JPH02166165A - Conductive polymer complex - Google Patents

Conductive polymer complex

Info

Publication number
JPH02166165A
JPH02166165A JP63320372A JP32037288A JPH02166165A JP H02166165 A JPH02166165 A JP H02166165A JP 63320372 A JP63320372 A JP 63320372A JP 32037288 A JP32037288 A JP 32037288A JP H02166165 A JPH02166165 A JP H02166165A
Authority
JP
Japan
Prior art keywords
conductive polymer
polymer
conductive
covalently bonded
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63320372A
Other languages
Japanese (ja)
Other versions
JP2699500B2 (en
Inventor
Yasushi Osaki
恭 大崎
Takashi Mori
隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18120740&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02166165(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP63320372A priority Critical patent/JP2699500B2/en
Publication of JPH02166165A publication Critical patent/JPH02166165A/en
Application granted granted Critical
Publication of JP2699500B2 publication Critical patent/JP2699500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a conductive polymer complex having excellent physical and chemical stability and a fixed dope band function in a wide range of a doping rate by mixing a specified conductive polymer with a polyelectrolyte. CONSTITUTION:A conductive polymer containing a monomer having a covalently bonded Bronsted acid group and a pi-electron conjugated system (e.g. polyaniline) is prepared by chemical or electrochemical oxidation in the presence of 1-100mol%, based on this polymer, polyelectrolyte (e.g. polystyrenesulfonic acid).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規な導電性高分子複合体に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a novel conductive polymer composite.

導電性高分子は現在その新規な物理特性、電気化学特性
より、導体、半導体、電池、表示素子、充電変換素子、
センサー等の新しい機能材材として注目を集めている。
Conductive polymers are currently being used as conductors, semiconductors, batteries, display devices, charge conversion devices, etc. due to their novel physical and electrochemical properties.
It is attracting attention as a new functional material for sensors, etc.

(従来の技術) アニオンをドーパントするP型環電性高分子は機能化を
目的とした各種ドーパントのドーピング方法及び得られ
た導電性高分子の特性と用途の開発が検討されている。
(Prior Art) For functionalizing P-type anion-doped anion-doped conductive polymers, various doping methods with dopants and the development of the properties and uses of the resulting conductive polymers have been studied.

なかでも導電性高分子の安定化、酸化還元応答の迅速化
を目的としたドーパントの導電性高分子内固定化が注目
されている。
Among these, the immobilization of dopants within conductive polymers for the purpose of stabilizing conductive polymers and speeding up the redox response is attracting attention.

このような導電性高分子は、いわゆる固定ドーパント型
導電性高分子であり、例えば特開昭59−98165号
、特開昭63−98973号等では高分子電解質アニオ
ンをドーパントとする導電性高分子が、また特開昭63
−39916号ではブレンステッド酸基が共有結合して
いるモノマーを含んでなる導電性高分子が提案されてい
る。
Such conductive polymers are so-called fixed dopant type conductive polymers, and for example, in JP-A-59-98165 and JP-A-63-98973, conductive polymers with polymer electrolyte anions as dopants are disclosed. However, JP-A-63
No. 39916 proposes a conductive polymer comprising a monomer to which a Brønsted acid group is covalently bonded.

しかしながら、従来提案されている高分子電解質アニオ
ンをドーパントとする導電性高分子は、導電性高分子中
の高分子電解質アニオン量(ドープ率)は重合時に決定
されるが、このドープ率は低いものであり、使用時にド
ープ率が増加する場合には固定ドーパント型の機能を十
分に満足するものとはいえず、一方ブレンステッド酸基
が共有結合しているモノマーを含んでなる導電性高分子
は、ブレンステッド酸基の導入により導電性高分子自体
が溶解性となり、安定性が悪いという問題点を有する。
However, in conventionally proposed conductive polymers using polyelectrolyte anions as dopants, the amount of polyelectrolyte anions (doping rate) in the conductive polymer is determined during polymerization, but this doping rate is low. Therefore, if the doping rate increases during use, it cannot be said that the function of the fixed dopant type is fully satisfied.On the other hand, conductive polymers containing monomers with Brønsted acid groups covalently bonded However, due to the introduction of Brønsted acid groups, the conductive polymer itself becomes soluble, resulting in poor stability.

