5 ) 4 NBF 4 ,
An alkali metal salt such as ammonium benzoate or ammonium tartrate, an alkaline earth metal salt, or an ammonium salt is used. The salt concentration is preferably 0.5 M to 1.5 M because the highest ionic conductivity can be obtained. As the aprotic solvent used for the electrolyte, butylene carbonate, propylene carbonate, ethylene carbonate,
Diethyl carbonate, dimethyl carbonate, sulfolane, methylsulfolane, dimethoxyethane, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, acetonitrile or a mixture thereof is used.

【0010】アルミナあるいはシリカを含む電気絶縁性
の無機物質の粉末としては、アルミナ粉末、シリカゲル
粉末、多孔質ガラス粉末、溶融ガラス粉末、硅酸アルミ
ニウム粉末などが好適に用いられる。これらの粉末の形
状は、球状、繊維状、板状いずれであってもよい。ま
た、表面がビニルモノマーの重合体で改質したこれらの
無機物質の粉末を用いることで、共重合体を溶解した粘
性の電解液内でのこれら粉末の均一分散が有効に達成で
きるとともに、より可撓性、弾性のある電解質シートと
することができる。ビニルモノマーとしては、メタクリ
ル酸メチル、アクリロニトリル、スチレン、酢酸ビニ
ル、塩化ビニル、ブタジエン、イソプレン等を用いるこ
とができる。中でも、ゲルを形成するPAN−MA、P
AN−MMAまたはPAN−VA共重合体の成分である
アクリル酸メチル、メタクリル酸メチルまたは酢酸ビニ
ルを用いると、さらに高い均一性と機械的強度が得られ
るので好ましい。
As a powder of an electrically insulating inorganic substance containing alumina or silica, alumina powder, silica gel powder, porous glass powder, molten glass powder, aluminum silicate powder and the like are preferably used. The shape of these powders may be spherical, fibrous, or plate-like. In addition, by using powders of these inorganic substances whose surfaces are modified with a polymer of a vinyl monomer, uniform dispersion of these powders in a viscous electrolytic solution in which a copolymer is dissolved can be effectively achieved, and A flexible and elastic electrolyte sheet can be obtained. As the vinyl monomer, methyl methacrylate, acrylonitrile, styrene, vinyl acetate, vinyl chloride, butadiene, isoprene and the like can be used. Among them, PAN-MA, P which form a gel
It is preferable to use methyl acrylate, methyl methacrylate or vinyl acetate, which is a component of the AN-MMA or PAN-VA copolymer, because higher uniformity and mechanical strength can be obtained.

【0011】無機物質粉末の表面は、ビニルモノマーの
重合体により次のようにして改質される。無機物質粉末
を水媒体中に懸濁し、アルキルアンモニウム四級塩と過
硫酸カリウムあるいは過硫酸アンモニウムを加え、無機
物質粉末表面に難溶性の複塩を形成する。次に、ビニル
モノマーを懸濁液に加えると、複塩が重合開始剤として
作用し、粉体表面でビニルモノマーの重合が起こり、ビ
ニルモノマーの重合体により表面が被覆され改質され
る。あるいは複塩を形成することなく、無機物質粉末の
懸濁液にビニルモノマーを加えたのち、アミン類を重合
開始剤として用いてビニルモノマーの重合体を表面に形
成してもよい。無機粉末の添加量は特に制限はないが、
良好な機械強度と高いイオン伝導性を得るには、電解液
と共重合体の合計の重量に対し0.5%から10%の範
囲であることが好ましい。
The surface of the inorganic substance powder is modified with a polymer of a vinyl monomer as follows. The inorganic material powder is suspended in an aqueous medium, and a quaternary alkyl ammonium salt and potassium persulfate or ammonium persulfate are added to form a hardly soluble double salt on the surface of the inorganic material powder. Next, when a vinyl monomer is added to the suspension, the double salt acts as a polymerization initiator, polymerization of the vinyl monomer occurs on the surface of the powder, and the surface is coated and modified with a polymer of the vinyl monomer. Alternatively, after a vinyl monomer is added to the suspension of the inorganic substance powder without forming a double salt, a polymer of the vinyl monomer may be formed on the surface by using an amine as a polymerization initiator. The amount of the inorganic powder added is not particularly limited,
In order to obtain good mechanical strength and high ionic conductivity, the content is preferably in the range of 0.5% to 10% with respect to the total weight of the electrolytic solution and the copolymer.

