JPH02160823A - Production of conductive polymeric complex - Google Patents
Production of conductive polymeric complexInfo
- Publication number
- JPH02160823A JPH02160823A JP31497088A JP31497088A JPH02160823A JP H02160823 A JPH02160823 A JP H02160823A JP 31497088 A JP31497088 A JP 31497088A JP 31497088 A JP31497088 A JP 31497088A JP H02160823 A JPH02160823 A JP H02160823A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- conductive polymer
- dopant
- composite
- redox
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000003792 electrolyte Substances 0.000 claims abstract description 38
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 17
- 229920000123 polythiophene Polymers 0.000 claims abstract description 16
- 229930192474 thiophene Natural products 0.000 claims abstract description 15
- 230000003647 oxidation Effects 0.000 claims abstract description 11
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 11
- 239000000178 monomer Substances 0.000 claims abstract description 5
- 239000002131 composite material Substances 0.000 claims description 45
- 150000001450 anions Chemical group 0.000 claims description 25
- 239000005518 polymer electrolyte Substances 0.000 claims description 15
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 125000001153 fluoro group Chemical group F* 0.000 claims description 2
- 229920001940 conductive polymer Polymers 0.000 abstract description 65
- 239000002019 doping agent Substances 0.000 abstract description 50
- 125000000129 anionic group Chemical group 0.000 abstract description 12
- 229920001577 copolymer Polymers 0.000 abstract description 5
- 239000002253 acid Substances 0.000 abstract description 4
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 abstract description 4
- 125000001424 substituent group Chemical group 0.000 abstract description 2
- 229920000867 polyelectrolyte Polymers 0.000 abstract 2
- 230000001476 alcoholic effect Effects 0.000 abstract 1
- 230000000379 polymerizing effect Effects 0.000 abstract 1
- 229920000642 polymer Polymers 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- -1 halogen ions Chemical class 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 150000001768 cations Chemical class 0.000 description 7
- 150000001449 anionic compounds Chemical group 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 6
- 229920002313 fluoropolymer Polymers 0.000 description 6
- 239000004811 fluoropolymer Substances 0.000 description 6
- 229910001412 inorganic anion Inorganic materials 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000002484 cyclic voltammetry Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 150000003577 thiophenes Chemical class 0.000 description 5
- QENGPZGAWFQWCZ-UHFFFAOYSA-N 3-Methylthiophene Chemical compound CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 description 4
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 229960002796 polystyrene sulfonate Drugs 0.000 description 4
- 239000011970 polystyrene sulfonate Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 238000004453 electron probe microanalysis Methods 0.000 description 3
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 3
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 229940006186 sodium polystyrene sulfonate Drugs 0.000 description 3
- 229920000557 Nafion® Polymers 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 2
- RFSKGCVUDQRZSD-UHFFFAOYSA-N 3-methoxythiophene Chemical compound COC=1C=CSC=1 RFSKGCVUDQRZSD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002468 redox effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 125000003011 styrenyl group Chemical class [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は導電性高分子複合体の製造方法に関し、詳しく
は電解質のアニオン基を固定ドーパントとする、ポリチ
オフェン類と前記電解質の複合体を製造する方法に関す
るものである。Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing a conductive polymer composite, and more specifically, a method for producing a composite of polythiophenes and an electrolyte in which an anion group of an electrolyte is a fixed dopant. It's about how to do it.
導電性高分子は、現在その新規な物理特性、電気化学特
性より、導体、半導体、電池、表示素子、充電変換素子
、センサー等の新しい機能性材料として注目を集めてい
る。Conductive polymers are currently attracting attention as new functional materials for conductors, semiconductors, batteries, display elements, charge conversion elements, sensors, etc. due to their novel physical and electrochemical properties.
(従来の技術)
イオンドーピング法によりポリアセチレンの導電性が8
1しく上昇することが見出されて以来、各種のイオンド
ーピング型導電性高分子が提案されている。(Conventional technology) The conductivity of polyacetylene was increased to 8 by the ion doping method.
Since it was discovered that the ion-doping type conductive polymer can increase the temperature by 100%, various ion-doped conductive polymers have been proposed.
P型導電性高分子のドーパントとしては、ハロゲンイオ
ンのような小さなものから、巨大環状分子、さらには高
分子電解質まで可能であると考えられており、導電性高
分子の機能化を目的とした、各種ドーパントのドーピン
グ方法及び得られた導電性高分子の特性と用途の開発が
注目される新技術として検討されている。It is thought that dopants for P-type conductive polymers can range from small things such as halogen ions to macrocyclic molecules and even polymer electrolytes. The development of doping methods with various dopants and the properties and applications of the resulting conductive polymers are being considered as new technologies that are attracting attention.
上記ドーパントの一例としては無機アニオンが挙げられ
る。しかしながら、該ドーパントは導電性高分子中に多
量にドープされ得るものの、均一にドープされないとい
う問題があり、このため得られる高分子は導電性の点で
満足できるものではない。更にこの高分子は自立性が悪
く、脆いという欠点を有する。An example of the dopant is an inorganic anion. However, although a large amount of the dopant can be doped into the conductive polymer, there is a problem that the dopant is not doped uniformly, and therefore the resulting polymer is not satisfactory in terms of conductivity. Furthermore, this polymer has the disadvantage of poor self-standing and brittleness.
このことから、近年アニオン基を有する高分子電解質を
ドーパントとすることが提案されており、例えば特開昭
59−98165号公報ではポリマをドーパントとする
導電性ポリマー組成物が提案されている。この組成物は
、ポリマードープ剤として、スルホン化ポリエチレン、
スルホン化ポリスチレン、スルホン化ポリ(2,5−ジ
メチルフェニレンオキシド)、スルホン化ポリビニルア
ルコール、スルホン化スチレン/(水素化)ブタジェン
コポリマー等が挙げられており、アニオン基はスルホン
酸基より形成されている。この提案は、従来の無機アニ
オンをドーパントとする導電性高分子に比べて、安定で
自立性の導電性高分子複合体が青られることを示したも
のであり注目されるものである。しかしながら、導電性
材料としては化学的、物理的安定性等の面で必ずしも十
分なものではなく、またイオンドーパント型導電性高分
子の重要な要素であるドーピング率は、片面において導
電性高分子の濃度が大きく、他の片面において高分子電
解質濃度が大きくなるため、一般の無機アニオンドーパ
ントを用いる場合と比較して低いものであるという問題
がある。更に本発明者らの検討によると、このスルホン
化ポリマードープ剤のスルホン酸基は、水溶液中では解
離するが、非水溶媒中での解離は困難である場合が多く
、従って、この導電性高分子複合体は、非水溶媒中で十
分に機能させることが困難であり、実用化への一つの障
壁となっている。For this reason, it has recently been proposed to use a polymer electrolyte having an anionic group as a dopant, and for example, JP-A-59-98165 proposes a conductive polymer composition using a polymer as a dopant. The composition contains sulfonated polyethylene as a polymer dopant;
Examples include sulfonated polystyrene, sulfonated poly(2,5-dimethylphenylene oxide), sulfonated polyvinyl alcohol, sulfonated styrene/(hydrogenated) butadiene copolymer, and the anionic group is formed from a sulfonic acid group. There is. This proposal is attracting attention because it shows that a conductive polymer composite is more stable and self-supporting than conventional conductive polymers doped with inorganic anions. However, as a conductive material, it is not necessarily sufficient in terms of chemical and physical stability, and the doping rate, which is an important element of ion-doped conductive polymers, is Since the concentration is high and the polymer electrolyte concentration is high on the other side, there is a problem that it is lower than when using a general inorganic anion dopant. Furthermore, according to the studies of the present inventors, the sulfonic acid group of this sulfonated polymer dopant dissociates in an aqueous solution, but it is often difficult to dissociate it in a non-aqueous solvent. It is difficult to make molecular complexes function sufficiently in non-aqueous solvents, which is one barrier to their practical application.
ポリマードーパントとして、上記スルホン化ポリマーに
比較して化学的安定性に優れたフッ素系高分子電解質を
用いることも提案されている。例えばフッ素系高分子電
解質を隔膜とし、等電性高分子を形成するモノマー溶液
と酸化剤溶液を分離したセルを用い、フッ素系高分子電
解質の酸化剤側の表面より導電性高分子を化学重合し、
導電性高分子とフッ素系高分子電解質の複合膜を合成す
る方法等が提案されている。しかしながら、この方法で
も、高分子電解質のドーピング率は必ずしも満足できる
ものではなく、得られる膜にはドーパントか不均一にド
ーピングされるという問題がある。また化学重合法を用
いて合成した導電性高分子と高分子電解質の複合体は、
ドーパントとして高分子電解質のアニオン基と酸化徂合
種より導入されるアニオンとが導入され、従って固定さ
れたドーパントと移動するドーパントとの複合ドーパン
トをもつ、導電性高分子と高分子電解質の複合膜が形成
されるようになる。It has also been proposed to use a fluoropolymer electrolyte, which has superior chemical stability compared to the above-mentioned sulfonated polymers, as a polymer dopant. For example, using a cell in which a fluoropolymer electrolyte is used as a diaphragm and a monomer solution that forms an isoelectric polymer and an oxidizing agent solution are separated, a conductive polymer is chemically polymerized from the oxidizing agent side surface of the fluoropolymer electrolyte. death,
Methods for synthesizing composite membranes of conductive polymers and fluoropolymer electrolytes have been proposed. However, even with this method, the doping rate of the polymer electrolyte is not necessarily satisfactory, and there is a problem that the resulting film is doped with dopant non-uniformly. In addition, complexes of conductive polymers and polymer electrolytes synthesized using chemical polymerization methods are
A composite membrane of a conductive polymer and a polymer electrolyte, in which an anion group of the polymer electrolyte and an anion introduced from an oxidation species are introduced as dopants, and thus a composite dopant of a fixed dopant and a mobile dopant is formed. begins to form.
更に、特開昭63−98972号公報では、導電性高分
子とフッ素系高分子電解質との複合体を二次電池の正極
活物質として用いることが提案されている。本提案は、
電池正極として該複合体を用いた場合は正極の自己放電
率が、減少し電池の耐久性が向上することが述べられて
おり、特に化学重合法によりフッ素化高分子電解質と導
電性高分子の複合体の粉末を製造する方法が述べられて
いる。しかしながら、この方法により得られた複合体の
高分子電解質のドープ率は極めて低く、実施例において
は、ポリアニリン中にフッ素系高分子電解質が25%程
度しかドーピングされておらず、フッ素系高分子電解質
のアニオン基が全てドープされたとしても、そのドーピ
ング率はポリアニリン1ユニツトあたりわずかに3%程
度である。Furthermore, JP-A-63-98972 proposes the use of a composite of a conductive polymer and a fluoropolymer electrolyte as a positive electrode active material of a secondary battery. This proposal is
It has been stated that when the composite is used as a battery positive electrode, the self-discharge rate of the positive electrode is reduced and the battery durability is improved. A method of manufacturing a composite powder is described. However, the doping rate of the polymer electrolyte in the composite obtained by this method is extremely low. Even if all of the anion groups are doped, the doping rate is only about 3% per unit of polyaniline.
また、複合体の放電容量がかなり高い値であることから
、この複合体は、フッ素系高分子電解質アニオン基より
も、酸化剤である過硫酸アンモニウムより尋人されるア
ニオンが主たるドーバンI・であると考えられる。従っ
てこの複合体は、安定性あるいは自立性の点で満足でき
るものではなく、またドーパントも導電性高分子中に不
均一にドープされるので導電性の点で欠点のあるものと
なる。In addition, since the discharge capacity of the composite is quite high, this composite has Dovan I, whose main anion is oxidized by the oxidizing agent ammonium persulfate, rather than the fluoropolymer electrolyte anion group. it is conceivable that. Therefore, this composite is not satisfactory in terms of stability or self-supporting properties, and also has disadvantages in terms of conductivity because the dopant is also doped non-uniformly into the conductive polymer.
以上述べたとおり、従来提案されているアニオン基を有
する電解質、特に高分子電解質と導′F3性高分子との
複合体においては、高分子電解質のドブ率は通常の無機
アニオンで報告されているドーバンI・率よりは低い値
のものである。また、高分子電解質のアニオン基とその
他の無機アニオンとの両種がドーピングされる場合が多
く、従って、固定されたドーパントと移動するドーパン
I・との場合ドーパント型と考えられる。更に得られた
膜は必ずしも均一組成なものではなく、物理的、化学的
安定性が不十分な場合もあり、また各種溶媒中で十分に
機能しないなどの問題点もある。As mentioned above, in the conventionally proposed electrolytes with anionic groups, especially in complexes of polymer electrolytes and conductive F3 polymers, the dob rate of polymer electrolytes has been reported for ordinary inorganic anions. This value is lower than the Dovan I rate. Further, in many cases, both the anionic groups of the polymer electrolyte and other inorganic anions are doped, and therefore, in the case of a fixed dopant and a mobile dopant I, it is considered to be a dopant type. Furthermore, the resulting film does not necessarily have a uniform composition, may have insufficient physical or chemical stability, and may not function satisfactorily in various solvents.
(発明が解決しようとする課21fi)本発明の目的は
、高いドープ率を示す固定ドーパント型の導電性高分子
を与えるものである。さらに詳しくは、電解質のアニオ
ン基のみをドーパントとし、かつ、電解質のアニオン基
が、無機ハロゲンアニオンと同程度に高いドープ率でド
ーピングされ、さらに、導電性高分子内で固定化された
、いわゆる固定ドーパントとして機能し、物理的、化学
的安定性にも優れた均一な組成を示し、各種溶媒中でも
機能し得るような、導電性高分子とアニオン基を持つ電
解質との複合体を製造する方法を提案するものである。(Problem to be Solved by the Invention 21fi) An object of the present invention is to provide a fixed dopant type conductive polymer exhibiting a high doping rate. More specifically, only the anionic group of the electrolyte is used as a dopant, and the anionic group of the electrolyte is doped at a doping rate as high as that of an inorganic halogen anion, and is further immobilized within a conductive polymer. A method for producing a composite of a conductive polymer and an electrolyte with anionic groups that functions as a dopant, exhibits a uniform composition with excellent physical and chemical stability, and can function in various solvents. This is a proposal.
(課題を解決するための手段)
本発明者らは上記問題点を解決するために鋭意検討を行
なった結果、電解酸化組合法により複合体を製造するこ
とにより高いドープ率を示す固定ドーパント型の導電性
高分子が得られることを見出し本発明を完成するに至っ
た。すなわち本発明は、少なくともα位がフッ素置換さ
れたアニオン基を有する高分子電解質を含む溶液中でチ
オフェン類モノマーの電解酸化重合を行なうことを特徴
とするポリチオフェン類と前記電解質の複合体の製造方
法である。(Means for Solving the Problems) As a result of intensive studies to solve the above problems, the present inventors have found that a fixed dopant type that exhibits a high doping rate can be obtained by producing a composite by an electrolytic oxidation combination method. The inventors discovered that a conductive polymer could be obtained and completed the present invention. That is, the present invention provides a method for producing a composite of a polythiophene and an electrolyte, which comprises performing electrolytic oxidative polymerization of a thiophene monomer in a solution containing a polymer electrolyte having an anion group substituted with fluorine at least at the α position. It is.
以下、本発明を具体的に説明する。The present invention will be specifically explained below.
第1図に本発明における固定ドーパント型導電性高分子
のレドックスモデルを示す。無機アニオンをドーパント
とする一般の移動ドーパント型導電性高分子は、第2図
に示すとおり酸化還元に伴いドーパントであるアニオン
が導電性高分子内を出入りするものである。一方、固定
ドーパント型導電性高分子は、第1図に示すとおりドー
パントが導電性高分子内に固定されており、酸化還元に
伴い導電性高分子内外を移動することができないもので
ある。そのため、このような固定ドーパント型の導電性
高分子においては、酸化還元に伴い、−9電性高分子内
に固定されたアニオンの対イオン、即ちカチオンが導電
性高分子内を出入りするようになる。このように、固定
ドーパント型導電性高分子は、移動ドーパント型導電性
高分子とは、明確に異なるレドックス機措を示すもので
ある。FIG. 1 shows a redox model of the fixed dopant type conductive polymer in the present invention. In a general mobile dopant type conductive polymer containing an inorganic anion as a dopant, as shown in FIG. 2, the anion as a dopant moves in and out of the conductive polymer as a result of redox. On the other hand, in a fixed dopant type conductive polymer, the dopant is fixed within the conductive polymer as shown in FIG. 1, and cannot move inside or outside the conductive polymer due to redox. Therefore, in such fixed dopant type conductive polymers, counter ions of the anions fixed within the -9 conductive polymer, that is, cations, move in and out of the conductive polymer as a result of redox. Become. In this way, the fixed dopant type conductive polymer exhibits a redox mechanism that is clearly different from that of the mobile dopant type conductive polymer.
本発明の導電性高分子複合体の製造方法において用いら
れる少なくともα位がフッ素置換されたアニオン基をH
する高分子電解質は、アニオン基が溶媒中に遊離するこ
となく、かつアニオン基をHするオリゴマーからポリマ
ーの範囲の電解質であることが好ましく、このような電
解質を用いることにより、導電性高分子との複合体を形
成した場合に、ドーパントアニオン(アニオン基を有す
る電解質)は酸化還元に伴い導電性高分子内を出入りす
ることのない固定ドーパントとなる。更に電解質の少な
くともα位がフッ素置換されていることより、得られる
導電性高分子複合体は水溶液1Jはもちろん非水溶液な
ど各種溶媒中でも機能できるようになる。この理由は明
らかではないが、本発明で用いられる電解質は、非水溶
媒中でもフッ素のHする電子受容性によりアニオン基を
解離することができるためと考えられる。H
The polymer electrolyte used for this purpose is preferably an electrolyte that ranges from oligomers to polymers in which the anionic groups are not liberated into the solvent and can be hydrogenated. When a complex is formed, the dopant anion (electrolyte having an anion group) becomes a fixed dopant that does not move in or out of the conductive polymer due to redox. Furthermore, since at least the α-position of the electrolyte is fluorine-substituted, the resulting conductive polymer composite can function not only in an aqueous solution of 1 J but also in various solvents such as non-aqueous solutions. Although the reason for this is not clear, it is thought that the electrolyte used in the present invention can dissociate anion groups even in non-aqueous solvents due to the electron-accepting property of fluorine.
上記゛電解質の只体例としては、以下の(^1造のオリ
ゴマーまたはポリマーを挙げることができる。Examples of the above-mentioned electrolyte include the following oligomers or polymers.
5o3x ” coo −x ”OO
COO
00F20F2S03
更に具体的には、下記の構造を有するテトラフルオロエ
チレンとパーフルオロ−3,6−シオキサーメチルー7
−オクテンスルフアミン酸との共重合体を含む高分子電
解質を挙げることができる。5o3x "coo -x"OO COO 00F20F2S03 More specifically, tetrafluoroethylene and perfluoro-3,6-thioxermethyl-7 having the following structure
-Polymer electrolytes containing copolymers with octensulfamic acid may be mentioned.
1−E−CI+ CF+ CI?CI’、y−1−
7−2n
(OCT’ CP) 0CF2CP2So3Hn
p3
電解酸化重合に用いる溶液は、可溶性溶媒中に前記電解
質を溶解することにより得られ、可溶性溶媒としては、
極性溶媒例えば、アルコール類、ケトン類、有機酸類、
アルデヒド類、エステル類等を挙げることができる。溶
液の濃度は特に限定されないが、電解質が10 111
ol/dad3以上の濃度の溶液であることが好ましい
。1-E-CI+ CF+ CI? CI', y-1-
7-2n (OCT' CP) 0CF2CP2So3Hn p3 The solution used for electrolytic oxidative polymerization is obtained by dissolving the electrolyte in a soluble solvent, and the soluble solvent includes:
Polar solvents such as alcohols, ketones, organic acids,
Examples include aldehydes and esters. The concentration of the solution is not particularly limited, but the electrolyte is 10 to 111
It is preferable that the solution has a concentration of ol/dad3 or more.
また本発明において用いられるチオフェン類とは、チオ
フェンあるいはチオフェン誘導体であり、特に、誘導体
は導電性高分子の構造上、3位及び/又は4位に置換基
を有する誘導体であることが好ましい。誘導体としては
例えば3−メチルチオフェン、3−メトキシチオフェン
等を挙げることができる。Further, the thiophenes used in the present invention are thiophene or thiophene derivatives, and in particular, the derivative is preferably a derivative having a substituent at the 3rd and/or 4th position due to the structure of the conductive polymer. Examples of derivatives include 3-methylthiophene and 3-methoxythiophene.
電解酸化重合は、陽極反応により実施されるが、陽極と
しては、例えば白金等の金属、表面にITO等の導電性
物質を被覆した導電性硝子やグラッシーカーボン等の任
意の導電性基体を用いることができる。Electrolytic oxidative polymerization is carried out by an anodic reaction, and any conductive substrate such as a metal such as platinum, conductive glass whose surface is coated with a conductive substance such as ITO, or glassy carbon may be used as the anode. Can be done.
電解酸化重合の条件としては、定電流電解法。The conditions for electrolytic oxidation polymerization are constant current electrolysis.
定電位電解法、パルス電解法、電位走査電解法等を用い
ることができる。例えば、定7に流電解法を行なう場合
、チオフェン類を含む電解質の溶液を用いて、10−2
m八へC−〜10 ’ mA/ cJの定電流で電解酸
化重合を行なうことにより導電性高分子複合体を得るこ
とができる。また、定電位電解法を行なう場合、チオフ
ェン類を含む電解質の溶液を溶液を用いて、チオフェン
類の酸化電位以上の電位、例えば+1. 5〜+2.
5V vs SCEの電位を陽極に印加し電解酸化重合
を行なうことにより導電性高分子複合体を得ることがで
きる。A constant potential electrolysis method, a pulse electrolysis method, a potential scanning electrolysis method, etc. can be used. For example, when carrying out the flow electrolysis method at 10-2, using an electrolyte solution containing thiophenes,
A conductive polymer composite can be obtained by performing electrolytic oxidation polymerization at a constant current of m8 to C- to 10' mA/cJ. Further, when performing constant potential electrolysis, a solution of an electrolyte containing thiophenes is used at a potential higher than the oxidation potential of the thiophenes, for example, +1. 5~+2.
A conductive polymer composite can be obtained by applying a potential of 5 V vs. SCE to the anode and performing electrolytic oxidative polymerization.
電解酸化重合を行う際の溶液温度は、目的とする導電性
高分子複合体の性質により適宜調整されるが、高いドー
プ率、物理的、化学的安定性、均一な組成安定性を備え
た導電性高分子複合体を得るためには、溶液温度を室忍
以下に保つことが望ましい。The solution temperature during electrolytic oxidation polymerization is adjusted appropriately depending on the properties of the desired conductive polymer composite. In order to obtain a functional polymer complex, it is desirable to keep the solution temperature below room temperature.
以上のように得られた、導電性高分子複合体は、電解質
のアニオン基のみをドーパントとする固定ドーパント型
あり、ドーパントのドープ率はボリチオフェン類1ユニ
ットあたり0.15〜0.3となる。これは無機ハロゲ
ンアニオンと同程度に高いアニオン基のドープ率である
。更に、得られる導電性高分子複合体は、物理的、化学
的安定性にも優れた均一な組成で、かつ各種溶媒中でも
機能し得るものとなる。The conductive polymer composite obtained as described above has a fixed dopant type in which only the anion group of the electrolyte is used as a dopant, and the doping rate of the dopant is 0.15 to 0.3 per polythiophene unit. . This is a doping rate of anionic groups as high as that of inorganic halogen anions. Furthermore, the resulting conductive polymer composite has a uniform composition with excellent physical and chemical stability, and can function in various solvents.
本発明の製造方法により得られる固定ドーパント型導電
性高分子は、移動するイオンが、固定アニオンの対イオ
ンであるカチオンとなるため、電気化学素子への適用、
例えば二次電池の正極として好適な特性を持つものであ
り、例えばリチウム電池の正極として用いた場合は、移
動種が正極、負極同一となり、電解質濃度が変化しない
電池を形成することができる。The fixed dopant type conductive polymer obtained by the production method of the present invention can be applied to electrochemical devices because the moving ions are cations that are counter ions to the fixed anions.
For example, it has properties suitable as a positive electrode of a secondary battery, and when used as a positive electrode of a lithium battery, for example, the mobile species are the same in the positive electrode and negative electrode, making it possible to form a battery in which the electrolyte concentration does not change.
(実施例)
以下、実施例を述べるが、本発明はこれらに限定される
ものではない。(Example) Examples will be described below, but the present invention is not limited thereto.
実施例1.比較例1
白金プレート(有効電極面積0.5cm)を陽極に用い
、チオフェンを0 、 01 a+ol/dn3含んだ
テトラフルオロエチレンとパーフルオロ−3,6−シオ
キサーメチルー7−オクテンスルフアミン酸の共重合体
を含む電解質(デュポン社製 ナフィオン)のアルコー
ル溶液(電解質511!量%、水10重量%を含有する
)を用いて、0. 5n+A/cdの定電流で0.6C
/c−まで陽極酸化重合を行い、ポリチオフェンと電解
質との導電性高分子複合体を得た。得られた導電性高分
子複合体は、自立性のフィルムで乾燥時も砕けることな
く安定であった。Example 1. Comparative Example 1 A platinum plate (effective electrode area: 0.5 cm) was used as an anode, and tetrafluoroethylene containing 0,01 a+ol/dn3 of thiophene and perfluoro-3,6-thioxermethyl-7-octensulfamic acid were used as an anode. Using an alcohol solution (containing 511% of electrolyte and 10% of water by weight) of an electrolyte (Nafion, manufactured by DuPont) containing a copolymer of 0. 0.6C at constant current of 5n+A/cd
Anodic oxidation polymerization was performed to /c- to obtain a conductive polymer composite of polythiophene and electrolyte. The resulting conductive polymer composite was a self-supporting film that remained stable without crumbling during drying.
得られた導電性高分子複合体の元素分析を行ない、各構
成元素の複合体の巾に占める割合から複合体の組成を算
出したところ、この導電性高分子複合体中には、ポリチ
オフェン1 molに対して電解質が0.25mol含
まれていることがわかった。Elemental analysis of the obtained conductive polymer composite was performed, and the composition of the composite was calculated from the ratio of each constituent element to the width of the composite. It was found that 1 mol of polythiophene It was found that 0.25 mol of electrolyte was contained.
またEPMA分析によって、得られた導電性高分子複合
体の深さ方向の硫黄原子の分布を調べたところ、硫黄原
子は均一に分散していた。Further, when the distribution of sulfur atoms in the depth direction of the obtained conductive polymer composite was examined by EPMA analysis, the sulfur atoms were found to be uniformly dispersed.
次に得られた導電性高分子複合体を試験極に、対極に白
金数、参照電極に飽和カロメル電極用いて、塩化カリウ
ムを1 mol/d−含む水溶液中でサイクリクボルタ
ンメトリーを行った。その結果を第3図の実線に示す。Next, cyclic voltammetry was performed in an aqueous solution containing 1 mol/d of potassium chloride using the obtained conductive polymer composite as a test electrode, platinum as a counter electrode, and a saturated calomel electrode as a reference electrode. The results are shown by the solid line in FIG.
また、同様なll定をポリスチレンスルホン酸ソーダ(
分子Q : 10000)の20重量96水溶液中で行
った。その結果を第4図の実線に示す。In addition, the same ll constant was determined using sodium polystyrene sulfonate (
The test was carried out in a 20 weight 96 aqueous solution of molecule Q: 10000). The results are shown by the solid line in FIG.
比較例1としてチオフェンを0 、 01 sol/d
a”含む、0 、 1 mol/da3濃度のテトラエ
チルアンモニウムバークロレートを含むアセトニトリル
溶液用いて、0.5mA/c−の定電流で0.6C/c
−まで陽極酸化重合を行い、テトラエチルアンモニウム
バークロレートのCIOイオンをドーパントとするポリ
チオフェン単独体を得た。得られたポリチオフェン単独
体は、脆く不安定なものでありた。このポリチオフェン
単独体を試験極に用い、実施例1と同様の条件でサイク
リクボルタンメトリー行なった。その結果を第3図の波
線、第4図の波線に示す。単独体では、第4図に見られ
る様にポリスチレンスルホン酸ソーダ水溶液中では、レ
ドックスが認められてない。これは、単独体では酸化還
元に伴いアニオンが出入りするアニオン移動のレドック
スを示すが、巨大なポリスチレンスルホン酸アニオンが
アニオンとなる場合アニオン移動ができないことを示す
。これに対して、第3図及び第4図から明らかなように
、導電性高分子複合体は、アニオン種の大きさに関係無
くほぼ同一の可逆的なポルタモグラムを示し、これより
得られた導電性高分子複合体はカチオン移動のレドック
スを示すことがわかった。As Comparative Example 1, thiophene was used at 0 and 01 sol/d.
0.6 C/c at a constant current of 0.5 mA/c using an acetonitrile solution containing tetraethylammonium verchlorate at a concentration of 0, 1 mol/da.
Anodic oxidation polymerization was carried out until - to obtain a polythiophene alone containing CIO ions of tetraethylammonium verchlorate as a dopant. The obtained polythiophene alone was brittle and unstable. Using this polythiophene alone as a test electrode, cyclic voltammetry was performed under the same conditions as in Example 1. The results are shown by the dotted line in FIG. 3 and the dotted line in FIG. 4. When used alone, no redox was observed in an aqueous solution of sodium polystyrene sulfonate, as shown in FIG. This indicates redox movement of anions, in which anions move in and out as a result of oxidation-reduction when used alone, but when the giant polystyrene sulfonate anion becomes an anion, it shows that anion movement is not possible. On the other hand, as is clear from FIGS. 3 and 4, the conductive polymer composite shows almost the same reversible portamogram regardless of the size of the anion species, and the conductive The polymer complexes were found to exhibit redox cation transfer.
更に、この導電性高分子複合体の酸化還元に伴う移動イ
オンの同定をEPMA分析によって行った。その結果を
第5図−aに示す。また、比較例1により得られた単独
体の分析結果を第5図−すに示す。第5図−すから、単
独体では酸化還元に伴いCIOイオンが増減することか
ら、単独体ではアニオン移動のレドックスを示すことが
わかる。これに対し第5図−aから、導電性高分子複合
体では酸化還元に伴いカリウムイオンが増減することか
ら、得られた導電性高分子複合体は、カチオン移動のレ
ドックスを示すことが確認された。Furthermore, the ions that migrate due to redox of this conductive polymer composite were identified by EPMA analysis. The results are shown in Figure 5-a. Further, the analysis results of the single substance obtained in Comparative Example 1 are shown in FIG. From Figure 5, it can be seen that the CIO ions increase and decrease in the single substance due to redox, indicating that the single substance exhibits redox of anion movement. On the other hand, as shown in Figure 5-a, potassium ions increase and decrease in the conductive polymer composite due to redox, so it is confirmed that the obtained conductive polymer composite exhibits redox of cation transfer. Ta.
更に、ポリチオフェン中の硫黄とドーパントである電解
質のアニオン基の硫黄が、酸化還元により変化していな
いことから、ドーパントである電解質のアニオン基は、
固定ドーパントとして機能していることがわかった。Furthermore, since the sulfur in polythiophene and the sulfur in the anionic group of the electrolyte that is the dopant are not changed by redox, the anionic group of the electrolyte that is the dopant is
It was found that it functions as a fixed dopant.
また、試験極として実施例1で得られた導電性高分子複
合体を、電解液に過塩素酸リチウムをlll1o11d
OI3含む炭酸プロピレンを用いてサイクリクボルタン
メトリーを行い、得られたサイクリックポルタモグラム
からレドックス容量を測定したところ、容量は重合電気
量から見積ったレドックス容量の約95%であった。ま
た測定の間、この導電性高分子複合体は壊れることなく
、電解液中での電気化学的酸化還元に対するレドックス
特性にも変化が認められず、得られた導電性高分子複合
体は物理的、化学的に安定であった。In addition, the conductive polymer composite obtained in Example 1 was used as a test electrode, and lithium perchlorate was added to the electrolyte.
When cyclic voltammetry was performed using propylene carbonate containing OI3 and the redox capacity was measured from the obtained cyclic voltammogram, the capacity was about 95% of the redox capacity estimated from the amount of polymerization electricity. Moreover, during the measurement, this conductive polymer composite did not break down, and no change was observed in its redox properties against electrochemical redox in the electrolyte, and the obtained conductive polymer composite showed no physical damage. , was chemically stable.
実施例2
チオフェンのかイ)りに3−メチルチオフェンを用いた
以外は、実施例1と同様の方法で、導電性高分子複合体
を作製し評価を行った。その結果、得られた導電性高分
子複合体は、物理的、化学的に安定な自立性のフィルム
で、0.2.5のドープ率で均一に複合化しており、電
気化学的評価から、カチオン移動型のレドックスを示す
ことが確認された。さらに、過塩素酸リチウムを1 m
ol/dm3含む炭酸プロピレン中で95%のレドック
ス容量が得られた。Example 2 A conductive polymer composite was produced and evaluated in the same manner as in Example 1, except that 3-methylthiophene was used as a substitute for thiophene. As a result, the obtained conductive polymer composite was a physically and chemically stable self-supporting film, uniformly composited at a doping rate of 0.2.5, and from electrochemical evaluation, It was confirmed that it exhibits cation transfer type redox. Furthermore, 1 m of lithium perchlorate
A redox capacity of 95% was obtained in propylene carbonate containing ol/dm3.
比較例2
白金プレート(有効電極面積0.5cd)を陽極に用い
、電解液としてチオフェン0 、 1 mol/dm”
とポリスチレンスルホン酸カリウム20gとを含む水溶
液を用いて、0.511IA/c−の定電流で0.6C
/c−まで陽極酸化重合を行い、ポリチオフェンとポリ
スチレンスルホン酸との導電性高分子;1合体を得た。Comparative Example 2 A platinum plate (effective electrode area: 0.5 cd) was used as an anode, and 0.1 mol/dm of thiophene was used as the electrolyte.
0.6C at a constant current of 0.511IA/c- using an aqueous solution containing 20g of potassium polystyrene sulfonate and 20g of potassium polystyrene sulfonate.
Anodic oxidation polymerization was performed to /c- to obtain a conductive polymer; 1 combination of polythiophene and polystyrene sulfonic acid.
この導電性高分子複合体を試験極に、対極に白金板、参
照電極に飽和カロメル電極用いて、過塩素酸リチウムを
1 mol/11w3含む炭酸プロピレン中てサイクリ
クボルタンメトリーを行ったところ、”8 =は重合電
気量から見積ったレドックス容量の506であった。こ
れは、ドーパントであるポリスチレンスルホン酸アニオ
ンの非水溶液中での解離か困難であるため、十分な容量
が得られないものと推察される。Cyclic voltammetry was performed in propylene carbonate containing 1 mol/11w3 of lithium perchlorate using this conductive polymer composite as a test electrode, a platinum plate as a counter electrode, and a saturated calomel electrode as a reference electrode. = was the redox capacity estimated from the amount of polymerization electricity, which was 506. This is because it is difficult to dissociate the dopant polystyrene sulfonate anion in a non-aqueous solution, so it is presumed that a sufficient capacity cannot be obtained. Ru.
比較例3
チオフェン18gとテトラフルオロエチレンとパーフル
オロ−3,6−シオキサーメチルー7−オクテンスルフ
アミン酸の共重合体を含む電解質(デュポン社製 ナフ
ィオン177 ) 7 gを用いて、これにドーパント
及び重合触媒として過硫酸アンモニウム20gを混合し
、化学重合法によりポリチオフェンと電解質との調合体
を合成した。得られた複合体は自立性のフィルム状のも
のではなく粉末状のもので、調合体の元素分析の結果か
らポリチオフェン中には電解質が20徂量%含まれてい
ることがわかった。この結果から、jllられた複合体
のドープ率は、0.02であることがわかった。Comparative Example 3 Using 18 g of thiophene and 7 g of an electrolyte (Nafion 177 manufactured by DuPont) containing a copolymer of tetrafluoroethylene and perfluoro-3,6-thioxermethyl-7-octensulfamic acid, A blend of polythiophene and electrolyte was synthesized by a chemical polymerization method by mixing 20 g of ammonium persulfate as a dopant and a polymerization catalyst. The resulting composite was not a self-supporting film but a powder, and elemental analysis of the preparation revealed that the polythiophene contained 20% electrolyte. From this result, it was found that the doping rate of the jlled composite was 0.02.
得られた複合体の粉末をペレット状に加圧形成したしの
を試験極に用いて実施例と同じ評価を行ったところ、酸
化還元に伴う移動イオンは、カチオン、アニオンの両方
であった。これは、化学重合で得られる調合体のドープ
率及び均−仕に問題があるためと111察される。When the same evaluation as in the example was carried out using a pellet formed from the powder of the obtained composite under pressure as a test electrode, the ions transferred due to redox were both cations and anions. This is thought to be due to problems with the doping rate and uniformity of the compound obtained by chemical polymerization.
(発明の効果)
以上述べたとおり、本発明によれば無機ハロゲンアニオ
ンと同程度に高いアニオン基のドープ率を示し、さらに
、物理的、化学的安定性にも優れた均一な組成で、かつ
各種溶媒中でも機能し得る複合体が得られる。(Effects of the Invention) As described above, the present invention exhibits a doping rate of anion groups as high as that of inorganic halogen anions, and has a uniform composition with excellent physical and chemical stability. Complexes that can function in various solvents are obtained.
更にi−)られた複合体は、固定ドーパント型(カチオ
ン移動型)という新規な機能を有しており、各種の導電
性高分子の用途分野おいて、注目されるものである。Furthermore, the composite obtained in i-) has a novel function of a fixed dopant type (cation transfer type), and is attracting attention in various fields of application of conductive polymers.
第1図は本発明で得られる固定ドーパント型導7[i性
高分子のレドックスモデルを示す図である。
第2図は移動ドーパント型導電性高分子のレドックスモ
デルを示す図である。
第3図は実施例1及び比較例1で得られた導電性高分子
;々合体、導電性高分子の塩化カリウム水溶液中でのサ
イクリックポルタモグラムを示す図である。
第4図は実施例1及び比較例1で得られた導電性高分子
複合体、導電性高分子のポリスチレンスルホン酸ソーダ
水溶液中でのサイクリックポルタモグラムを示す図であ
る。
第5図は実施例1及び比較例1で得られた導電性高分子
膜合体、導電性高分子のEPMA分析の結果を示す図で
ある。
ポリチオフェン
第2図
ポリチオフェンFIG. 1 is a diagram showing a redox model of a fixed dopant type polymer obtained by the present invention. FIG. 2 is a diagram showing a redox model of a mobile dopant type conductive polymer. FIG. 3 is a diagram showing cyclic portamograms of the conductive polymers obtained in Example 1 and Comparative Example 1; FIG. 4 is a diagram showing cyclic portamograms of the conductive polymer composites and conductive polymers obtained in Example 1 and Comparative Example 1 in an aqueous solution of sodium polystyrene sulfonate. FIG. 5 is a diagram showing the results of EPMA analysis of the conductive polymer film combination and conductive polymer obtained in Example 1 and Comparative Example 1. Polythiophene Figure 2 Polythiophene
Claims (1)
有する高分子電解質を含む溶液中でチオフェン類モノマ
ーの電解酸化重合を行なうことを特徴とするポリチオフ
ェン類と前記電解質の複合体の製造方法。(1) A method for producing a composite of polythiophenes and the electrolyte, which comprises carrying out electrolytic oxidation polymerization of a thiophene monomer in a solution containing a polymer electrolyte having an anion group substituted with fluorine at least at the α position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31497088A JPH02160823A (en) | 1988-12-15 | 1988-12-15 | Production of conductive polymeric complex |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31497088A JPH02160823A (en) | 1988-12-15 | 1988-12-15 | Production of conductive polymeric complex |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02160823A true JPH02160823A (en) | 1990-06-20 |
Family
ID=18059858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31497088A Pending JPH02160823A (en) | 1988-12-15 | 1988-12-15 | Production of conductive polymeric complex |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02160823A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6150032A (en) * | 1995-07-13 | 2000-11-21 | The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations | Electroactive polymer coatings for corrosion control |
US6762238B1 (en) | 1998-12-02 | 2004-07-13 | The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations | Water-borne polymeric complex and anti-corrosive composition |
JP2005222753A (en) * | 2004-02-04 | 2005-08-18 | Shin Etsu Polymer Co Ltd | Photoelectric conversion element and its manufacturing method |
JP2005232452A (en) * | 2004-02-10 | 2005-09-02 | Hc Starck Gmbh | Polythiophene composition for improving organic light emitting diode |
JP2008121014A (en) * | 2006-11-08 | 2008-05-29 | Cheil Industries Inc | Conductive polymeric copolymer, conductive polymeric copolymer composition, conductive polymeric copolymer composition film, and organic photoelectric element using them |
US7390438B2 (en) | 2003-04-22 | 2008-06-24 | E.I. Du Pont De Nemours And Company | Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids |
US7431866B2 (en) | 2002-09-24 | 2008-10-07 | E. I. Du Pont De Nemours And Company | Water dispersible polythiophenes made with polymeric acid colloids |
US7670506B1 (en) | 2004-12-30 | 2010-03-02 | E. I. Du Pont De Nemours And Company | Photoactive compositions for liquid deposition |
JP2010509405A (en) * | 2006-06-30 | 2010-03-25 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Stabilized composition of conductive polymer and partially fluorinated acid polymer |
US8062553B2 (en) | 2006-12-28 | 2011-11-22 | E. I. Du Pont De Nemours And Company | Compositions of polyaniline made with perfuoropolymeric acid which are heat-enhanced and electronic devices made therewith |
-
1988
- 1988-12-15 JP JP31497088A patent/JPH02160823A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6150032A (en) * | 1995-07-13 | 2000-11-21 | The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations | Electroactive polymer coatings for corrosion control |
US6762238B1 (en) | 1998-12-02 | 2004-07-13 | The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations | Water-borne polymeric complex and anti-corrosive composition |
US7431866B2 (en) | 2002-09-24 | 2008-10-07 | E. I. Du Pont De Nemours And Company | Water dispersible polythiophenes made with polymeric acid colloids |
US7390438B2 (en) | 2003-04-22 | 2008-06-24 | E.I. Du Pont De Nemours And Company | Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids |
JP2005222753A (en) * | 2004-02-04 | 2005-08-18 | Shin Etsu Polymer Co Ltd | Photoelectric conversion element and its manufacturing method |
JP4619660B2 (en) * | 2004-02-04 | 2011-01-26 | 信越ポリマー株式会社 | Photoelectric conversion element and manufacturing method thereof |
JP2005232452A (en) * | 2004-02-10 | 2005-09-02 | Hc Starck Gmbh | Polythiophene composition for improving organic light emitting diode |
US7670506B1 (en) | 2004-12-30 | 2010-03-02 | E. I. Du Pont De Nemours And Company | Photoactive compositions for liquid deposition |
JP2010509405A (en) * | 2006-06-30 | 2010-03-25 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Stabilized composition of conductive polymer and partially fluorinated acid polymer |
US8383009B2 (en) | 2006-06-30 | 2013-02-26 | E I Du Pont De Nemours And Company | Stabilized compositions of conductive polymers and partially fluorinated acid polymers |
JP2008121014A (en) * | 2006-11-08 | 2008-05-29 | Cheil Industries Inc | Conductive polymeric copolymer, conductive polymeric copolymer composition, conductive polymeric copolymer composition film, and organic photoelectric element using them |
US8062553B2 (en) | 2006-12-28 | 2011-11-22 | E. I. Du Pont De Nemours And Company | Compositions of polyaniline made with perfuoropolymeric acid which are heat-enhanced and electronic devices made therewith |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4933106A (en) | Highly conductive polymer composition and process for producing the same | |
IL129676A (en) | Electrochemical storage cell containing at least one electrode formulated from a fluorophenyl thiophene polymer | |
Higgins et al. | Grafting and electrochemical characterisation of poly-(3, 4-ethylenedioxythiophene) films, on Nafion and on radiation-grafted polystyrenesulfonate–polyvinylidene fluoride composite surfaces | |
Pyo et al. | Long-term redox switching stability of polypyrrole | |
AU2006243103A1 (en) | Conductive material and conductive film and process for producing them | |
JPH02160823A (en) | Production of conductive polymeric complex | |
Massoumi et al. | Electrochemically controlled binding and release of dexamethasone from conducting polymer bilayer films | |
NO174297B (en) | Method of manufacture of electrically conductive polymer material, and use of such material | |
KR20050084872A (en) | Proton conductor, single ion conductor, process for the production of them, and electrochemical capacitors | |
JP2007250994A (en) | Conductive polymer redox type electrochemical element used as polar device | |
JP2907131B2 (en) | Conductive polymer, solid electrolytic capacitor using the same, and method of manufacturing the same | |
Audebert et al. | Soluble and film-forming substituted polypyrroles from pyrrole monomers substituted in the 3-and 4-positions by alkyl and ester groups | |
JP4845418B2 (en) | Porous electrode including porous conductive polymer film and electrochemical device | |
JPH0678493B2 (en) | Method for producing conductive polymer composition | |
JPH10261418A (en) | Positive electrode material for lithium secondary battery | |
JPH0218416A (en) | Production of conductive polymer composite | |
JP2699500B2 (en) | Conductive polymer composite | |
WO2012150900A1 (en) | Composites from biopolymers | |
JP3066426B2 (en) | Electrochemical element and manufacturing method thereof | |
JPS63225634A (en) | Aniline/cation exchanger polymeric composite membrane and its production | |
JP2006310384A (en) | Process for producing porous electrode, porous electrode, and electrochemical device | |
JPH02130906A (en) | Solid electrolytic capacitor and manufacture thereof | |
JPS63225633A (en) | Electroconductive polymeric composite membrane and its production | |
JP4257293B2 (en) | MOLECULAR ORIENTED POLYMER GEL, MOLECULAR ORIENTED POLYMER CAST FILM USING SELF-ORGANIZING AMPHOPHILIC COMPOUND AS TEMPLATE, AND METHOD FOR PRODUCING THEM | |
CN113737240B (en) | Eutectic-doped water-soluble polythiophene composite film and preparation method and application thereof |