(発明が解決しようとする課jm) 本発明の目的は、高いドープ率を示し、かつ安定性を有
する固定ドーパント型導電性高分子を提供することにあ
る。
(Issues to be Solved by the Invention) An object of the present invention is to provide a fixed dopant type conductive polymer that exhibits a high doping rate and has stability.

(課題を解決するための手段) 本発明者らは、上記課題を解決するために鋭意検討を行
った結果、本発明の新規な導電性高分子をiするに至っ
たものである。
(Means for Solving the Problems) The present inventors conducted intensive studies to solve the above problems, and as a result, they came up with the novel conductive polymer of the present invention.

すなわち本発明は、ブレンステッド酸基が共有結合して
いるモノマーを含み、主鎖に沿ってπ電子共役系を有す
る導電性高分子及び高分子電解質からなる導電性高分子
複合体である。
That is, the present invention is a conductive polymer composite comprising a conductive polymer containing a monomer to which a Brønsted acid group is covalently bonded and having a π-electron conjugated system along the main chain, and a polymer electrolyte.

以下、本発明を具体的に説明する。The present invention will be specifically explained below.

本発明におけるキーワードである固定ドーパント型導電
性高分子とは、ドーパントが導電性高分子内に固定され
ており、酸化還元に伴い導電性高分子内外を移動するこ
とができないものであり、導電性高分子の酸化還元に伴
って、導電性高分子内に固定化されたアニオンの対イオ
ン、すなわちカチオンが導電性高分子内を出入りするよ
うになるものである。一方、アニオンをドーパントとす
る移動ドーパント型導電性高分子は、導電性高分子の酸
化還元に伴いドーパントであるアニオンが導電性高分子
内を出入りするものである。従って、両者は明確に異な
ったレドックス機構を示すものである。
A fixed dopant type conductive polymer, which is a keyword in the present invention, is one in which the dopant is fixed within the conductive polymer and cannot move inside or outside the conductive polymer due to redox. As the polymer undergoes redox, counter ions of the anions immobilized within the conductive polymer, ie, cations, move in and out of the conductive polymer. On the other hand, in a mobile dopant type conductive polymer containing an anion as a dopant, the anion as a dopant moves in and out of the conductive polymer as the conductive polymer undergoes redox. Therefore, both exhibit clearly different redox mechanisms.

本発明におけるブレンステッド酸基が共有結合している
七ツマ−を含み、主鎖に沿ってπ電子共役系を有する導
電性高分子とは、固定ドーパント型導電性高分子のひと
つである。
In the present invention, the conductive polymer containing a heptamer to which a Brønsted acid group is covalently bonded and having a π-electron conjugated system along the main chain is one of fixed dopant type conductive polymers.

ここでブレンステッド酸基とは、ひとつ以上のプロトン
源として、すなわちプロトンドナーとして働くことので
きる化学種を意味するブレンステッド酸の酸、アニオン
、塩であり、例えばスルホン酸、カルボン酸、リン酸の
酸、アニオン、塩などを挙げることができる。
Here, Brønsted acid groups refer to acids, anions, and salts of Brønsted acids, which are chemical species capable of acting as one or more proton sources, i.e., as proton donors, such as sulfonic acids, carboxylic acids, phosphoric acids, etc. Acids, anions, salts, etc. can be mentioned.

また、前記導電性高分子は主鎖に沿ってπ電子共役系を
有するものであり、ブレンステッド酸基が共a結合して
いるモノマーのみ、あるいは上記モノマーとブレンステ
ッド酸基が共有結合していないモノマーとの共重合体を
含むものである。この導電性高分子の主鎖を構成するポ
リマーとしては、ポリピロール、ポリチオフェン、ポリ
イソチアナフテン、ポリアニリン、ポリ−p−フェニレ
ン及びこれらの誘導体などを挙げることができる。
In addition, the conductive polymer has a π-electron conjugated system along the main chain, and the Brønsted acid group is covalently bonded to only the monomer, or the monomer and the Brønsted acid group are covalently bonded to each other. It contains a copolymer with a monomer that does not have a monomer. Examples of the polymer constituting the main chain of the conductive polymer include polypyrrole, polythiophene, polyisothianaphthene, polyaniline, poly-p-phenylene, and derivatives thereof.