【0012】[0012]

【実施例】以下、実施例により本発明を更に詳しく説明
する。 [実施例1]LiBF4を4.6g溶かしたエチレンカ
ーボネート(以下、ECと記す)−スルホラン(以下、
SLと記す)(EC:SL=1:1容積比)混合溶媒よ
りなる電解液40g中に、PANとMAの共重合モル比
が90:10、平均分子量が45,000のPAN−M
A共重合体粉末を6.0g加え、150℃に加熱して透
明な粘性溶液とした後、アセトニトリル60gを加えて
希釈し、粘度が1550cpsの溶液を調製する。次
に、多孔性のシリカゲル粉末(富士デビソン社製サイロ
イド404、平均粒径5.2μm、比表面積300m2
/g)2gを、蒸留水50mlに分散したのち、セチル
トリエチルアンモニウムブロマイドを0.7mmol、
過硫酸カリウムを0.2mmol加え, さらにメタクリ
ル酸メチルを3.5mmolを加えた後、60℃で17
時間重合を行う。沈澱物をメタノールで洗浄した後、8
0℃で72時間真空乾燥して、表面を改質したシリカゲ
ル粉末を得る。
The present invention will be described in more detail with reference to the following examples. [Example 1] LiBF 4 and 4.6g melted ethylene carbonate (hereinafter, referred to as EC) - sulfolane (hereinafter,
PAN-M having a copolymerization molar ratio of PAN and MA of 90:10 and an average molecular weight of 45,000 in 40 g of an electrolyte composed of a mixed solvent (referred to as SL) (EC: SL = 1: 1 volume ratio).
After adding 6.0 g of the A copolymer powder and heating to 150 ° C. to form a transparent viscous solution, 60 g of acetonitrile is added and diluted to prepare a solution having a viscosity of 1550 cps. Next, a porous silica gel powder (Syloid 404 manufactured by Fuji Devison, average particle size 5.2 μm, specific surface area 300 m 2)
/ G) After dispersing 2 g in 50 ml of distilled water, 0.7 mmol of cetyltriethylammonium bromide was added,
0.2 mmol of potassium persulfate was added, and 3.5 mmol of methyl methacrylate was further added.
The polymerization is carried out for a time. After washing the precipitate with methanol, 8
Vacuum drying at 0 ° C. for 72 hours gives a silica gel powder whose surface has been modified.

【0013】このようにして調製したシリカゲル粉末
1.5gを先に調製した溶液に加え、ホモジナイザーで
均一に分散して懸濁液を得る。この懸濁液を、直径90
mmのガラスシャーレに流延し、40cmHgの減圧下
で60℃に加熱し、アセトニトリルを散逸させたのち、
マイナス20℃に冷却することで厚さ120μmの電解
質シートAを得る。電解質シートAは、ガラスシャーレ
から容易に剥がれ、可撓性に富んだ膜で、直径50mm
の円柱の外周に沿って折り曲げる試験を3000回繰り
返した後も破れることはなかった。このシートを直径1
2.5mmの円板に打ち抜き、リチウム円板に挟んで伝
導度を測定したところ、20℃で1×10-3S/cm、
マイナス20℃で2×10-4S/cmの高伝導度を与え
た。
[0015] 1.5 g of the silica gel powder thus prepared is added to the previously prepared solution, and the mixture is uniformly dispersed with a homogenizer to obtain a suspension. This suspension is used for
and then heated to 60 ° C under reduced pressure of 40 cmHg to dissipate acetonitrile.
By cooling to −20 ° C., an electrolyte sheet A having a thickness of 120 μm is obtained. The electrolyte sheet A is easily peeled off from the glass petri dish and is a flexible film having a diameter of 50 mm.
The test piece was not broken after repeating the bending test along the outer circumference of the column 3000 times. This sheet has a diameter of 1
When punched into a 2.5 mm disk and measured for conductivity by sandwiching it between lithium disks, 1 × 10 −3 S / cm at 20 ° C.
At −20 ° C., a high conductivity of 2 × 10 −4 S / cm was provided.

【0014】[比較例1]LiBF4を4.6g溶かし
たEC−SL(EC:SL=1:1容積比)混合溶媒よ
りなる電解液40g中に、PANとMAの共重合モル比
が90:10、平均分子量が45,000のPAN−M
A共重合体粉末を6.0g加え、150℃に加熱して透
明な粘性溶液とした後、アセトニトリル60gを加えて
希釈し粘度が1550cpsの溶液を調製する。この溶
液を、直径90mmのガラスシャーレに流延し、40c
mHgの減圧下で60℃に加熱し、アセトニトリルを散
逸させたのち、マイナス20℃に冷却することで厚さ6
70μmの電解質シートBを得る。電解質シートBは、
直径90mmの膜としてガラスシャーレから剥がすこと
が可能であるが、電解質シートAに較べ破れや易く慎重
な取扱いが必要であった。流延する量を1/5に減らし
て、より薄い電解質シートの製膜を試みたが、できた膜
は、自己保持性に乏しく、ガラスシャーレから剥がすこ
とは困難で、また破れやすく取扱いが極めて困難であっ
た。
[Comparative Example 1] In 40 g of an electrolytic solution consisting of an EC-SL (EC: SL = 1: 1 volume ratio) mixed solvent in which 4.6 g of LiBF 4 was dissolved, the copolymerization molar ratio of PAN and MA was 90%. : 10, PAN-M having an average molecular weight of 45,000
After adding 6.0 g of the A copolymer powder and heating to 150 ° C. to make a transparent viscous solution, 60 g of acetonitrile is added and diluted to prepare a solution having a viscosity of 1550 cps. This solution was cast on a glass Petri dish having a diameter of 90 mm,
After heating to 60 ° C. under reduced pressure of mHg to dissipate acetonitrile, it is cooled to minus 20 ° C. to obtain a thickness of 6 μm.
An electrolyte sheet B of 70 μm is obtained. The electrolyte sheet B is
Although it can be peeled off from the glass petri dish as a film having a diameter of 90 mm, it is easily broken and requires careful handling as compared with the electrolyte sheet A. Although the casting amount was reduced to 1/5, an attempt was made to form a thinner electrolyte sheet. It was difficult.

【0015】[実施例2]LiBF4を4.6g溶かし
たEC−プロピレンカーボネート(以下、PCと記す)
(EC:PC=1:1容積比)混合溶媒よりなる電解液
40g中に、PANとMAの共重合モル比が75:2
5、平均分子量が43,000のPAN−MA共重合体
粉末を6.0g加え、150℃に加熱して透明な粘性溶
液とした後、アセトニトリル60gを加えて希釈し、粘
度が2950cpsの溶液を調製する。次に、150℃
で17時間真空乾燥したアルミナ粉末(住友化学工業
製、低ソーダアルミナ粉末ALーM41、中心粒径1.
9μm)3gを、蒸留水50mlに分散したのち、セチ
ルトリエチルアンモニウムブロマイドを0.7mmo
l、過硫酸カリウムを0.2mmol加え, さらにスチ
レンを3.5mmolを加えた後、60℃で17時間重
合を行う。沈澱物をメタノールで洗浄した後、80℃で
72時間真空乾燥して、表面を改質したアルミナ粉末を
得る。
Example 2 EC-propylene carbonate in which 4.6 g of LiBF 4 was dissolved (hereinafter referred to as PC)
(EC: PC = 1: 1 volume ratio) The copolymerization molar ratio of PAN and MA is 75: 2 in 40 g of the electrolytic solution composed of the mixed solvent.
5. 6.0 g of PAN-MA copolymer powder having an average molecular weight of 43,000 was added and heated to 150 ° C. to form a transparent viscous solution. Then, 60 g of acetonitrile was added to dilute the solution, and a solution having a viscosity of 2950 cps was added. Prepare. Next, at 150 ° C
Powder (manufactured by Sumitomo Chemical Co., Ltd., low-soda alumina powder AL-M41, central particle size: 1: 1).
9 μm) was dispersed in 50 ml of distilled water, and cetyltriethylammonium bromide was dispersed in 0.7 mm
After adding 0.2 mmol of potassium persulfate and 3.5 mmol of styrene, polymerization is carried out at 60 ° C. for 17 hours. The precipitate is washed with methanol and then dried under vacuum at 80 ° C. for 72 hours to obtain a surface-modified alumina powder.

【0016】このようにして調製したアルミナ粉末1.
5gを先に調製した溶液に加え、ホモジナイザーで均一
に分散して懸濁液を得る。この懸濁液を、直径90mm
のガラスシャーレに流延し、40cmHgの減圧下で6
0℃に加熱し、アセトニトリルを散逸させたのち、マイ
ナス20℃に冷却することで厚さ160μmの電解質シ
ートCを得る。電解質シートCは、ガラスシャーレから
容易に剥がれ、可撓性に富んだ膜で、直径50mmの円
柱の外周に沿って折り曲げる試験を3000回繰り返し
た後も破れることはなかった。 このシートを直径1
2.5mmの円板に打ち抜き、リチウム円板に挟んで伝
導度を測定したところ、20℃で9×10-4S/cm、
マイナス20℃で8×10-5S/cmの高伝導度を与え
た。
The alumina powder thus prepared
5 g is added to the previously prepared solution, and the mixture is uniformly dispersed with a homogenizer to obtain a suspension. This suspension is 90 mm in diameter.
And cast under a reduced pressure of 40 cmHg.
After heating to 0 ° C. to dissipate acetonitrile, the mixture is cooled to −20 ° C. to obtain an electrolyte sheet C having a thickness of 160 μm. The electrolyte sheet C was easily peeled off from the glass petri dish, and did not break even after repeating a test of bending along the outer periphery of a cylinder having a diameter of 50 mm 3000 times. This sheet has a diameter of 1
When punched into a 2.5 mm disk and measured for conductivity by sandwiching it between lithium disks, 9 × 10 −4 S / cm at 20 ° C.
At −20 ° C., a high conductivity of 8 × 10 −5 S / cm was provided.

【0017】[比較例2]実施例2と同様にして調製し
た、PAN−MA共重合体粉末を溶解し、アセトニトリ
ルで希釈した電解液を、直径90mmのガラスシャーレ
に流延し、40cmHgの減圧下で60℃に加熱し、ア
セトニトリルを散逸させたのち、マイナス20℃に冷却
することで厚さ550μmの電解質シートDを得る。電
解質シートDは、直径90mmの膜としてガラスシャー
レから剥がすことが可能であるが、電解質シートCに較
べ破れや易く慎重な取扱いが必要であった。流延する量
を1/5に減らして、より薄い電解質シートの製膜を試
みたが、できた膜は、自己保持性に乏しく、ガラスシャ
ーレから剥がすことは困難で、また破れやすく取扱いが
極めて困難であった。
Comparative Example 2 An electrolyte solution prepared by dissolving a PAN-MA copolymer powder prepared in the same manner as in Example 2 and diluted with acetonitrile was cast on a glass Petri dish having a diameter of 90 mm, and the pressure was reduced to 40 cmHg. After heating to 60 ° C. below to dissipate acetonitrile, it is cooled to −20 ° C. to obtain an electrolyte sheet D having a thickness of 550 μm. Although the electrolyte sheet D can be peeled off from the glass dish as a film having a diameter of 90 mm, the electrolyte sheet D is easily broken and requires careful handling as compared with the electrolyte sheet C. Although the casting amount was reduced to 1/5, an attempt was made to form a thinner electrolyte sheet. However, the resulting film has poor self-holding properties, is difficult to peel off from a glass Petri dish, and is easily broken and easily handled. It was difficult.

【0018】[比較例3]PANとMAの共重合体粉末
に換えて平均分子量が51,000のポリアクリロニト
リル粉末を実施例2と同様の電解液中に加え、加熱した
ところ、150℃以上に熱しても粉末が溶解せずに一部
残り、加熱し続けると黄色に変色しはじめポリアクリロ
ニトリルの分解が起こった。一部未溶解のまま、アセト
ニトリル60mlを添加したところ、ポリアクリロニト
リルの凝固が起こり、白色の固形物と溶液に分離した。
Comparative Example 3 Polyacrylonitrile powder having an average molecular weight of 51,000 was added to the same electrolytic solution as in Example 2 in place of the PAN and MA copolymer powder, and heated to 150 ° C. or more. Even when heated, a part of the powder remained without dissolving, and when heating was continued, the powder began to turn yellow and decomposition of polyacrylonitrile occurred. When 60 ml of acetonitrile was added while partially undissolved, coagulation of polyacrylonitrile occurred, and the mixture was separated into a white solid and a solution.

【0019】[実施例3]LiBF4を4.6g溶かし
たEC−SL(EC:SL=1:1容積比)混合溶媒よ
りなる電解液40g中に、PANとVAの共重合モル比
が97:3、平均分子量が200,000のPAN−V
A共重合体粉末を2.5g加え、150℃に加熱して透
明な粘性溶液とした後、アセトニトリル40gを加えて
希釈し、粘度が1250cpsの溶液を調製する。次
に、多孔性のシリカゲル粉末(富士デビソン社製サイロ
イド244、平均粒径1.8μm、比表面積300m2
/g)2.5gを蒸留水50mlに分散したのち、セチ
ルトリエチルアンモニウムブロマイドを0.7mmo
l、過硫酸カリウムを0.2mmol加え, さらに酢酸
ビニルを3.8mmolを加えた後、60℃で17時間
重合を行う。沈澱物をメタノールで洗浄した後、80℃
で72時間真空乾燥して、表面を改質したシリカゲル粉
末を得る。
Example 3 In a 40 g electrolyte composed of an EC-SL (EC: SL = 1: 1 volume ratio) mixed solvent in which 4.6 g of LiBF 4 was dissolved, the copolymerization molar ratio of PAN and VA was 97 : 3, PAN-V having an average molecular weight of 200,000
After adding 2.5 g of A copolymer powder and heating to 150 ° C. to make a transparent viscous solution, 40 g of acetonitrile is added for dilution to prepare a solution having a viscosity of 1250 cps. Next, a porous silica gel powder (Syloid 244, manufactured by Fuji Devison, average particle size 1.8 μm, specific surface area 300 m 2)
/ G) After dispersing 2.5 g in 50 ml of distilled water, 0.7 ml of cetyltriethylammonium bromide was added.
After adding 0.2 mmol of potassium persulfate and 3.8 mmol of vinyl acetate, polymerization is carried out at 60 ° C. for 17 hours. After washing the precipitate with methanol,
For 72 hours to obtain a silica gel powder having a surface modified.

【0020】このようにして調製したシリカゲル粉末
0.5gを先に調製した溶液に加え、ホモジナイザーで
均一に分散して懸濁液を得る。この懸濁液を、直径90
mmのガラスシャーレに流延し、40cmHgの減圧下
で60℃に加熱し、アセトニトリルを散逸させたのち、
マイナス20℃に冷却することで厚さ110μmの電解
質シートEを得る。電解質シートEは、ガラスシャーレ
から容易に剥がれ、可撓性に富んだ膜で、直径50mm
の円柱の外周に沿って折り曲げる試験を5000回繰り
返した後も破れることはなかった。このシートを直径1
2.5mmの円板に打ち抜き、リチウム円板に挟んで伝
導度を測定したところ、20℃で8×10-4S/cm、
マイナス20℃で8×10-5S/cmの高伝導度を与え
た。
0.5 g of the silica gel powder thus prepared is added to the previously prepared solution, and the mixture is uniformly dispersed with a homogenizer to obtain a suspension. This suspension is used for
and then heated to 60 ° C under reduced pressure of 40 cmHg to dissipate acetonitrile.
By cooling to −20 ° C., an electrolyte sheet E having a thickness of 110 μm is obtained. The electrolyte sheet E is easily peeled off from the glass petri dish and is a flexible film having a diameter of 50 mm.
The test piece was not broken even after the bending test along the outer periphery of the column was repeated 5000 times. This sheet has a diameter of 1
When punched into a 2.5 mm disk and measured for conductivity by sandwiching it between lithium disks, 8 × 10 −4 S / cm at 20 ° C.
At −20 ° C., a high conductivity of 8 × 10 −5 S / cm was provided.

【0021】[比較例4]実施例3と同様にして調製し
たアセトニトリルで希釈した電解液を、直径90mmの
ガラスシャーレに流延し、40cmHgの減圧下で60
℃に加熱し、アセトニトリルを散逸させたのち、マイナ
ス20℃に冷却することで厚さ620μmの電解質シー
トFを得る。電解質シートFは、直径90mmの膜とし
てガラスシャーレから剥がすことが可能であるが、電解
質シートEに較べ破れや易く慎重な取扱い必要であっ
た。流延する量を1/5に減らして、より薄い電解質シ
ートの製膜を試みたが、できた膜は、自己保持性に乏し
く、ガラスシャーレから剥がすことは困難で、また破れ
やすく取扱いが極めて困難であった。
[Comparative Example 4] An electrolytic solution diluted with acetonitrile prepared in the same manner as in Example 3 was cast on a glass Petri dish having a diameter of 90 mm, and the pressure was reduced to 60 cm under a reduced pressure of 40 cmHg.
After heating to ℃ to dissipate acetonitrile, it is cooled to minus 20 ℃ to obtain an electrolyte sheet F having a thickness of 620 μm. Although the electrolyte sheet F can be peeled off from the glass dish as a film having a diameter of 90 mm, the electrolyte sheet F is easily broken and requires careful handling as compared with the electrolyte sheet E. Although the casting amount was reduced to 1/5, an attempt was made to form a thinner electrolyte sheet. However, the resulting film has poor self-holding properties, is difficult to peel off from a glass Petri dish, and is easily broken and easily handled. It was difficult.

【0022】[実施例4]LiBF4を4.6g溶かし
たEC−PC(EC:PC=1:1容積比)混合溶媒よ
りなる電解液40g中に、PANとVAの共重合モル比
が95:5、平均分子量が400,000のPAN−V
A共重合体粉末を2.0g加え、150℃に加熱して透
明な粘性溶液とした後、アセトニトリル40mlを加え
て希釈して、粘度が1650cpsの溶液を調製する。
次に、150℃で17時間真空乾燥したアルミナ粉末
(住友化学工業製、低ソーダアルミナ粉末ALーM4
3、中心粒径3.0μm)3gを、蒸留水50mlに分
散したのち、セチルトリエチルアンモニウムブロマイド
を0.7mmol、過硫酸カリウムを0.2mmol加
え, さらにスチレンを3.5mmolを加えた後、60
℃で17時間重合を行う。沈澱物をメタノールで洗浄し
た後、80℃で72時間真空乾燥して、表面を改質した
アルミナ粉末を得る。
Example 4 In 40 g of an electrolytic solution composed of a mixed solvent of EC-PC (EC: PC = 1: 1 by volume) in which 4.6 g of LiBF 4 was dissolved, the copolymerization molar ratio of PAN and VA was 95. : 5, PAN-V having an average molecular weight of 400,000
After adding 2.0 g of the A copolymer powder and heating to 150 ° C. to make a transparent viscous solution, 40 ml of acetonitrile is added and diluted to prepare a solution having a viscosity of 1650 cps.
Next, alumina powder vacuum-dried at 150 ° C. for 17 hours (manufactured by Sumitomo Chemical Co., Ltd., low soda alumina powder AL-M4)
3, 3 g of the center particle diameter is dispersed in 50 ml of distilled water, and then 0.7 mmol of cetyltriethylammonium bromide, 0.2 mmol of potassium persulfate, and 3.5 mmol of styrene are added.
The polymerization is carried out at 17 ° C. for 17 hours. The precipitate is washed with methanol and then dried under vacuum at 80 ° C. for 72 hours to obtain a surface-modified alumina powder.

【0023】このようにして調製したアルミナ粉末1.
5gを先に調製した溶液に加え、ホモジナイザーで均一
に分散して懸濁液を得る。この懸濁液を、直径90mm
のガラスシャーレに流延し、40cmHgの減圧下で6
0℃に加熱し、アセトニトリルを散逸させたのち、マイ
ナス20℃に冷却することで厚さ140μmの電解質シ
ートGを得る。電解質シートGは、ガラスシャーレから
容易に剥がれ、可撓性に富んだ膜で、直径50mmの円
柱の外周に沿って折り曲げる試験を1000回繰り返し
た後も破れることはなかった。 このシートを直径1
2.5mmの円板に打ち抜き、リチウム円板に挟んで伝
導度を測定したところ、20℃で6×10-4S/cm、
マイナス20℃で5×10-5S/cmの高伝導度を与え
た。
The alumina powder thus prepared
5 g is added to the previously prepared solution, and the mixture is uniformly dispersed with a homogenizer to obtain a suspension. This suspension is 90 mm in diameter.
And cast under a reduced pressure of 40 cmHg.
After heating to 0 ° C. to dissipate acetonitrile, the mixture is cooled to −20 ° C. to obtain an electrolyte sheet G having a thickness of 140 μm. The electrolyte sheet G was easily peeled off from the glass Petri dish, and did not break even after repeating the bending test along the outer periphery of a cylinder having a diameter of 50 mm 1000 times. This sheet has a diameter of 1
When punched into a 2.5 mm disc and sandwiched between lithium discs and measured for conductivity, at 20 ° C., 6 × 10 −4 S / cm,
At −20 ° C., a high conductivity of 5 × 10 −5 S / cm was provided.

【0024】[比較例5]実施例4と同様にして調製し
た、PAN−VA共重合体粉末を溶解し、アセトニトリ
ルで希釈した電解液を、直径90mmのガラスシャーレ
に流延し、40cmHgの減圧下で60℃に加熱し、ア
セトニトリルを散逸させたのち、マイナス20℃に冷却
することで厚さ680μmの電解質シートHを得る。電
解質シートHは、直径90mmの膜としてガラスシャー
レから剥がすことが可能であるが、電解質シートGに較
べ破れや易く慎重な取扱いが必要であった。流延する量
を1/5に減らして、より薄い電解質シートの製膜を試
みたが、できた膜は、自己保持性に乏しく、ガラスシャ
ーレから剥がすことは困難で、また破れやすく取扱いが
極めて困難であった。
Comparative Example 5 An electrolyte solution prepared by dissolving a PAN-VA copolymer powder prepared in the same manner as in Example 4 and diluted with acetonitrile was cast on a glass Petri dish having a diameter of 90 mm, and the pressure was reduced to 40 cmHg. After heating to 60 ° C. below to dissipate acetonitrile, the mixture is cooled to −20 ° C. to obtain an electrolyte sheet H having a thickness of 680 μm. Although the electrolyte sheet H can be peeled off from the glass dish as a film having a diameter of 90 mm, the electrolyte sheet H is easily broken and requires careful handling as compared with the electrolyte sheet G. Although the casting amount was reduced to 1/5, an attempt was made to form a thinner electrolyte sheet. However, the resulting film had poor self-holding properties, was difficult to peel off from the glass petri dish, and was easily broken and easily handled. It was difficult.

【0025】[比較例6]PAとVAの共重合体粉末に
換えて平均分子量が51,000のポリアクリロニトリ
ル粉末を実施例4と同様の電解液中に加え、加熱したと
ころ、150℃以上に熱しても粉末が溶解せずに一部残
り、加熱し続けると黄色に変色しはじめポリアクリロニ
トリルの分解が起こった。一部未溶解のまま、アセトニ
トリル60mlを添加したところ、ポリアクリロニトリ
ルの凝固が起こり、白色の固形物と溶液に分離した。
Comparative Example 6 Polyacrylonitrile powder having an average molecular weight of 51,000 was added to the same electrolytic solution as in Example 4 in place of the copolymer powder of PA and VA, and heated to 150 ° C. or more. Even when heated, a part of the powder remained without dissolving, and when heating was continued, the powder began to turn yellow and decomposition of polyacrylonitrile occurred. When 60 ml of acetonitrile was added while partially undissolved, coagulation of polyacrylonitrile occurred, and the mixture was separated into a white solid and a solution.

【0026】[0026]

【発明の効果】以上のように、本発明に従う電解質シー
トは、大面積でしかも200μm以下の薄膜状に製膜し
ても、自己形状保持性に富み、可撓性に優れ、しかも高
い伝導度を与える。優れた機械強度および電気特性を兼
ね備えた電解質シートであり、電池、電気二重層キャパ
シタ、エレクトロクロミック表示素子等の薄形大面積の
電気化学素子に有効に用いることができる。
As described above, even if the electrolyte sheet according to the present invention is formed into a thin film having a large area and a thickness of 200 μm or less, the self-shape retention property is excellent, the flexibility is excellent, and the conductivity is high. give. It is an electrolyte sheet having both excellent mechanical strength and electrical properties, and can be effectively used for thin large-area electrochemical devices such as batteries, electric double layer capacitors, and electrochromic display devices.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−3137(JP,A) 特開 昭61−89017(JP,A) 特開 昭51−147547(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08L 33/00 H01G 9/022 H01M 6/18 WPI(DIALOG)────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-3137 (JP, A) JP-A-61-189017 (JP, A) JP-A-51-147547 (JP, A) (58) Investigation Field (Int. Cl. 7 , DB name) C08L 33/00 H01G 9/022 H01M 6/18 WPI (DIALOG)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アクリロニトリルとアクリル酸メチルあ
るいはメタクリル酸メチルとの共重合体と、塩を溶解し
た非プロトン性溶媒からなる電解液と、アルミナあるい
はシリカを含む電気絶縁性無機物質の粉末からなる電解
質シートであって、 前記粉末が前記共重合体の架橋点として前記共重合体お
よび前記電解液の合計重量に対し0.5〜10重量%含
まれている ことを特徴とする電解質シート。
And 1. A copolymer of acrylonitrile and methyl acrylate or methyl methacrylate, an electrolyte solution comprising an aprotic solvent to dissolve the salt, electrolyte consisting of a powder of an electrically insulating inorganic material containing alumina or silica
A porous sheet, wherein the powder serves as a cross-linking point of the copolymer and the copolymer and the copolymer.
And 0.5 to 10% by weight based on the total weight of the electrolyte.
An electrolyte sheet characterized by being rare .
【請求項2】 前記電気絶縁性無機粉末が、表面をビニ
ルモノマーの重合体で改質されたアルミナあるいはシリ
カを含む請求項1記載の電解質シート。
2. The electrolyte sheet according to claim 1, wherein the electrically insulating inorganic powder contains alumina or silica whose surface is modified with a polymer of a vinyl monomer.
【請求項3】 前記ビニルモノマーがアクリル酸メチル
あるいはメタクリル酸メチルである請求項2記載の電解
質シート。
3. The electrolyte sheet according to claim 2, wherein the vinyl monomer is methyl acrylate or methyl methacrylate.
【請求項4】 アクリロニトリルと酢酸ビニルとの共重
合体と、塩を溶解した非プロトン性溶媒からなる電解液
と、アルミナあるいはシリカを含む電気絶縁性無機物質
の粉末からなる電解質シートであって、 前記粉末が前記共重合体の架橋点として前記共重合体お
よび前記電解液の合計重量に対し0.5〜10重量%含
まれている ことを特徴とする電解質シート。
4. An electrolytic solution comprising an copolymer of acrylonitrile and vinyl acetate, an aprotic solvent in which a salt is dissolved, and an electrolyte sheet comprising a powder of an electrically insulating inorganic substance containing alumina or silica. a is, the copolymer wherein the powder is as a crosslinking point of the copolymer Contact
And 0.5 to 10% by weight based on the total weight of the electrolyte.
An electrolyte sheet characterized by being rare .
【請求項5】 前記電気絶縁性無機粉末が、表面をビニ
ルモノマーの重合体で改質されたアルミナあるいはシリ
カを含む請求項4記載の電解質シート。
5. The electrolyte sheet according to claim 4, wherein the electrically insulating inorganic powder contains alumina or silica whose surface is modified with a polymer of a vinyl monomer.
【請求項6】 前記ビニルモノマーが酢酸ビニルである
請求項5記載の電解質シート。
6. The electrolyte sheet according to claim 5, wherein said vinyl monomer is vinyl acetate.
JP05189207A 1993-06-30 1993-06-30 Electrolyte sheet Expired - Fee Related JP3143273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05189207A JP3143273B2 (en) 1993-06-30 1993-06-30 Electrolyte sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05189207A JP3143273B2 (en) 1993-06-30 1993-06-30 Electrolyte sheet

Publications (2)

Publication Number Publication Date
JPH0782450A JPH0782450A (en) 1995-03-28
JP3143273B2 true JP3143273B2 (en) 2001-03-07

Family

ID=16237334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05189207A Expired - Fee Related JP3143273B2 (en) 1993-06-30 1993-06-30 Electrolyte sheet

Country Status (1)

Country Link
JP (1) JP3143273B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777699A1 (en) * 1998-04-16 1999-10-22 Alsthom Cge Alcatel POLYMER SOLID POLYACRYLONITRILE ELECTROLYTE
US6316149B1 (en) 1998-08-06 2001-11-13 Minnesota Mining And Manufacturing Solid polymer electrolyte compositions
JP2001052747A (en) 1999-08-06 2001-02-23 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2001052746A (en) 1999-08-06 2001-02-23 Matsushita Electric Ind Co Ltd High-molecular solid electrolyte and lithium secondary battery using the same
US6664006B1 (en) 1999-09-02 2003-12-16 Lithium Power Technologies, Inc. All-solid-state electrochemical device and method of manufacturing
US6645675B1 (en) 1999-09-02 2003-11-11 Lithium Power Technologies, Inc. Solid polymer electrolytes
KR100406794B1 (en) * 2001-04-07 2003-11-21 삼성에스디아이 주식회사 Lithium battery and preparing method thereof
CN105375070A (en) * 2011-08-23 2016-03-02 株式会社日本触媒 Gel electrolyte and cell using same
JP6190101B2 (en) * 2011-08-23 2017-08-30 株式会社日本触媒 Gel electrolyte or negative electrode mixture, and battery using the gel electrolyte or negative electrode mixture
JP6303412B2 (en) * 2013-03-19 2018-04-04 株式会社村田製作所 Batteries, electrolyte layers, battery packs, electronic devices, electric vehicles, power storage devices, and power systems
CN105826088B (en) * 2016-05-10 2018-11-13 复旦大学 A kind of carbon aerogels/manganese dioxide composite electrode material and preparation method thereof with multilevel hierarchy
CN105845455B (en) * 2016-05-10 2019-05-03 复旦大学 Polyacrylonitrile/polyimide-based composite carbon gas gel electrode material and preparation method

Also Published As

Publication number Publication date
JPH0782450A (en) 1995-03-28

Similar Documents

Publication Publication Date Title
US5418091A (en) Polymeric electrolytic cell separator membrane
US5858264A (en) Composite polymer electrolyte membrane
JP3143273B2 (en) Electrolyte sheet
US8357470B2 (en) Organic solid electrolyte and secondary battery
US20040197666A1 (en) Solidifying meterial for cell electrolyte solution, and cell comprising the solidifying material
JP2001176556A (en) High molecular electrolyte gel
JP3579200B2 (en) Heat-resistant polymer electrolyte gel and method for producing the same
JP3109460B2 (en) Ion conductive polymer composition, method for producing the same, and polymer battery
JP2000011757A (en) Ion conductive gel and its manufacture
KR20070024886A (en) Polymer electrolyte containing ionic liquid
JP4985959B2 (en) Organic solid electrolyte and secondary battery using the same
JP3359389B2 (en) Polymer electrolyte
JP3152264B2 (en) Polymer solid electrolyte and method for producing the same
JP3230610B2 (en) Polymer solid electrolyte and method for producing the same
JP2008204858A (en) Electrode integrated polymer electrolyte membrane and electrochemical element using the same
JPH1180296A (en) Gel form polymer electrolyte
JP2003142160A (en) Lithium ion conductive gel-form electrolyte and polymer lithium ion secondary battery
JP2000223105A (en) Gel electrolyte
KR100407485B1 (en) Polymeric gel electrolyte and lithium battery employing the same
JPH0757713A (en) Electrolyte sheet
JP3927645B2 (en) Immobilized liquid film conductor
JP3115165B2 (en) Lithium secondary battery
TWI750909B (en) Hydrogel, method for fabricating the same, hydrogel electrolyte, supercapacitor, and battery
JPH11273453A (en) Manufacture of high polymer gel electrolyte
JPH05315008A (en) Battery positive electrode sheet and manufacture thereof, and all solid secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees