JPS63225634A - Aniline/cation exchanger polymeric composite membrane and its production - Google Patents

Aniline/cation exchanger polymeric composite membrane and its production

Info

Publication number
JPS63225634A
JPS63225634A JP5871787A JP5871787A JPS63225634A JP S63225634 A JPS63225634 A JP S63225634A JP 5871787 A JP5871787 A JP 5871787A JP 5871787 A JP5871787 A JP 5871787A JP S63225634 A JPS63225634 A JP S63225634A
Authority
JP
Japan
Prior art keywords
cation exchanger
polymer
polyaniline
composite membrane
aniline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5871787A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoneyama
宏 米山
Susumu Kuwahata
進 桑畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP5871787A priority Critical patent/JPS63225634A/en
Publication of JPS63225634A publication Critical patent/JPS63225634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain the title composite membrane excelling in strength, durability and stability and having the cation exchange groups of a cation exchanger as an immobilized dopant, by electrolyzing an aniline monomer-containing electrolyte by using an electroconductive base coated with the polymeric cation exchanger as an anode. CONSTITUTION:An electrolyte such as an aqueous solution formed by dissolving an aniline monomer in a solution containing, for example, a perchlorate or NaCl is polymerized by electrolytic oxidation by using an electroconductive base such as an electroconductive glass coated with Pt, Au or the like with a polymeric cation exchanger such as a fluorine-containing one comprising a perfluorocarbon skeleton having, for example, sulfonic acid groups, carboxylic acid groups or the like as an immobilized anion exchange groups as an anode to obtain the title composite membrane comprising a polyaniline and the polymeric cation exchanger and having the cation exchange groups of the polymeric cation exchanger as an immobilized dopant.

Description

【発明の詳細な説明】 本発明は新規な導電性高分子に関するものであり、さら
に詳しくは高分子カチオン交換体のカチオン交換基を固
定ドーパントとするポリアニリンと高分子カチオン交換
体よりなる導電性高分子複合膜及びその製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel conductive polymer, and more particularly to a conductive polymer made of a polymer cation exchanger and polyaniline in which the cation exchange group of the polymer cation exchanger is a fixed dopant. This invention relates to a molecular composite membrane and its manufacturing method.

8J電電性弁子は、その新規な物理特性、電気化学特性
より、導体.半導体,電池,表示素子,光電変換素子,
センサー等の新しい機能材料として注目を集めている。
8J electric valve is a conductor due to its novel physical and electrochemical properties. Semiconductors, batteries, display elements, photoelectric conversion elements,
It is attracting attention as a new functional material for sensors, etc.

[従来技術] イオンドーピング法によりポリアセチレンの導電性が著
しく上昇することが見出されて以来、各種のイオンドー
パント型導電性高分子、例えばポリピロール、ポリアニ
リン、ポリチオフェン、ポリバラフェニレン等が提案さ
れている。
[Prior Art] Since it was discovered that the conductivity of polyacetylene can be significantly increased by ion doping, various ion-doped conductive polymers, such as polypyrrole, polyaniline, polythiophene, and polyvaraphenylene, have been proposed. .

これらの導電性高分子は一般にアニオン、カチオン等の
ドーパントの出入り(導電性高分子の酸化、還元に対応
)により、化学ポテンシャルが変化するが、この現象を
利用して電池、センサー。
Generally, the chemical potential of these conductive polymers changes due to the entry and exit of dopants such as anions and cations (corresponding to oxidation and reduction of the conductive polymer), and this phenomenon is used to develop batteries and sensors.

表示素子等の電気化学素子への応用が提案されている。Application to electrochemical devices such as display devices has been proposed.

電気化学反応は、電極と電解質の界面でイオンの移動と
電子の移動を変換、接合する反応であるが、上述したよ
うに一般的な導電性高分子は、酸化還元反応に対応して
ドーパントイオンを電解質から受取り又、電解質へ放出
する性質をもつ、いわゆる移動ドーパント型の導電性高
分子である。
Electrochemical reactions are reactions that convert and combine the movement of ions and electrons at the interface between electrodes and electrolytes, but as mentioned above, general conductive polymers react with dopant ions in response to redox reactions. It is a so-called mobile dopant type conductive polymer that has the property of receiving and releasing ions from an electrolyte.

この様な移動ドーパント型の導電性高分子は、優れた導
電性を示す新規な機能材料として注目を集めているもの
であるが、導電性高分子の強度。
Such mobile dopant-type conductive polymers are attracting attention as new functional materials that exhibit excellent conductivity, but the strength of conductive polymers is limited.

耐久性、安定性等の実用材料としての基本的な性質が問
題視されている。
The basic properties of this material as a practical material, such as durability and stability, are being questioned.

又、電気化学素子としてa能させようとすると、ドーパ
ントの出入りによりその導電性が著しく変化するため電
気抵抗が変化すること、ドーパントの出入りにより電気
化学素子内の電解液の組成が変化すること、電解重合時
のドーパントと電気化学素子内の電解液の組成達異なる
場合、素子の系を複雑にし、時には導電性高分子として
機能しなくなる等の点が指摘されている。これらの物理
的。
In addition, when attempting to function as an electrochemical element, the conductivity changes significantly due to the inflow and outflow of dopants, resulting in changes in electrical resistance, and the composition of the electrolytic solution within the electrochemical element changes due to the inflow and outflow of dopants. It has been pointed out that if the composition of the dopant during electrolytic polymerization and the electrolyte in the electrochemical device are different, the device system becomes complicated and sometimes the device does not function as a conductive polymer. These physical.

電気化学的特性は、目的とする素子にとって必要な性質
である場合もあるが、逆に欠点となる場合もある。
Although electrochemical properties may be necessary for the intended device, they may also be a drawback.

[発明の目的] 本発明の目的は、従来の移動ドーパント型の導電性高分
子に対し、固定ドーパント型の導電性高分子を提案する
ことであり、特に、高分子カチオン交換体のカチオン交
換基を固定ドーパントとするポリアニリンと高分子カチ
オン交換体よりなる新規な導電性高分子複合膜及びその
報造法を提案するものである。
[Objective of the Invention] The object of the present invention is to propose a fixed dopant type conductive polymer, in contrast to the conventional mobile dopant type conductive polymer, and in particular, to propose a fixed dopant type conductive polymer. This paper proposes a novel conductive polymer composite membrane consisting of polyaniline and a polymer cation exchanger with 2 as a fixed dopant, and a method for fabricating the same.

[発明の詳細な説明] 本発明の高分子カチオン交換体のカチオン交換基を固定
ドーパントとするポリアニリンと高分子カチオン交換体
よりなる導電性高分子複合膜は、従来のポリアニリンと
は全く異なった新規な導電性高分子である。従来公知の
ポリアニリンは、アニオンをドーパントとする移動ドー
パント型の導電性高分子であり、電気化学的な酸化還元
反応に対応してこの7ニオンドーバントが出入りするが
、一方、本発明のポリアニリンと高分子カチオン交換体
との高分子複合膜においては、高分子カチオン交換体の
固定電荷(固定7ニオン基)であるカチオン交換基がド
ーパントとなり、このドーパントは導電性高分子の中に
固定されている。そのために、この様な固定ドーパント
型の導電性高分子に於ては、電気化学的な酸化還元反応
に対応して出入りするイオンはアニオンではなくカチオ
ンとなる。この関係をモデル的に図1に示す。図1のポ
リアニリン単独膜に於ては、電気化学的な酸化還元反応
に対応して、Cオーアニオンが出入りしているが、−力
木発明のポリアニリンと高分子カチオン交換体(図では
NafiOn)との高分子複合膜に於ては、Nafio
nのS03がドーパントとして固定されその結果電気化
学的な酸化還元反応に対応してNa+カチオンが出入り
するようになる。
[Detailed Description of the Invention] The conductive polymer composite film made of polyaniline and a polymer cation exchanger in which the cation exchange group of the polymer cation exchanger of the present invention is a fixed dopant is a novel film completely different from conventional polyaniline. It is a conductive polymer. Conventionally known polyaniline is a mobile dopant type conductive polymer that uses an anion as a dopant, and this 7-ion dopant moves in and out in response to an electrochemical redox reaction.On the other hand, the polyaniline of the present invention In a polymer composite film with a polymer cation exchanger, the cation exchange group, which is a fixed charge (fixed 7 anion group) of the polymer cation exchanger, becomes a dopant, and this dopant is fixed in the conductive polymer. There is. Therefore, in such fixed dopant type conductive polymers, ions that enter and exit in response to electrochemical redox reactions are cations rather than anions. This relationship is shown in FIG. 1 as a model. In the polyaniline single film shown in Figure 1, C-o anions move in and out in response to electrochemical redox reactions; In the polymer composite membrane with Nafio
n S03 is fixed as a dopant, and as a result, Na + cations come in and out in response to an electrochemical redox reaction.

この様に本発明のポリアニリンと高分子カチオン交換体
との高分子複合膜は、従来の移動ドーパント型のポリア
ニリンと全く異なった性質を示す固定ドーパント型の新
規な導電性高分子であることがわかる。
Thus, it can be seen that the polymer composite film of polyaniline and polymer cation exchanger of the present invention is a new fixed dopant type conductive polymer that exhibits properties completely different from conventional mobile dopant type polyaniline. .

本発明のポリアニリンと高分子カチオン交換体との高分
子複合膜に於て、高分子カチオン交換体とは、例えば、
スルフォン酸基やカルボン酸基等の固定アニオンを交換
基として持つペルフルオロカーボン骨格よりなるフッ素
系高分子カチオン交換体(Dupont社のNatio
n等)やポリピニルサルフエイト、ポリスチレンスルフ
ォネイト等を例示することができる。
In the polymer composite membrane of polyaniline and a polymer cation exchanger of the present invention, the polymer cation exchanger is, for example,
A fluorinated polymer cation exchanger consisting of a perfluorocarbon skeleton having fixed anions such as sulfonic acid groups and carboxylic acid groups as exchange groups (Natio
n, etc.), polypynylsulfate, polystyrene sulfonate, etc.

本発明のポリアニリンと高分子カチオン交換体との高分
子複合膜を製造するためには化学的合成法、LB腹膜法
電解重合法等を用いることができる。この中でも、電解
重合法は、得られる物質の均質性1反応制御の容易さ0
作業性、経済性等より好ましい製造法の一つである。電
解重合法とは、電気化学的に電極表面上でモノマーを電
解酸化あるいは還元して重合反応を行い高分子化合物を
合成する方法である。この合成法は、電解液中に挿入し
た電極に電位を与え、カチオンラジカルやアニオンラジ
カルのような反応活性種を生成し合成するものであるが
、電解重合とともにイオンドーピングを同時におこなう
ことが可能であり、得られる高分子は高いsm性を有し
た高分子となる。
In order to produce the polymer composite membrane of polyaniline and polymer cation exchanger of the present invention, chemical synthesis methods, LB peritoneal electrolytic polymerization methods, etc. can be used. Among these, the electrolytic polymerization method has the following advantages: 1) homogeneity of the obtained material, 1) ease of reaction control, 0)
This is one of the preferred manufacturing methods in terms of workability, economy, etc. The electrolytic polymerization method is a method of electrochemically oxidizing or reducing monomers on the surface of an electrode to perform a polymerization reaction and synthesize a polymer compound. In this synthesis method, a potential is applied to an electrode inserted into an electrolytic solution to generate and synthesize reactive species such as cation radicals and anion radicals, but it is possible to perform ion doping along with electrolytic polymerization at the same time. The resulting polymer has high SM properties.

本発明のポリアニリンと高分子カチオン交換体との高分
子複合膜を得るための電解゛重合法に於ては、電解液と
してアニリンのモノマーを含む電解液中で電解反応を行
うことにより、陽極表面に、高分子カチオン交換体のカ
チオン交換基を固定ドーパントとするポリアニリンと高
分子カチオン交換体よりなるl’ili性八分子複へ膜
を酸化重合する方法を用いることが望ましい。
In the electrolytic polymerization method for obtaining a polymer composite membrane of polyaniline and a polymer cation exchanger of the present invention, the anode surface is In this case, it is desirable to use a method of oxidatively polymerizing a membrane into a l'ili octamolecular complex consisting of polyaniline and a polymer cation exchanger, in which the cation exchange group of the polymer cation exchanger is used as a fixed dopant.

本発明のポリアニリンと高分子カチオン交換体との高分
子複合膜を電解重合法で得るためには、例えば高分子イ
オン交換体のポリマー溶液とアニリンのモノマー溶液と
の混合溶液を用いて電解重合することも可能である。
In order to obtain the polymer composite membrane of the present invention of polyaniline and a polymer cation exchanger by electrolytic polymerization, for example, electropolymerization is carried out using a mixed solution of a polymer solution of a polymer ion exchanger and a monomer solution of aniline. It is also possible.

電解重合法の好ましい実施態様の一つは高分子カチオン
交換体を被覆した導電性基体を陽極とし、電解液として
アニリンのモノマーを含む電解液中で電解反応を行うこ
とにより、該陽極表面に、高分子カチオン交換体のカチ
オン交換基を固定ドーパントとするポリアニリンと高分
子カチオン交換体よりなる導電性高分子複合膜を製造す
る方法である。
One of the preferred embodiments of the electrolytic polymerization method is to use a conductive substrate coated with a polymeric cation exchanger as an anode, and conduct an electrolytic reaction in an electrolytic solution containing an aniline monomer, so that on the surface of the anode, This is a method for producing a conductive polymer composite membrane consisting of polyaniline and a polymer cation exchanger, in which the cation exchange group of the polymer cation exchanger is used as a fixed dopant.

上記導電性基体は、例えばPt、Au等の金属や、表面
にITO等の導電性物質を被覆した導電性硝子等の任意
の導電性基体の上にあらかじめ高分子カチオン交換体を
被覆したものをmAとして用いることができる。高分子
カチオン交換体を被覆する方法としては、特に限定され
ないが、例えば上記高分子カチオン交換体を含む溶液を
上記導電性を有する基体の上に塗布する方法が用いられ
る。
The above-mentioned conductive substrate may be any conductive substrate, such as metal such as Pt or Au, or conductive glass whose surface is coated with a conductive substance such as ITO, on which a polymer cation exchanger is coated in advance. It can be used as mA. The method for coating the polymer cation exchanger is not particularly limited, but for example, a method of applying a solution containing the polymer cation exchanger onto the conductive substrate may be used.

カチオン交換体を被覆した導電性基体を得る好ましい実
施態様の一つは、高分子カチオン交換体として公知のN
afionの溶液を任意の導電性基体上に塗布し乾燥す
る方法である。このようにして、カチオン交換体を被覆
した導電性基体を陽極として用いて、アニリンのモノマ
ーを含む溶液を電解液として、陽極上に酸化重合するこ
とにより、本発明のポリアニリンと高分子カチオン交換
体との高分子複合膜を製造することができる。なお、こ
の場合、電解液としては導電性を持たせるために支持電
解質を含む有機溶媒や水溶液が用いられる。
One of the preferred embodiments for obtaining a conductive substrate coated with a cation exchanger is N
This method involves applying a solution of afion onto any conductive substrate and drying it. In this way, by using the conductive substrate coated with the cation exchanger as an anode and oxidatively polymerizing the solution containing the aniline monomer as an electrolyte on the anode, the polyaniline and polymer cation exchanger of the present invention can be combined. It is possible to produce a polymer composite membrane with. In this case, as the electrolytic solution, an organic solvent or an aqueous solution containing a supporting electrolyte is used in order to impart conductivity.

電解液の例としては、例えば、過塩素酸塩や塩化ナトリ
ウム等を含む溶液に10 1101/J〜1o1mol
/j!程アニリンを溶解した水溶液をあげることができ
る。陽極酸化重合の条件としては、必要とする導電性高
分子の性質により種々変化させることができるが、一般
に定電位電解法、7j1位走査電解法、定電流電解法、
交流電解法、パルス電解法等を用いることができる。
Examples of electrolytes include solutions containing perchlorate, sodium chloride, etc.
/j! An example is an aqueous solution in which aniline is dissolved. The conditions for anodic oxidation polymerization can be varied depending on the properties of the required conductive polymer, but generally include constant potential electrolysis, 7j1-position scanning electrolysis, constant current electrolysis,
AC electrolysis, pulse electrolysis, etc. can be used.

このような電解重合法により、カチオン交換体を被覆し
た陽極上にアニリンが酸化重合するが、単にアニリンが
電解重合するのではなく、カチオン交換体との高分子複
合膜を形成しながら重合反応が進行すると考えられる。
In this electrolytic polymerization method, aniline is oxidatively polymerized on the anode coated with a cation exchanger, but aniline is not simply electropolymerized, but the polymerization reaction occurs while forming a polymer composite film with the cation exchanger. It is thought that it will progress.

このことは、得られる導電性高分子が、一般のポリアニ
リンのように酸化還元反応に於て、アニオンドーパント
の出入りを伴うものではなく、カチオンの出入りを伴い
、従って固定アニオンドーパント型となっていることに
より裏付けられる。
This means that the resulting conductive polymer does not involve the inflow and outflow of anion dopants during the redox reaction as in general polyaniline, but rather the inflow and outflow of cations, and is therefore of a fixed anion dopant type. This is supported by this.

なお、本発明の説明に於ては、アニリンのモノマーを重
合する過程を説明したが、アニリンの誘導体、又はアニ
リンの2同体以上の多量体またはその誘導体より重合す
ることも可能である。
In the description of the present invention, the process of polymerizing aniline monomers has been described, but it is also possible to polymerize aniline derivatives, aniline diisomers or more, or derivatives thereof.

[発明の効果] 本発明は、高分子カチオン交換体のカチオン交換基を固
定ドーパントとするポリアニリンと高分子カチオン交換
体よりなる導電性高分子複合膜及びその製造法を提案す
るものである。
[Effects of the Invention] The present invention proposes a conductive polymer composite membrane made of polyaniline and a polymer cation exchanger in which the cation exchange group of the polymer cation exchanger is a fixed dopant, and a method for producing the same.

本発明のポリアニリンと高分子カチオン交換体との高分
子複合膜は、従来の移動ドーパント型のポリアニリンと
全く異なった性質を示す固定ドーパント型の新規な導電
性高分子であり、新規な電気化学素子を与えるものとし
て注目されるものである。
The polymer composite film of polyaniline and a polymer cation exchanger of the present invention is a new fixed dopant type conductive polymer that exhibits properties completely different from conventional mobile dopant type polyaniline, and is a novel electrochemical device. It is attracting attention as it provides the following.

さらに、本発明のポリアニリンと高分子カチオン交換体
との高分子複合膜は、複合膜化されていることにより、
導電性高分子自体の強度、耐久性。
Furthermore, the polymer composite membrane of polyaniline and polymer cation exchanger of the present invention has the following properties:
The strength and durability of the conductive polymer itself.

安定性等の向上が期待されるものである。This is expected to improve stability, etc.

[実施例] 以下、実施例を述べるが本発明はこれに限定されるもの
ではない。
[Example] Examples will be described below, but the present invention is not limited thereto.

実施例1.比較例1 実施例1として、AU Plate上にNarton 
117のアルコール溶液を塗布し乾燥したもの(有効′
I11極面積1aIl)を陽極として用い、電解液とし
て、1sol/jのアニリンと2麿of/オのHCオを
含む水溶液を用いて、0.2mA/dの定電流で100
mC陽極酸化重合を実施し、ポリアニリンとNaf i
onとの導電性高分子複合膜を得た。
Example 1. Comparative Example 1 As Example 1, Narton was placed on the AU Plate.
117 alcohol solution and dried (effective '
I11 electrode area 1aIl) was used as an anode, an aqueous solution containing 1 sol/j aniline and 2 sol/j HC2 was used as the electrolyte, and a constant current of 0.2 mA/d was applied at 100 mA/d.
Perform mC anodic oxidation polymerization to form polyaniline and Nafi
A conductive polymer composite film with on was obtained.

得られた試料の0.2sol/オ塩化ナトリウム水溶液
(pH= 7 )の中でのサイクリックポルタモグラム
を測定した。
The cyclic portamogram of the obtained sample in a 0.2 sol/sodium ochloride aqueous solution (pH=7) was measured.

その結果を図2のa(実線)で示す。The results are shown in a (solid line) in FIG.

また、同様に0.2sol/Jのベンゼンスルフオン酸
ナトリウム水溶液(pH−7>の中でのサイクリックポ
ルタモグラムも測定した。
Similarly, a cyclic portamogram in a 0.2 sol/J sodium benzenesulfonate aqueous solution (pH-7>) was also measured.

その結果を図3のa(実線)で示す。The results are shown in a (solid line) in FIG.

一方、比較例1としてNafionを被覆してない^u
 Plateをそのまま陽極として用い、実施例1と同
一の電解液中、同一の電解条件で酸化重合を実施し、ポ
リアニリン被膜を得た。
On the other hand, as Comparative Example 1, Nafion was not coated^u
Using the plate as it was as an anode, oxidative polymerization was carried out in the same electrolytic solution as in Example 1 under the same electrolytic conditions to obtain a polyaniline film.

得られた試料のサイクリックポルタモグラムを実施例1
と同様の条件下で測定した。
The cyclic portamogram of the obtained sample is shown in Example 1.
Measured under the same conditions.

その結果を図2のb(破線)1図3のb(破線)で各々
示す。図29図3より明らかな様に、本発明の実施例1
により得られたポリアニリンとNafionとの複合膜
は、アニオン種の違いに左右されることなく殆ど同一の
可逆的なポルタモグラムを示し反応応答性に優れた膜で
あることがわかるが、比較例1により得られたポリアニ
リン被膜は、非可逆的なポルタモグラムを示し、又塩化
ナトリウム溶液の場合は、比較的大きな電流値を与える
が、ベンゼンスルフオン酸ナトリウム溶液の様に電解質
アニオンのイオン半径が大きな場合は電流値が減少する
ことがわかる。
The results are shown by b (broken line) in FIG. 2 and b (broken line) in FIG. 3, respectively. FIG. 29 As is clear from FIG. 3, Example 1 of the present invention
It can be seen that the composite membrane of polyaniline and Nafion obtained by the above method shows almost the same reversible portamogram regardless of the difference in anion species, and is a membrane with excellent reaction response. The obtained polyaniline film shows an irreversible portamogram, and in the case of a sodium chloride solution, it gives a relatively large current value, but in the case of a sodium benzenesulfonate solution where the ionic radius of the electrolyte anion is large, It can be seen that the current value decreases.

即ち、比較例1のポリアニリン被膜は、電気化学的酸化
還元反応に伴いアニオンが出入りする移動アニオンドー
パント型であるが、本発明の実施例1のポリアニリンと
HaflOnとの導電性高分子複合膜は、酸化還元反応
に伴い出入りする移動極はアニオンではなくカチオンで
あり固定アニオンドーパント型(本実施例の場合は5a
rtonのスルフォン酸基をドーパントとして固定)の
新規な複合膜であることがわかる。
That is, the polyaniline film of Comparative Example 1 is of a mobile anion dopant type in which anions enter and exit through an electrochemical redox reaction, but the conductive polymer composite film of polyaniline and HaflOn of Example 1 of the present invention The mobile electrode that enters and exits with the redox reaction is a cation rather than an anion, and is a fixed anion dopant type (in this example, 5a
It can be seen that this is a novel composite film in which the sulfonic acid group of rton is fixed as a dopant.

実施例2.比較例2 実施例2として、実施例1で得られたポリアニリン−N
ation複合膜を0.21o1/J  NaC1水溶
液(pH−4)の中で、数回電位走査により酸化還元さ
せた後に、+0,4V  vs  5CEt’酸化させ
たもの、及び−0,6V  vs  SCEで還元させ
たものをEPMAで測定し、酸化体と還元体のCオの差
を求めた。
Example 2. Comparative Example 2 As Example 2, polyaniline-N obtained in Example 1
ation composite membrane was redoxed by potential scanning several times in a 0.21o1/J NaCl aqueous solution (pH-4), and then oxidized at +0.4V vs. 5CEt', and -0.6V vs. SCE. The reduced product was measured by EPMA to determine the difference in CO between the oxidized product and the reduced product.

その結果を図4に示す。The results are shown in FIG.

一方、比較例2として比較例1で得られたポリアニリン
被膜を実施例2と同様にEPMAで測定し、酸化体と還
元体のCオの差を求めた。
On the other hand, as Comparative Example 2, the polyaniline film obtained in Comparative Example 1 was measured by EPMA in the same manner as in Example 2, and the difference in CO between the oxidized form and the reduced form was determined.

その結果を図5に示す。図4,5より明らかな様に、実
施例2の被膜では酸化体、還元体ともCJ濃度の変化は
殆ど認められず、Haf ionのスルフォン酸基をド
ーパントとする固定アニオンドーパント型であることが
わかるが、一方比較例2の被膜では、酸化体のほうが還
元体より多くのCオを含んでおり、一般のC1アニオン
ドーパント型であることがわかる。
The results are shown in FIG. As is clear from FIGS. 4 and 5, in the film of Example 2, almost no change in CJ concentration was observed in both the oxidized and reduced forms, indicating that it was a fixed anion dopant type in which the sulfonic acid group of Hafion was used as the dopant. As can be seen, on the other hand, in the film of Comparative Example 2, the oxidized form contains more C than the reduced form, indicating that it is a general C1 anion dopant type.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明のポリアニリンと高分子カチオン交換体と
の高分子複合膜と、従来のポリアニリン単独膜の電気化
学的酸化還元反応のモデルを示す図である。 図2は実施例1で得られたポリアニリンとNafion
との高分子複合膜と、比較例1で得られたポリアニリン
被膜の、0.2■01/iの塩化ナトリウム水溶液中で
のサイクリックポルタモグラムを示す図である。 図3は実施例1で得られたポリアニリンとNafion
との高分子複合膜と、比較例1で得られたポリアニリン
被膜の0.2sol/jのベンゼンスルフオン酸ナトリ
ウム水溶液中でのサイクリックポルタモグラムを示す図
である。 尚、図20図3中のa(実線)は、実施例1で得られた
高分子複合膜のb(破線)は、比較例1で得られたポリ
アニリン被膜のサイクリックポルタモグラムを示す。 図4は実施例2におけるポリアニリンとNationと
の高分子複合膜の、酸化体、還元体のE PMA測定の
結果を示す図である。 図5は比較例2におけるポリアニリン単独膜の、酸化体
、還元体のEPMA測定の結果を示す図である。 特許出願人  東洋曹達工業株式会社 酸化 膜へのアニオン流入 還元 膜からのアニオン流出 酸化還元機構モデル 還元 図2 E/VVSSCE 塩化ナトリウム溶液中 E/V  VS、SCE ベンゼンスルフオン酸ナトリウム 溶液中
FIG. 1 is a diagram showing a model of an electrochemical redox reaction between a polymer composite film of the present invention of polyaniline and a polymer cation exchanger and a conventional polyaniline single film. Figure 2 shows the polyaniline obtained in Example 1 and Nafion.
1 is a diagram showing cyclic portamograms of a polymer composite membrane of 100% and a polyaniline coating obtained in Comparative Example 1 in a 0.2×01/i sodium chloride aqueous solution. Figure 3 shows the polyaniline obtained in Example 1 and Nafion.
FIG. 2 is a diagram showing cyclic portamograms of a polymer composite film obtained in Comparative Example 1 and a polyaniline film obtained in Comparative Example 1 in a 0.2 sol/j sodium benzenesulfonate aqueous solution. Note that in FIGS. 20 and 3, a (solid line) shows the polymer composite film obtained in Example 1, and b (broken line) shows the cyclic portamogram of the polyaniline film obtained in Comparative Example 1. FIG. 4 is a diagram showing the results of EPMA measurement of oxidants and reductants of the polymer composite film of polyaniline and Nation in Example 2. FIG. 5 is a diagram showing the results of EPMA measurement of oxidized and reduced forms of the polyaniline single film in Comparative Example 2. Patent applicant Toyo Soda Kogyo Co., Ltd. Anion inflow into oxide film and anion outflow from reduction film Redox mechanism model reduction Figure 2 E/VVSSCE in sodium chloride solution E/V VS, SCE in sodium benzenesulfonate solution

Claims (1)

【特許請求の範囲】 1)高分子カチオン交換体のカチオン交換基を固定ドー
パントとするポリアニリンと高分子カチオン交換体より
なるアニリン/カチオン交換体高分子複合膜。 2)電解液としてアニリンのモノマーを含む電解液中で
電解反応を行うことにより、陽極表面に、高分子カチオ
ン交換体のカチオン交換基を固定ドーパントとするポリ
アニリンと高分子カチオン交換体よりなる導電性複合膜
を酸化重合することを特徴とするアニリン/カチオン交
換体高分子複合膜の製造法。 3)高分子カチオン交換体を被覆した導電性基体を陽極
とし、電解液としてアニリンのモノマーを含む電解液中
で電解反応を行うことにより、該陽極表面に、高分子カ
チオン交換体のカチオン交換基を固定ドーパントとする
ポリアニリンと高分子カチオン交換体よりなる導電性高
分子複合膜を酸化重合する特許請求の範囲第2項記載の
アニリン/カチオン交換体高分子複合膜の製造法。
[Scope of Claims] 1) An aniline/cation exchanger polymer composite membrane comprising polyaniline and a polymer cation exchanger in which the cation exchange group of the polymer cation exchanger is a fixed dopant. 2) By carrying out an electrolytic reaction in an electrolytic solution containing an aniline monomer as an electrolyte, a conductive material made of polyaniline and a polymer cation exchanger with the cation exchange group of the polymer cation exchanger as a fixed dopant is formed on the anode surface. A method for producing an aniline/cation exchanger polymer composite membrane, which comprises subjecting the composite membrane to oxidative polymerization. 3) A conductive substrate coated with a polymeric cation exchanger is used as an anode, and an electrolytic reaction is performed in an electrolytic solution containing an aniline monomer to form a cation exchange group of the polymeric cation exchanger on the surface of the anode. 3. The method for producing an aniline/cation exchanger polymer composite membrane according to claim 2, wherein a conductive polymer composite membrane comprising polyaniline and a polymer cation exchanger is oxidatively polymerized, with the fixed dopant being polyaniline and a polymer cation exchanger.
JP5871787A 1987-03-16 1987-03-16 Aniline/cation exchanger polymeric composite membrane and its production Pending JPS63225634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5871787A JPS63225634A (en) 1987-03-16 1987-03-16 Aniline/cation exchanger polymeric composite membrane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5871787A JPS63225634A (en) 1987-03-16 1987-03-16 Aniline/cation exchanger polymeric composite membrane and its production

Publications (1)

Publication Number Publication Date
JPS63225634A true JPS63225634A (en) 1988-09-20

Family

ID=13092246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5871787A Pending JPS63225634A (en) 1987-03-16 1987-03-16 Aniline/cation exchanger polymeric composite membrane and its production

Country Status (1)

Country Link
JP (1) JPS63225634A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138237A (en) * 1987-08-04 1989-05-31 Kao Corp Composite film of conjugated polymer and cation exchanger and its production
JPH01254588A (en) * 1988-04-01 1989-10-11 Ibiden Co Ltd Tray case of semiconductor mounting board
JPH0269525A (en) * 1988-09-05 1990-03-08 Nitto Denko Corp Thin film composite material of electroconductive organic polymer
JPH07105718A (en) * 1992-03-19 1995-04-21 Ind Technol Res Inst Molecular complex consisting of conductive polymer and macromolecular electrolyte, and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339930A (en) * 1986-08-04 1988-02-20 Tokuyama Soda Co Ltd Production of improved ion exchange membrane
JPS63118338A (en) * 1986-11-06 1988-05-23 Tokuyama Soda Co Ltd Modified ion exchange membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339930A (en) * 1986-08-04 1988-02-20 Tokuyama Soda Co Ltd Production of improved ion exchange membrane
JPS63118338A (en) * 1986-11-06 1988-05-23 Tokuyama Soda Co Ltd Modified ion exchange membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138237A (en) * 1987-08-04 1989-05-31 Kao Corp Composite film of conjugated polymer and cation exchanger and its production
JPH01254588A (en) * 1988-04-01 1989-10-11 Ibiden Co Ltd Tray case of semiconductor mounting board
JPH0269525A (en) * 1988-09-05 1990-03-08 Nitto Denko Corp Thin film composite material of electroconductive organic polymer
JPH07105718A (en) * 1992-03-19 1995-04-21 Ind Technol Res Inst Molecular complex consisting of conductive polymer and macromolecular electrolyte, and manufacture thereof

Similar Documents

Publication Publication Date Title
Oyama et al. Electrochemical responses of multiply-charged transition metal complexes bound electrostatically to graphite electrode surfaces coated with polyelectrolytes
US5002700A (en) Permanently doped polyaniline and method thereof
KR19980019091A (en) NON-LIQUID PROTON CONDUCTORS FOR USE IN ELECTROCHEMICAL SYSTEMS UNDER AMBIENT CONDITIONS
Higgins et al. Grafting and electrochemical characterisation of poly-(3, 4-ethylenedioxythiophene) films, on Nafion and on radiation-grafted polystyrenesulfonate–polyvinylidene fluoride composite surfaces
Massoumi et al. Electrochemically controlled binding and release of dexamethasone from conducting polymer bilayer films
KR101061934B1 (en) Proton conductors, single ion conductors and their manufacturing methods and electrochemical capacitors
Djelad et al. Modulation of the electrocatalytic performance of PEDOT-PSS by reactive insertion into a sol-gel silica matrix
JPH02160823A (en) Production of conductive polymeric complex
JPS63225634A (en) Aniline/cation exchanger polymeric composite membrane and its production
JPH02142835A (en) Control of wettability of surface of thin polymer film, image formation thereby and image forming material
JP2907131B2 (en) Conductive polymer, solid electrolytic capacitor using the same, and method of manufacturing the same
Kaneto et al. Contribution of conformational change of polymer structure to electrochemomechanical deformation based on polyaniline
JPH0678493B2 (en) Method for producing conductive polymer composition
Brandl et al. Influence of the preparation conditions on the properties of electropolymerised polypyrrole
JPH02252739A (en) Composite membrane and its production
JPS63225633A (en) Electroconductive polymeric composite membrane and its production
US7678880B2 (en) Molecular oriented polymer gel and cast film with self-organizable amphiphilic compound as template, and their production methods
JP3453200B2 (en) Method for producing surface-modified conductive polymer compound film
Ye et al. Preparation and properties of conducting polypyrrole doped with fluorinated imides
JPH02166165A (en) Conductive polymer complex
JPS624898A (en) Production of electrically conductive polymer film containing particle
Yavuz et al. Polypyrrole Modified Graphite Electrode for Supercapacitor Application: The Effect of Cycling Electrolytes
JPH0720504A (en) Electrode and electrochemical display device using same
Baoxing et al. The preparation of electrodes modified with isopolymolybdic acid+ polyaniline film and its catalytic effects on chlorate ions
JPH05479B2 (en)