この導電性高分子が固定ドーパント型導電性高分子とし
て作用するためには、共有結合するブレンステッド酸基
が導電性高分子中に0.01〜100モル%あることが
好ましい。
In order for this conductive polymer to function as a fixed dopant type conductive polymer, it is preferable that the amount of covalently bonded Brønsted acid groups is 0.01 to 100 mol % in the conductive polymer.

本発明における高分子電解質は、アニオン基が溶媒中で
遊離することなく、かつアニオン基をもつオリゴマーか
らポリマーの範囲の電解質であることが好ましい。具体
例としては、ポリアクリル酸、ポリメタクリル酸、ポリ
ビニルスルホン酸、ポリアリルスルホン酸、ポリスチレ
ンスルホン酸、ポリビニル硫酸及びこれらのフッ素置換
体、更にはこれら重合体を構成するモノマーを含む共重
合体などを挙げることができる。また導電性高分子と複
合化する上記高分子電解質の量は特に制限はないが、通
常導電性高分子に対して1〜100モル%が好ましい。
The polymer electrolyte in the present invention is preferably an electrolyte in which the anionic group does not become liberated in the solvent and is in the range of oligomers to polymers having anionic groups. Specific examples include polyacrylic acid, polymethacrylic acid, polyvinyl sulfonic acid, polyallylsulfonic acid, polystyrene sulfonic acid, polyvinyl sulfuric acid, and fluorine-substituted products thereof, as well as copolymers containing monomers constituting these polymers. can be mentioned. The amount of the polymer electrolyte to be combined with the conductive polymer is not particularly limited, but it is usually preferably 1 to 100 mol % based on the conductive polymer.

本発明の複合体は、導電性高分子が高分子電解質と複合
していることから、導電性高分子中にブレンステッド酸
基を導入しても水溶性を示さず、安定性を有するものと
なる。
Since the composite of the present invention is composed of a conductive polymer and a polymer electrolyte, it does not show water solubility even if a Brønsted acid group is introduced into the conductive polymer, and has stability. Become.

本発明の複合体の製造には種々の方法が採用されるが、
例えば高分子電解質の存在下に導電性高分子を化学的ま
たは電気化学的に酸化重合して合成することにより得る
ことができる。また、導電性高分子は、ブレンステッド
酸基が共有結合している導電性高分子のモノマーより重
合する方法、または導電性高分子を重合した後にブレン
ステッド酸基を導入する方法などにより得ることができ
る。後者の方法としては、例えばハロゲン化アルキルを
有する導電性高分子のモノマーを重合した後、シアン化
ナトリウム・水酸化ナトリウム、または亜硫酸ナトリウ
ムで処理することによりカルボン酸、スルホン酸などの
ブレンステッド酸基を導入できる。
Various methods can be employed to produce the composite of the present invention, but
For example, it can be synthesized by chemically or electrochemically oxidatively polymerizing a conductive polymer in the presence of a polymer electrolyte. In addition, the conductive polymer can be obtained by polymerizing a conductive polymer monomer to which a Brønsted acid group is covalently bonded, or by introducing a Brønsted acid group after polymerizing the conductive polymer. Can be done. The latter method involves, for example, polymerizing a conductive polymer monomer having an alkyl halide and then treating it with sodium cyanide, sodium hydroxide, or sodium sulfite to form a Brønsted acid group such as carboxylic acid or sulfonic acid. can be introduced.

(実施例) 以下、実施例により本発明を詳細に述べるが、本発明は
これらに限定されるものではない。
(Examples) Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

実施例1 白金板(電極面積0.5cm)を陽極に用い、m−アミ
ノベンゼンスルホン酸0 、 1 so!/d−とアニ
リン0 、 1 mol/ds2を含んだ、ポリスチレ
ンスルホン酸20重量%水溶液を用いて、0,1■^1
cII2の定電流で0 、 3 C/cI2陽極酸化重
合を行い高分子複合体を得た。得られた高分子複合体は
、自立性のフィルムで乾燥時も砕けることなく安定であ
った。
Example 1 A platinum plate (electrode area: 0.5 cm) was used as an anode, and m-aminobenzenesulfonic acid 0,1 so! Using a 20% by weight aqueous solution of polystyrene sulfonic acid containing /d- and aniline 0,1 mol/ds2, 0,1■^1
0,3C/cI2 anodic oxidation polymerization was performed at a constant current of cII2 to obtain a polymer composite. The resulting polymer composite was a self-supporting film that remained stable without crumbling during drying.

得られた高分子複合体の組成分析を行ったところ、この
高分子複合体は、m−アミノベンゼンスルホン酸とアニ
リンが1対1で共重合しており、また高分子1 so!
に対して0.3siolのポリスチレンスルホン酸が含
まれている、ブレンステ、ラド酸基が共有結合している
ポリアニリン共重合体とポリスチレンスルホン酸との複
合体であることがわかった。またEPMAによって、得
られた高分子複合体の深さ方向の硫黄原子の分布を調べ
たところ、均一に分散していた。
A compositional analysis of the obtained polymer composite revealed that m-aminobenzenesulfonic acid and aniline were copolymerized in a 1:1 ratio, and the polymer 1 so!
It was found that it is a complex of polyaniline copolymer and polystyrene sulfonic acid, which contains 0.3 siol of polystyrene sulfonic acid based on the amount of polystyrene sulfonic acid. Further, when the distribution of sulfur atoms in the depth direction of the obtained polymer composite was examined by EPMA, it was found that they were uniformly dispersed.

この高分子複合体を試験極に、対極に白金板、参照電極
に飽和カロメル電極を用いて、ポリスチレンスルホン酸
カリウム(分子11:10000)の20重量%水溶液
中でサイクリックポルタンメトリーを行った。その結果
この高分子複合体は導電性を示し、ポリスチレンスルホ
ン酸カリウム水溶液中でレドックスを示すことがわかっ
た。このポルタモグラムよりAl1定されたレドックス
容量は75%であった。
Using this polymer composite as a test electrode, a platinum plate as a counter electrode, and a saturated calomel electrode as a reference electrode, cyclic portammetry was performed in a 20% by weight aqueous solution of potassium polystyrene sulfonate (molecules 11:10000). . As a result, it was found that this polymer composite exhibited electrical conductivity and exhibited redox in an aqueous solution of potassium polystyrene sulfonate. The redox capacity determined by Al1 from this portamogram was 75%.

また酸化還元に伴う移動イオンの同定をEPMAで行っ
たところ、酸化還元に伴いK イオンが増減することよ
り、カチオン移動のレドックスを示すことが確認された
Furthermore, when the ions transferred due to redox were identified using EPMA, it was confirmed that K 2 ions increased and decreased due to redox, indicating redox of cation transfer.

分子複合体の電気化学測定を行ったところ、カチオン移
動型のレドックスを示すことが確認され、/ レドックス容量は95%であった。
When the molecular complex was electrochemically measured, it was confirmed that it exhibited cation transfer type redox, and the redox capacity was 95%.

実施例2 m−アミノベンゼンスルホン酸のかわりにm−アミノブ
ロモベンジルを用いた以外は、実施例1と同様の方法で
高分子複合体を得た、得られた複合体を亜硫酸ナトリウ
ムで処理した。
Example 2 A polymer complex was obtained in the same manner as in Example 1, except that m-aminobromobenzyl was used instead of m-aminobenzenesulfonic acid.The obtained complex was treated with sodium sulfite. .

処理を行った高分子複合体の元素分析を行ったところ、
m−アミノベンジルスルホン酸とアニリンが1:1で共
重合しており、また導電性高分子1molに対して0.
5solのポリスチレンスルホン酸が含まれている、ブ
レンステッド酸基が共有結合しているポリアニリン共重
合体とポリスチレンスルホン酸との複合体であることが
わかった。
Elemental analysis of the treated polymer composite revealed that
m-aminobenzyl sulfonic acid and aniline are copolymerized at a ratio of 1:1, and the amount of m-aminobenzyl sulfonic acid and aniline is 1:1.
It was found that it was a complex of polyaniline copolymer and polystyrene sulfonic acid containing 5 sol of polystyrene sulfonic acid to which Brønsted acid groups were covalently bonded.

またEPMAによって、得られた高分子複合体の深さ方
向の硫黄原子の分布を調べたところ、均一に分散してい
た。
Further, when the distribution of sulfur atoms in the depth direction of the obtained polymer composite was examined by EPMA, it was found that they were uniformly dispersed.

更に、実施例1と同様の方法により得られた高比較例1 アニリン0 、 1 mol/da2を含んだ、ポリス
チレンスルホン酸20重二%水溶液を用いた以外は、実
施例1と同様の方法により高分子複合体を作製し評価を
行った。得られた高分子複合体には、高分子1molに
対して0..5solのポリスチレンスルホン酸が含ま
れており、レドックス容量は45%であった。
Furthermore, High Comparative Example 1 obtained by the same method as Example 1. A polymer composite was prepared and evaluated. The obtained polymer complex contains 0.00% per 1 mol of polymer. .. It contained 5 sol of polystyrene sulfonic acid and had a redox capacity of 45%.

(発明の効果) 以上述べたとおり、本発明の導電性高分子複合体は物理
的、化学的安定性に優れた均一な組成を有するものであ
り、広範囲のドープ率で固定ドーパント機能を有してお
り、各種の導電性高分子の用途分野において利用され得
るものである。
(Effects of the Invention) As described above, the conductive polymer composite of the present invention has a uniform composition with excellent physical and chemical stability, and has a fixed dopant function in a wide range of doping ratios. Therefore, it can be used in various fields of application of conductive polymers.

Claims (1)

【特許請求の範囲】[Claims] (1)ブレンステッド酸基が共有結合しているモノマー
を含み、主鎖に沿ってπ電子共役系を有する導電性高分
子及び高分子電解質からなる導電性高分子複合体。
(1) A conductive polymer composite comprising a conductive polymer containing a monomer to which a Brønsted acid group is covalently bonded and having a π-electron conjugated system along the main chain and a polymer electrolyte.
JP63320372A 1988-12-21 1988-12-21 Conductive polymer composite Expired - Fee Related JP2699500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63320372A JP2699500B2 (en) 1988-12-21 1988-12-21 Conductive polymer composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63320372A JP2699500B2 (en) 1988-12-21 1988-12-21 Conductive polymer composite

Publications (2)

Publication Number Publication Date
JPH02166165A true JPH02166165A (en) 1990-06-26
JP2699500B2 JP2699500B2 (en) 1998-01-19

Family

ID=18120740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63320372A Expired - Fee Related JP2699500B2 (en) 1988-12-21 1988-12-21 Conductive polymer composite

Country Status (1)

Country Link
JP (1) JP2699500B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262991A (en) * 1991-08-16 1993-10-12 Internatl Business Mach Corp <Ibm> Electrically conductive polymeric material and use thereof
US5589108A (en) * 1993-12-29 1996-12-31 Nitto Chemical Industry Co., Ltd. Soluble alkoxy-group substituted aminobenzenesulfonic acid aniline conducting polymers
EP0834885A3 (en) * 1996-10-02 1998-11-18 Nitto Chemical Industry Co., Ltd. Method for producing soluble conductive polymers having acidic groups
US5993694A (en) * 1996-06-10 1999-11-30 Nippon Shokubai Co., Ltd. Water-soluble electrically-conductive polyaniline and method for production thereof and antistatic agent using water-soluble electrically-conductive polymer
KR20150136296A (en) 2014-05-27 2015-12-07 연세대학교 산학협력단 Mesoporous nanoparticle and method for preparing mesoporous nanoparticle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339916A (en) * 1986-03-24 1988-02-20 Showa Denko Kk Electric onductor having self-dopability and novel polymeric compound
JPS63135453A (en) * 1986-11-27 1988-06-07 Showa Denko Kk Highly electrically conductive polymer composition and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339916A (en) * 1986-03-24 1988-02-20 Showa Denko Kk Electric onductor having self-dopability and novel polymeric compound
JPS63135453A (en) * 1986-11-27 1988-06-07 Showa Denko Kk Highly electrically conductive polymer composition and production thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262991A (en) * 1991-08-16 1993-10-12 Internatl Business Mach Corp <Ibm> Electrically conductive polymeric material and use thereof
US5589108A (en) * 1993-12-29 1996-12-31 Nitto Chemical Industry Co., Ltd. Soluble alkoxy-group substituted aminobenzenesulfonic acid aniline conducting polymers
US5700399A (en) * 1993-12-29 1997-12-23 Nitto Chemical Industry Co., Ltd. Soluble alkoxy-group substituted aminobenzenesulfonic acid aniline conducting polymers
US5932144A (en) * 1993-12-29 1999-08-03 Mitsubishi Rayon Co., Ltd. Soluble aniline conducting polymers
US5993694A (en) * 1996-06-10 1999-11-30 Nippon Shokubai Co., Ltd. Water-soluble electrically-conductive polyaniline and method for production thereof and antistatic agent using water-soluble electrically-conductive polymer
EP0834885A3 (en) * 1996-10-02 1998-11-18 Nitto Chemical Industry Co., Ltd. Method for producing soluble conductive polymers having acidic groups
US5980784A (en) * 1996-10-02 1999-11-09 Mitsubishi Rayon Co., Ltd. Method for producing soluble conductive polymer having acidic group
KR20150136296A (en) 2014-05-27 2015-12-07 연세대학교 산학협력단 Mesoporous nanoparticle and method for preparing mesoporous nanoparticle

Also Published As

Publication number Publication date
JP2699500B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
Boeva et al. Polyaniline: Synthesis, properties, and application
US4933106A (en) Highly conductive polymer composition and process for producing the same
EP0104726B1 (en) Electrically conductive polymer composition
Mu Electrochemical copolymerization of aniline and o-aminophenol
Ghosh et al. Self-assembly of a conducting polymer nanostructure by physical crosslinking: applications to conducting blends and modified electrodes
EP0804497B1 (en) Soluble, electroconductive polypyrrole and method for preparing the same
Pyo et al. Long-term redox switching stability of polypyrrole
Sundaresan et al. Electroactive copolymers of pyrrole containing covalently bound dopant ions: poly {pyrrole-co-[3-(pyrrol-1-yl) propanesulphonate]}
AU606745B2 (en) Electrically conductive polymer compositions, processes and polymers useful for preparing the polymer compositions
SE512579C2 (en) Polymer gel electrode, and process for its preparation
Ajino et al. Synthesis of ion-conductive polymers by radical polymerization of deep eutectic monomers bearing quaternary ammonium groups with urea
Furukawa et al. Lithium batteries with polymer electrodes
JP3066431B2 (en) Method for producing conductive polymer composite
JPH02166165A (en) Conductive polymer complex
JPS63215722A (en) Production of electroconductive polyaniline compound
JPH02160823A (en) Production of conductive polymeric complex
EP0231309B1 (en) Process for manufacturing electrically conductive polythiophene
JPH0678493B2 (en) Method for producing conductive polymer composition
CN103224744B (en) A kind of polymer coating with conductive stability and preparation method thereof
JP2907131B2 (en) Conductive polymer, solid electrolytic capacitor using the same, and method of manufacturing the same
Sahiner et al. Superporous cryogel/conductive composite systems for potential sensor applications
CN108017784A (en) Hydridization conductive hydrogel its preparation method and application
Abalyaeva et al. Effect of electroactive anions on electrochemical behavior of polyaniline
Han et al. A novel thermosensitive soluble polypyrrole composite
JPH0443099B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees