JPH0782185A - Method for producing methanol - Google Patents

Method for producing methanol

Info

Publication number
JPH0782185A
JPH0782185A JP5231818A JP23181893A JPH0782185A JP H0782185 A JPH0782185 A JP H0782185A JP 5231818 A JP5231818 A JP 5231818A JP 23181893 A JP23181893 A JP 23181893A JP H0782185 A JPH0782185 A JP H0782185A
Authority
JP
Japan
Prior art keywords
methanol
gas
reactor
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5231818A
Other languages
Japanese (ja)
Inventor
Osamu Hashimoto
橋本  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP5231818A priority Critical patent/JPH0782185A/en
Publication of JPH0782185A publication Critical patent/JPH0782185A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To provide a method for producing methanol by preliminarily reacting a synthetic gas containing hydrogen, carbon monoxide and carbon dioxide in a solid catalyst reactor, separating the produced crude methanol and subsequently reacting the remaining gas in a fluidized catalyst reactor. CONSTITUTION:A synthetic gas containing hydrogen, carbon monoxide and carbon dioxide gas is preliminarily subjected to a methanol synthesis reaction in a solid catalyst reactor. The obtained reaction gas is cooled to separate the produced crude methanol, and the remaining gas is circulated together with a circulation gas and subjected to a methanol synthesis reaction in a fluidized catalyst reactor. Since the employment of the solid catalyst reactor before the use of the fluidized catalyst reaction system enables an increase in the production of the methanol and a decrease in the amount of the circulation gas, the size of the reactor can be reduced, and the whole installation for the synthesis of the methanol can be enlarged. Since components lowering the synthetic gas in slight amounts, such as sulfur, can almost be removed during their passage in the catalyst layer of the solid catalyst reactor, the life of the catalyst in the fluidized catalyst reactor can be elongated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は大型化に適した合成ガス
からのメタノール製造方法に関し、詳しくは流動触媒反
応器を用いたメタノール製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing methanol from synthesis gas suitable for upsizing, and more particularly to a method for producing methanol using a fluid catalytic reactor.

【0002】[0002]

【従来の技術】メタノールは低公害で輸送が容易な石油
代替原燃料として注目されており、大量供給に対応し、
またスケールメリットによる建設コストの低減を狙っ
て、5000T/D ないし10000T/D以上の能力を持つ超大型装
置の開発が要請されている。従来メタノール合成装置に
おいては固定層触媒が用いられ、反応器としては断熱型
反応器が一般的である。この断熱型反応器は構造が簡単
であるが、メタノール合成反応による発熱により触媒層
の温度が上昇するので、触媒層を幾つかに分割して、各
触媒層間に冷却ガスを導入する方式が採られている。メ
タノール合成反応の発熱量が大きいので、このような断
熱クエンチ式反応器では反応器出口のメタノール濃度を
高くすることが困難であり、合成ガスの反応収率を高め
るために反応ガスを冷却してメタノールを分離した後、
大量の未反応ガスをメタノール合成反応器に戻す必要が
ある。このように断熱クエンチ式反応器では循環ガス量
が多いので循環ガス圧縮動力量が増加すると共に反応器
が大きくなり、その製作限界に達することから超大型装
置には不向きである。また断熱クエンチ式反応器では発
生する反応熱の殆どが供給ガスの加熱に用いられ、僅か
に反応器出口ガスから低レベルの熱が回収されるのみで
あり、反応熱の効率的回収を行うことができない。
2. Description of the Related Art Methanol is attracting attention as an alternative fuel for petroleum that is low in pollution and easy to transport, and can be supplied in large quantities.
Also, in order to reduce construction costs due to economies of scale, the development of ultra-large equipment with a capacity of 5000T / D or 10000T / D or more is required. Conventionally, a fixed bed catalyst is used in a methanol synthesis apparatus, and an adiabatic reactor is generally used as a reactor. Although this adiabatic reactor has a simple structure, the temperature of the catalyst layer rises due to the heat generated by the methanol synthesis reaction, so the method of dividing the catalyst layer into several parts and introducing cooling gas between the catalyst layers is adopted. Has been. Since the heat generation amount of the methanol synthesis reaction is large, it is difficult to increase the methanol concentration at the reactor outlet in such an adiabatic quench type reactor, and the reaction gas must be cooled in order to increase the reaction yield of the synthesis gas. After separating the methanol,
It is necessary to return a large amount of unreacted gas to the methanol synthesis reactor. As described above, in the adiabatic quench type reactor, since the amount of circulating gas is large, the amount of circulating gas compression power increases and the reactor becomes large, and the production limit thereof is reached. Also, most of the reaction heat generated in the adiabatic quench reactor is used to heat the feed gas, and only a low level of heat is recovered from the reactor outlet gas, so that the reaction heat can be recovered efficiently. I can't.

【0003】またメタノール合成装置においては、固定
層触媒を用いた等温型反応器としての管型反応器も用い
られている。管型反応器は反応器の内部に設置された多
数の反応管の管内に触媒を充填してメタノール合成反応
を行い、反応管外にボイラ水を導入して水蒸気の回収を
行うものであるが、反応器の断面に対する触媒の充填割
合が限定されるので反応器の容積が大きくなる。また管
板の製作等の構造上の問題もあることから大型反応器の
製作が困難である。従って管型反応器も超大型装置に不
向きである。
Further, in the methanol synthesizer, a tubular reactor as an isothermal reactor using a fixed bed catalyst is also used. The tubular reactor is a reactor in which a large number of reaction tubes installed inside the reactor are filled with a catalyst to carry out a methanol synthesis reaction, and boiler water is introduced outside the reaction tube to recover steam. Since the filling rate of the catalyst with respect to the cross section of the reactor is limited, the volume of the reactor becomes large. In addition, it is difficult to manufacture a large-sized reactor because there are structural problems such as manufacturing of a tube sheet. Therefore, the tubular reactor is also not suitable for a very large device.

【0004】これに対して流動触媒反応器は触媒層での
伝熱が良く均一な温度分布が得られ、従って副反応生成
物を低く抑えることができ高転化率および高選択率が得
られること、反応熱が高レベルで回収できること等の特
性がある。近年、燃料用メタノールを製造するための超
大型装置への対応として、このような流動触媒反応器の
開発が行われている。たとえば特開昭60-84142号、特開
昭60-122040 号および特開昭60-106534 号にはメタノー
ル合成用流動触媒の製造法が記載されており、特開昭63
-211246 号には流動層触媒を用いてメタノール合成を行
う場合の触媒および反応の条件が記載されている。また
特開平4-282330号には複数個の流動触媒反応器を連続的
に配列し、各段間で反応生成ガスからメタノールを分離
する方法が記載されている。
On the other hand, the fluid catalytic reactor has good heat transfer in the catalyst layer and a uniform temperature distribution, so that side reaction products can be suppressed to be low and high conversion and high selectivity can be obtained. The characteristics are that the heat of reaction can be recovered at a high level. In recent years, such a fluid catalytic reactor has been developed as a response to an ultra-large apparatus for producing methanol for fuel. For example, JP-A-60-84142, JP-A-60-122040, and JP-A-60-106534 describe a method for producing a fluidized catalyst for methanol synthesis.
-211246 describes the catalyst and reaction conditions when carrying out methanol synthesis using a fluidized bed catalyst. Further, JP-A-4-28230 describes a method in which a plurality of fluid catalytic reactors are continuously arranged and methanol is separated from the reaction product gas between each stage.

【0005】[0005]

【発明が解決しようとする課題】流動触媒反応器は上記
の如き特性を有するので大型装置にも好適に用いられる
と見られるが、メタノール合成プロセスに流動触媒反応
器を組込む場合には次のような課題がある。即ち流動触
媒反応器は多数の伝熱管を有する反応器の内部に触媒を
流動化してメタノール合成反応を行うものであるが、製
作上、或いは保守面から反応器への供給ガスが導入され
る分散板の上方に伝熱管を設置させることができない部
分(断熱ゾーン)ができ、ここに高濃度の反応律速成分
(供給ガスは通常水素過剰であるので、一酸化炭素およ
び炭酸ガスが反応律速成分となる)を有するガスがこの
断熱ゾーンに導入されることにより局部的に温度が上昇
し、その部分で副反応生成量が増大したり触媒の劣化が
起き易い。特に前述の特開平4-282330号の方法のように
高濃度の反応律速成分を有する合成原料ガスをそのまま
流動触媒反応器に導入する場合にはこの局部的温度上昇
が大きくなる。
Since the fluidized catalytic reactor has the characteristics as described above, it is considered to be suitable for use in a large-scale apparatus. However, when the fluidized catalytic reactor is incorporated into a methanol synthesis process, it is as follows. There is a problem. That is, the fluid catalytic reactor is a reactor having a large number of heat transfer tubes for fluidizing the catalyst to carry out a methanol synthesis reaction. However, in the production or maintenance, the supply gas to the reactor is introduced and dispersed. There is a part (adiabatic zone) where a heat transfer tube cannot be installed above the plate, and a high concentration reaction rate-controlling component (where the supply gas is usually in excess of hydrogen, carbon monoxide and carbon dioxide gas become the reaction rate-controlling component). By introducing the gas having the formula (1) to this adiabatic zone, the temperature locally rises, and the amount of side reaction produced increases or the catalyst is likely to deteriorate in that part. In particular, when the synthesis raw material gas having a high concentration of the reaction rate-determining component is directly introduced into the fluid catalytic reactor as in the method of the above-mentioned JP-A-4-28230, this local temperature increase becomes large.

【0006】このための対策の一つとしては循環ガス量
を増加して反応器への供給ガス中の反応律速成分濃度を
低下させる方法が考えられるが、これにより反応器が大
きくなり、またガスを循環させる動力が増大するので、
大型化に際し望ましい方法とは言えない。別の対策とし
て流動触媒反応器における発生水蒸気圧を低くして反応
温度を下げる方法が考えられる。しかしながら発生水蒸
気は過熱して動力回収や合成原料ガス製造装置における
プロセス蒸気に有効に用いるために20〜40気圧程度の中
圧蒸気を発生する必要があるので、局部的温度上昇を回
避するために発生水蒸気圧を下げて反応温度を低下させ
ることは得策とは言えない。
As one of the countermeasures for this, a method of increasing the amount of circulating gas to reduce the concentration of the reaction rate-determining component in the gas supplied to the reactor can be considered. Because the power to circulate is increased,
It is not the preferred method for increasing the size. As another measure, it is possible to lower the reaction temperature by lowering the steam pressure generated in the fluid catalytic reactor. However, the generated steam must be heated to generate medium-pressure steam of about 20 to 40 atm in order to effectively use it as process steam in power recovery and synthesis source gas manufacturing equipment, so to avoid local temperature rise. It is not a good idea to lower the generated steam pressure to lower the reaction temperature.

【0007】一方、固定触媒反応器ではガスの入口付近
の触媒層部分で硫黄等の触媒毒となる成分が吸着される
ので大部分の触媒は被毒から免れることになるが、流動
触媒反応器においてはガスと触媒粒子が均一に混合され
るので触媒が一様に被毒される。このため流動触媒反応
器を用いる場合には合成原料ガスのより高度な精製が要
求される。
On the other hand, in the fixed catalyst reactor, most of the catalyst is free from poisoning because the components such as sulfur that become the catalyst poison are adsorbed in the catalyst layer portion near the gas inlet, but the fluid catalytic reactor. In, the gas and the catalyst particles are uniformly mixed, so that the catalyst is uniformly poisoned. For this reason, when a fluidized catalytic reactor is used, a higher degree of purification of the synthetic raw material gas is required.

【0008】[0008]

【課題を解決するための手段】本発明者は上記の如き課
題を有する流動触媒反応器を用いたメタノール製造装置
について鋭意検討した結果、流動触媒反応器を有するメ
タノール合成装置の前に固定触媒層の反応器を設置して
合成ガス中の反応律速成分濃度を低下させれば、流動触
媒反応器を有するメタノール合成装置の循環ガス量を削
減することができ、また流動触媒の活性低下を防止する
ことができて、より大型化に対して有利となることを見
出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have made earnest studies on a methanol production apparatus using a fluidized catalytic reactor having the above-mentioned problems, and as a result, have found that a fixed catalyst layer is provided in front of a methanol synthesis apparatus having a fluidized catalytic reactor. If the reaction rate-determining component concentration in the synthesis gas is reduced by installing the reactor, the amount of circulating gas in the methanol synthesizer having the fluidized catalyst reactor can be reduced, and the activity of the fluidized catalyst can be prevented from lowering. The present invention has been completed, and it has been found that it is possible to increase the size, and the present invention has been achieved.

【0009】即ち本発明は、水素、一酸化炭素および炭
酸ガスを含有する合成原料ガスを予め固定触媒反応器で
メタノール合成反応を行い、得られた反応ガスを冷却し
て粗メタノールを分離した後、循環ガスと共に流動触媒
反応器を用いたメタノール合成装置に導入することを特
徴とするメタノール製造方法である。
That is, according to the present invention, a synthetic raw material gas containing hydrogen, carbon monoxide and carbon dioxide gas is previously subjected to a methanol synthesis reaction in a fixed catalyst reactor, and the obtained reaction gas is cooled to separate crude methanol. The method for producing methanol is characterized in that it is introduced into a methanol synthesizer using a fluidized catalytic reactor together with a circulating gas.

【0010】本発明の水素、一酸化炭素および炭酸ガス
からのメタノール合成反応は次の反応式により行われ
る。 CO + 2H2 → CH3 OH + 21.6 kcal/mol CO2 + H2 → CO + H2 O − 9.8 kcal/
mol CO2 + 3H2 → CH3 OH + H2 O + 11.
8 kcal/mol
The methanol synthesis reaction from hydrogen, carbon monoxide and carbon dioxide of the present invention is carried out according to the following reaction formula. CO + 2H 2 → CH 3 OH + 21.6 kcal / mol CO 2 + H 2 → CO + H 2 O − 9.8 kcal /
mol CO 2 + 3H 2 → CH 3 OH + H 2 O + 11.
8 kcal / mol

【0011】メタノール合成反応には通常、銅系触媒が
用いられ、温度 200〜300 ℃、圧力50〜150 気圧で反応
が行われる。メタノール合成反応のための流動触媒には
通常、シリカ、アルミナ、ジルコニウム等の強固な担体
に触媒成分を担持した触媒が用いられ、触媒の粒子径は
1〜250 μm である。
A copper catalyst is usually used in the methanol synthesis reaction, and the reaction is carried out at a temperature of 200 to 300 ° C. and a pressure of 50 to 150 atm. As a fluidized catalyst for a methanol synthesis reaction, a catalyst in which a catalyst component is supported on a strong carrier such as silica, alumina or zirconium is usually used, and the particle size of the catalyst is
It is 1 to 250 μm.

【0012】本発明において予め設置する固定触媒反応
器は従来の断熱クエンチ式反応器でも管型反応器等の等
温型反応器の何れでも良いが、流動触媒反応器を用いた
メタノール合成装置における循環ガス量を減少させるた
めに、できるだけ固定触媒反応器における反応量が大き
いことが望ましく、このためには等温型反応器を用いる
ことが好ましい。等温型反応器としては管型反応器や固
定触媒層内に伝熱管を設置する方式が用いられ、反応器
内においてボイラ水を加熱して蒸気回収が行われる。
The fixed catalyst reactor installed in advance in the present invention may be either a conventional adiabatic quench type reactor or an isothermal type reactor such as a tubular reactor, but circulation in a methanol synthesis apparatus using a fluid catalytic reactor In order to reduce the amount of gas, it is desirable that the reaction amount in the fixed catalyst reactor is as large as possible, and for this purpose, it is preferable to use an isothermal type reactor. As the isothermal reactor, a tube reactor or a system in which a heat transfer tube is installed in a fixed catalyst layer is used, and boiler water is heated in the reactor to recover steam.

【0013】本発明の効果を高めるために、予め設置す
る固定触媒反応器における出口メタノール濃度をできる
だけ高くすることが望ましい。またメタノール合成反応
は発熱反応であるので、特開昭60-225632 号の如く反応
器の出口側で反応温度が低下するような構造の反応器を
用いると反応平衡上有利となる。該固定触媒反応器から
の反応ガスは、通常固定触媒反応器の供給ガスとの熱交
換を行い、必要に応じて更に熱回収が行われた後、冷却
して凝縮した粗メタノールを分離して流動触媒反応器を
有するメタノール合成装置に送られる。
In order to enhance the effect of the present invention, it is desirable to increase the outlet methanol concentration in the fixed catalyst reactor installed beforehand. Since the methanol synthesis reaction is an exothermic reaction, it is advantageous in terms of reaction equilibrium to use a reactor having a structure in which the reaction temperature is lowered at the outlet side of the reactor as in JP-A-60-225632. The reaction gas from the fixed catalyst reactor is usually heat-exchanged with the feed gas of the fixed catalyst reactor, and further heat recovery is performed if necessary, followed by cooling to separate condensed crude methanol. It is sent to a methanol synthesizer with a fluid catalytic reactor.

【0014】本発明における流動触媒反応器を用いたメ
タノール合成装置で、固定触媒反応器からの反応ガスを
冷却して粗メタノールを分離した後のガスは、従来のメ
タノール合成装置と同様に循環ガスと混合して流動触媒
反応器に導入される。流動触媒反応器においては発生水
蒸気を動力回収や合成原料ガス製造装置でのプロセス蒸
気に有効に用いるために20〜40気圧程度の中圧蒸気を発
生する必要があり、反応温度を 250〜280 ℃程度として
メタノール合成反応が行われる。
In the methanol synthesizing apparatus using the fluidized catalytic reactor according to the present invention, the reaction gas from the fixed catalyst reactor is cooled to separate crude methanol, and the gas is a circulating gas as in the conventional methanol synthesizing apparatus. It is mixed with and introduced into a fluid catalytic reactor. In a fluid catalytic reactor, it is necessary to generate medium pressure steam of about 20-40 atm in order to effectively use the generated steam for power recovery and process steam in the synthetic raw material gas production equipment, and the reaction temperature is 250-280 ° C. To a degree, the methanol synthesis reaction is performed.

【0015】本発明の方法では、合成原料ガスを予め固
定触媒反応器でメタノール合成反応を行なうことによ
り、流動触媒反応器の分散板からのガス供給部における
局部的な温度上昇が回避され、また循環ガス量を減少す
ることができ循環機の所要動力が低減する。流動触媒反
応器を有するメタノール合成装置における循環ガス量は
合成ガスの組成等により異なるが、固定触媒反応器から
の反応ガスを冷却して粗メタノールを分離することによ
りガス量が減少し、また固定触媒反応器での反応により
合成ガス中の反応律速成分濃度が低下することから、循
環ガス量を著しく減少できる。即ち原料合成ガスに対す
る循環ガス量の比率は従来装置では4〜6程度である
が、本願の方法ではこの比率を3以下、好ましくは 1.5
〜2.5 程度とすることができ、循環ガス量が従来装置に
比べて著しく削減されることから、循環動力が減少する
と共に、反応器を小さくすることができるので、大型化
を図る上でより有利となる。
In the method of the present invention, the synthesis raw material gas is previously subjected to the methanol synthesis reaction in the fixed catalyst reactor, so that the local temperature rise in the gas supply section from the dispersion plate of the fluid catalytic reactor is avoided, and The amount of circulating gas can be reduced and the power required for the circulator can be reduced. The amount of circulating gas in a methanol synthesizer with a fluid catalytic reactor varies depending on the composition of the synthetic gas, etc., but the amount of gas is reduced and fixed by cooling the reaction gas from the fixed catalytic reactor to separate crude methanol. Since the reaction rate-determining component concentration in the synthesis gas decreases due to the reaction in the catalytic reactor, the circulating gas amount can be significantly reduced. That is, the ratio of the circulating gas amount to the raw material synthesis gas is about 4 to 6 in the conventional apparatus, but in the method of the present application, this ratio is 3 or less, preferably 1.5.
Since it can be set to about 2.5, and the amount of circulating gas is significantly reduced compared to the conventional device, the circulation power is reduced and the reactor can be made smaller, which is more advantageous in increasing the size. Becomes

【0016】また本発明は別の効果として、固定触媒反
応器において合成原料ガスを予め反応させることによ
り、合成原料ガス中に微量含まれる硫黄等のメタノール
合成触媒の活性を低下させる成分が固定触媒反応器の入
口付近の触媒層を通過する間に殆ど吸着除去されるの
で、流動触媒反応器における触媒の活性低下が減少し、
触媒寿命が長期化することが挙げられる。メタノール合
成触媒に通常用いられる銅系触媒の活性は硫黄等の影響
を受け易いので、高価な流動触媒の寿命が増大すること
のメリットが大きい。
As another effect of the present invention, a component that reduces the activity of a methanol synthesis catalyst such as sulfur contained in a small amount in the synthesis raw material gas by reacting the synthesis raw material gas in advance in the fixed catalyst reactor is a fixed catalyst. Almost all of it is adsorbed and removed while passing through the catalyst layer near the inlet of the reactor, which reduces the decrease in the activity of the catalyst in the fluid catalytic reactor.
It is possible to prolong the catalyst life. Since the activity of a copper-based catalyst usually used for a methanol synthesis catalyst is easily influenced by sulfur and the like, there is a great merit that the life of an expensive fluidized catalyst is extended.

【0017】次に図面を用いて本発明を具体的に説明す
る。図1は本発明の方法によるメタノール合成装置の系
統図の一例を示す。水素、一酸化炭素および炭酸ガスを
含有する合成原料ガスは流路1 より導入され、合成ガス
原料予熱器2 で予熱された後、固定触媒反応器3 に導入
される。固定触媒反応器3 は等温型反応器となってお
り、流路4 から水蒸気が回収される。固定触媒反応器3
からの反応ガスは、流路5 から流路6 の間で合成原料ガ
スの予熱等の熱回収が行われた後、メタノール凝縮器
(I)7で冷却し、凝縮した粗メタノールはメタノール分離
器(I)8において分離され、流路9 から蒸留精製工程に送
られる。
Next, the present invention will be specifically described with reference to the drawings. FIG. 1 shows an example of a system diagram of a methanol synthesizer according to the method of the present invention. A synthesis raw material gas containing hydrogen, carbon monoxide and carbon dioxide is introduced from a flow path 1, preheated by a synthesis gas raw material preheater 2, and then introduced into a fixed catalyst reactor 3. The fixed catalyst reactor 3 is an isothermal reactor, and water vapor is recovered from the flow path 4. Fixed catalytic reactor 3
The reaction gas from the methanol condenser after the heat recovery such as preheating of the synthetic raw material gas is performed between the channel 5 and the channel 6.
The crude methanol that has been cooled and condensed in (I) 7 is separated in the methanol separator (I) 8 and is sent from the flow path 9 to the distillation and purification step.

【0018】一方、メタノール分離器(I)8において分離
された未反応ガスは流路10を経て流動触媒反応器を有す
るメタノール合成装置に送られ、流路11からの該装置の
循環ガスと共に合成ガス循環機12に導入され、昇圧後、
合成ガス予熱器13で予熱された後、流動触媒反応器14に
供給される。流動触媒反応器14の内部には分散板15と伝
熱管16及びサイクロン17が設置されており、流動触媒反
応器への供給ガスは分散板15により流動触媒層18に均一
に導入される。流動触媒反応器14は流動触媒層内に伝熱
管が設置され、流路19から水蒸気が回収される。流動触
媒反応器の上部はフリーボード部20となっており、反応
ガス中の流動触媒はこのフリーボード部とサイクロン17
により分離される。流動触媒反応器14からの反応ガスは
流路21から流路22の間で合成ガスの予熱等の熱回収が行
われた後、メタノール凝縮器(II)23で冷却され、凝縮し
た粗メタノールはメタノール分離器(II)24において分離
され、流路25から蒸留精製工程に送られる。一方、粗メ
タノールが分離された未反応ガスは、不活性ガス成分の
蓄積を抑えるために、一部が流路26からパージされ、残
りの未反応ガスは流路11により合成ガス循環機に戻され
る。
On the other hand, the unreacted gas separated in the methanol separator (I) 8 is sent to the methanol synthesizer having a fluid catalytic reactor through the flow path 10 and is synthesized from the flow path 11 together with the circulating gas of the apparatus. Introduced into the gas circulator 12, after boosting pressure,
After being preheated by the syngas preheater 13, it is supplied to the fluid catalytic reactor 14. A dispersion plate 15, a heat transfer tube 16 and a cyclone 17 are installed inside the fluid catalytic reactor 14, and the supply gas to the fluid catalytic reactor is uniformly introduced into the fluid catalytic layer 18 by the dispersion plate 15. In the fluidized catalytic reactor 14, a heat transfer tube is installed in the fluidized catalyst layer, and water vapor is recovered from the flow path 19. The upper part of the fluid catalytic reactor is a freeboard section 20, and the fluid catalyst in the reaction gas is the freeboard section and the cyclone 17.
Separated by. The reaction gas from the fluid catalytic reactor 14 is subjected to heat recovery such as preheating of the synthesis gas between the flow paths 21 and 22 and then cooled by the methanol condenser (II) 23, and the condensed crude methanol is It is separated in the methanol separator (II) 24 and sent to the distillation purification step from the flow path 25. On the other hand, the unreacted gas from which the crude methanol has been separated is partially purged from the flow path 26 in order to suppress the accumulation of the inert gas component, and the remaining unreacted gas is returned to the synthesis gas circulator through the flow path 11. Be done.

【0019】[0019]

【実施例】図1において、先ず特開昭60-225632 号に示
された固定触媒層の二重管型反応器 (反応器内径 1.6m
、反応管外管内径75mm、同内管外径19mm、反応管長さ1
2m、反応管数 200本) に合成原料ガス 4133.6 kg-mol/h
を圧力 85 kg/cm2 G、 160℃で導入してメタノール合成
反応を行い、反応ガスを冷却して凝縮した粗メタノール
を分離した後、流動触媒反応器 (反応器内径 2.27m、高
さ20m 、 4インチの伝熱管90本設置) を有するメタノー
ル合成装置に導入してメタノール合成反応を行った。
EXAMPLE In FIG. 1, first, a double-tube reactor with a fixed catalyst layer (reactor inner diameter 1.6 m, as disclosed in JP-A-60-225632) was used.
, Reaction tube outer tube inner diameter 75mm, inner tube outer diameter 19mm, reaction tube length 1
2m, 200 reaction tubes) 4133.6 kg-mol / h
Was introduced at a pressure of 85 kg / cm 2 G and 160 ° C to carry out a methanol synthesis reaction, and after cooling the reaction gas to separate condensed crude methanol, a fluid catalytic reactor (reactor inner diameter 2.27 m, height 20 m , 90-inch 4-inch heat transfer tubes were installed) to carry out the methanol synthesis reaction.

【0020】流動触媒反応器には平均粒子径60μm のCu
-Zn-Zr系流動触媒を充填し、ガス循環量を 7608.0 kg-m
ol/h(合成原料ガスに対する循環比=1.85) として供給
ガス10425.8 kg-mol/h を圧力 80 kg/cm2 G、 200℃で
導入してメタノール合成反応を行った。なお流動触媒層
の最高温度は 269℃であり、ガス循環機の所要動力は70
0 kwであった。また固定触媒反応器および流動触媒反応
器において圧力 33 kg/cm2 Gの飽和水蒸気を各々13.0 T
/H、11.6 T/H、合計 24.6 T/H を回収した。図1の主要
流路におけるガス流量、温度、圧力を表1に示す。両反
応器による粗メタノールの合計生産量は 972.6 kg-mol/
h(747.1 T/D)であった。従ってメタノール生産量当たり
の水蒸気回収量は 0.79 T/T-メタノールであり、ガス循
環機動力は 22.5 KWH/T-メタノールである。また粗メタ
ノール中には C2 以上の高級アルコールが約380ppm、 C
5 以上のパラフィン類が約 42ppm含まれていた。なお表
中の全流量及び各成分の流量は kg-mol/h 、温度は℃、
圧力は kg/cm2 G であり、CH3 OHはこれらの副生成物を
含む数値である。本条件でメタノール合成運転を3ケ月
間継続したが、触媒の活性低下は殆ど見られなかった。
また流動触媒反応器から抜き出した触媒中に含まれる硫
黄分は 18ppmであり、これは使用する前とほぼ同じ値で
あった。
The fluidized catalytic reactor contains Cu with an average particle size of 60 μm.
-Filled with Zn-Zr fluidized catalyst and gas circulation rate of 7608.0 kg-m
The methanol synthesis reaction was carried out by introducing the feed gas 10425.8 kg-mol / h at a pressure of 80 kg / cm 2 G and 200 ° C. as ol / h (circulation ratio to the synthetic raw material gas = 1.85). The maximum temperature of the fluidized catalyst bed is 269 ° C, and the required power of the gas circulator is 70
It was 0 kw. In addition, saturated steam with a pressure of 33 kg / cm 2 G was applied to the fixed catalyst reactor and the fluidized catalyst reactor at 13.0 T each.
/ H, 11.6 T / H, a total of 24.6 T / H were collected. Table 1 shows the gas flow rate, temperature, and pressure in the main flow paths of FIG. The total amount of crude methanol produced by both reactors is 972.6 kg-mol /
It was h (747.1 T / D). Therefore, the steam recovery amount per methanol production amount is 0.79 T / T-methanol, and the gas circulation power is 22.5 KWH / T-methanol. In the crude methanol, approximately 380 ppm of higher alcohols with C 2 or more,
About 42 ppm of paraffins of 5 or more was contained. The total flow rate and the flow rate of each component in the table are kg-mol / h, the temperature is ° C,
The pressure is kg / cm 2 G, and CH 3 OH is a value including these by-products. Under these conditions, the methanol synthesis operation was continued for 3 months, but the catalyst activity was hardly reduced.
The sulfur content in the catalyst extracted from the fluid catalytic reactor was 18 ppm, which was almost the same value as before use.

【0021】[0021]

【表1】 流路 1 5 9 10 11 21 25 26 27 全流量 4133.6 3308.0 490.2 2817.8 7608.0 9298.1 881.9 808.2 10425.8 CO2 403.0 355.6 14.6 341.0 364.5 408.8 5.6 38.7 705.5 CO 651.3 286.5 1.9 284.6 160.2 177.7 0.5 17.0 444.8 H2 2953.5 2080.4 3.3 2077.1 6107.9 6760.5 3.7 648.9 8185.0 CH4 102.1 102.1 0.9 101.2 931.9 1033.1 2.2 99.0 1033.1 N2 1.2 1.2 0.0 1.2 11.5 12.7 0.0 1.2 12.7 H2 O 21.9 70.0 69.4 0.6 3.3 301.1 297.4 0.4 3.9 CH3 OH 0.0 412.2 400.1 12.1 28.7 604.2 572.5 3.0 40.8 温度 40.0 231.6 40.0 40.0 40.0 267.2 40.0 40.0 47.6 圧力 86.5 82.0 79.5 79.5 77.5 80.0 77.5 77.5 83.0 [Table 1] Flow path 1 5 9 10 11 21 25 26 27 Total flow rate 4133.6 3308.0 490.2 2817.8 7608.0 9298.1 881.9 808.2 10425.8 CO 2 403.0 355.6 14.6 341.0 364.5 408.8 5.6 38.7 705.5 CO 651.3 286.5 1.9 284.6 160.2 177.7 0.5 17.0 444.8 H 2 2953.5 2080.4 3.3 2077.1 6107.9 6760.5 3.7 648.9 8185.0 CH 4 102.1 102.1 0.9 101.2 931.9 1033.1 2.2 99.0 1033.1 N 2 1.2 1.2 0.0 1.2 11.5 12.7 0.0 1.2 12.7 H 2 O 21.9 70.0 69.4 0.6 3.3 301.1 297.4 0.4 3.9 CH 3 OH 0.0 412.2 400.1 12.1 28.7 604.2 572.5 3.0 40.8 Temperature 40.0 231.6 40.0 40.0 40.0 267.2 40.0 40.0 47.6 Pressure 86.5 82.0 79.5 79.5 77.5 80.0 77.5 77.5 83.0

【0022】比較例1 図1における固定触媒反応器ループ(機器およびフロー
No.2〜9)を用いずに、実施例1と同様の組成の合成ガス
を直接に流路10から合成ガス循環機12の吸入側に導入し
て実施例1と同様の流動触媒反応器を用いてメタノール
合成反応を行った。流動触媒反応器の反応条件は実施例
1と同様に圧力 80 kg/cm2 G、 200℃で導入し、圧力 3
3 kg/cm2 Gの飽和水蒸気を発生させた。合成ガスを実施
例1における流動層反応器と同様に 2817.8 kg-mol/h導
入し、ガス循環量を 7608.0 kg-mol/h (ガス循環比=2.
7) とした場合には、流動触媒層下部に最高 285℃の温
度上昇部が見られ、副反応生成物が増加し C2 以上の高
級アルコールが 830ppm 、 C5 以上のパラフィン 88ppm
となった。このため流動触媒層下部の断熱ゾーンでの局
部的温度上昇を避け、実施例1とほぼ同様の触媒層温度
分布 (最高温度 269℃) となるように、合成塔入口ガス
量を 10425.8 kg-mol/h のまま、合成原料ガス量を 217
2kg-mol/h まで減らし、ガス循環比を 3.8とした。その
結果、メタノール生産量は 533.1kg-mol/h(410T/D)であ
り、ガス循環機動力は702 kw、圧力 33 kg/cm2 Gの飽和
水蒸気の発生量は12T/Hであった。従ってメタノール生
産量当たりの水蒸気回収量は 0.70 T/T-メタノールであ
り、ガス循環機動力は 41.1 KWH/T-メタノールである。
主要流路におけるガス流量、温度及び圧力を表2に示
す。なおこの場合の副反応生成物量は実施例と同程度で
あったが、3ケ月間運転を継続後に抜き出した触媒中に
含まれる硫黄分は 104ppm であった。これは合成ガス中
の微量の硫黄等の触媒毒成分が流動触媒反応器に導入さ
れたためである。
Comparative Example 1 Fixed catalyst reactor loop (equipment and flow in FIG. 1
No. 2 to 9) was used, and a synthesis gas having the same composition as in Example 1 was directly introduced into the intake side of the synthesis gas circulator 12 from the flow path 10 to obtain a fluid catalytic reactor similar to that in Example 1. Was used to carry out a methanol synthesis reaction. The reaction conditions of the fluid catalytic reactor were the same as in Example 1 except that the pressure was 80 kg / cm 2 G and the temperature was 200 ° C.
Saturated steam of 3 kg / cm 2 G was generated. Syngas was introduced at 2817.8 kg-mol / h as in the fluidized bed reactor in Example 1, and the gas circulation rate was 7608.0 kg-mol / h (gas circulation ratio = 2.
In the case of 7), a temperature rising part up to 285 ° C was observed at the bottom of the fluidized catalyst bed, side reaction products increased, and 830 ppm of higher alcohols with C 2 or more and 88 ppm of paraffins with C 5 or more.
Became. Therefore, in order to avoid a local temperature rise in the adiabatic zone below the fluidized catalyst bed and to obtain a catalyst bed temperature distribution (maximum temperature 269 ° C.) similar to that in Example 1, the synthesis tower inlet gas amount was 10425.8 kg-mol. / h, the synthesis raw material gas amount is changed to 217
It was reduced to 2kg-mol / h and the gas circulation ratio was set to 3.8. As a result, the methanol production was 533.1 kg-mol / h (410 T / D), the gas circulation power was 702 kw, and the amount of saturated steam generated at a pressure of 33 kg / cm 2 G was 12 T / H. Therefore, the steam recovery amount per methanol production amount is 0.70 T / T-methanol and the gas circulation power is 41.1 KWH / T-methanol.
Table 2 shows the gas flow rate, temperature and pressure in the main flow paths. The amount of side reaction products in this case was about the same as in Example, but the sulfur content contained in the catalyst extracted after continuing the operation for 3 months was 104 ppm. This is because a trace amount of catalyst poison components such as sulfur in the syngas were introduced into the fluid catalytic reactor.

【0023】[0023]

【表2】 流路 10 11 21 25 26 27 全流量(kg-mol/h) 2172.0 8253.8 9855.8 753.8 348.2 10425.8 CO2 211.8 230.1 248.2 3.4 9.7 441.9 CO 342.5 142.5 148.8 0.3 6.0 485.0 H2 1551.9 6628.3 6911.4 3.5 279.6 8180.2 CH4 53.6 1201.8 1255.4 2.9 50.7 1255.4 N2 0.7 15.1 15.8 0.0 0.7 15.8 H2 O 11.5 3.2 213.7 210.6 0.1 14.7 CH3 OH 0.0 32.8 567.3 533.1 1.4 32.8 温度 40.0 40.0 265.2 40.0 40.0 46.9 圧力 79.5 77.5 80.0 77.5 77.5 83.0 [Table 2] Flow path 10 11 21 25 26 27 Total flow rate (kg-mol / h) 2172.0 8253.8 9855.8 753.8 348.2 10425.8 CO 2 211.8 230.1 248.2 3.4 9.7 441.9 CO 342.5 142.5 148.8 0.3 6.0 485.0 H 2 1551.9 6628.3 6911.4 3.5 279.6 8180.2 CH 4 53.6 1201.8 1255.4 2.9 50.7 1255.4 N 2 0.7 15.1 15.8 0.0 0.7 15.8 H 2 O 11.5 3.2 213.7 210.6 0.1 14.7 CH 3 OH 0.0 32.8 567.3 533.1 1.4 32.8 Temperature 40.0 40.0 265.2 40.0 40.0 46.9 Pressure 79.5 77.5 80.0 77.5 77.5 83.0

【発明の効果】上記の実施例では、本発明の方法で流動
触媒反応系の前に固定触媒反応器を設置することによ
り、メタノール生産量が82%(747/410=1.82) 増加すると
共に、メタノール生産量当たりガス循環機動力は約45%
(22.5/41.1=0.547)減少し、水蒸気回収量は13%(0.79/0.
70=1.13) 増加している。従って本発明のメタノール製
造法は、大型化に極めて有利であると共にエネルギー効
率を著しく向上することが分かる。即ち本発明の方法で
は、メタノール合成装置における循環ガス量を減らすこ
とができるので反応器の径を小さくすることができ、反
応器の製作コストおよび循環ガスの動力費が削減されエ
ネルギー効率を高めることができると共に、メタノール
合成装置をより大型化することができるようになる。
In the above embodiment, by installing the fixed catalytic reactor in front of the fluid catalytic reaction system in the method of the present invention, the methanol production amount is increased by 82% (747/410 = 1.82), and Gas circulation power is about 45% per methanol production
(22.5 / 41.1 = 0.547) decreased, and the amount of water vapor recovered was 13% (0.79 / 0.
70 = 1.13) It is increasing. Therefore, it can be seen that the methanol production method of the present invention is extremely advantageous for increasing the size and significantly improves the energy efficiency. That is, in the method of the present invention, the amount of the circulating gas in the methanol synthesizer can be reduced, so that the diameter of the reactor can be reduced, the manufacturing cost of the reactor and the power cost of the circulating gas can be reduced, and the energy efficiency can be improved. In addition, the methanol synthesizer can be made larger.

【0024】また本発明の方法により、流動触媒反応器
の供給ガス中の反応成分(CO 、CO2) の濃度が低下する
ので、流動触媒反応器における局部的な温度上昇が回避
され、副反応生成量の増大や触媒劣化を防止できる。更
に本発明の方法により合成ガス中に微量含まれる硫黄等
のメタノール合成触媒の活性を低下させる成分が固定触
媒反応器の触媒層を通過する間に殆ど除去されるので、
流動触媒反応器の触媒の活性低下が減少し、触媒寿命が
増大する。従って本発明は流動触媒反応器を用いる大型
メタノール製造装置において極めて有用な方法である。
Further, according to the method of the present invention, the concentration of the reaction components (CO, CO 2 ) in the feed gas of the fluid catalytic reactor is lowered, so that the local temperature rise in the fluid catalytic reactor is avoided and the side reaction is avoided. It is possible to prevent an increase in production amount and catalyst deterioration. Further, according to the method of the present invention, components that reduce the activity of the methanol synthesis catalyst, such as sulfur, which are contained in a small amount in the synthesis gas, are almost removed while passing through the catalyst layer of the fixed catalyst reactor.
Decreased catalyst activity reduction in fluidized catalytic reactors and increased catalyst life. Therefore, the present invention is a very useful method in a large-scale methanol production apparatus using a fluid catalytic reactor.

【図面の簡単な説明】[Brief description of drawings]

【図1】 系統図 図1は本発明によるメタノール合成装置の系統図の一例
を示すものである。
FIG. 1 is a system diagram showing an example of a system diagram of a methanol synthesis apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 合成原料ガス 2 合成原料ガス予熱器 3 固定触媒反応器 7 メタノール凝縮器(I) 8 メタノール分離器(I) 12 合成ガス循環機 13 合成ガス予熱器 14 流動触媒反応器 23 メタノール凝縮器(II) 24 メタノール分離器(II) 1 Synthetic raw material gas 2 Synthetic raw material gas preheater 3 Fixed catalytic reactor 7 Methanol condenser (I) 8 Methanol separator (I) 12 Synthetic gas circulator 13 Syngas preheater 14 Flow catalytic reactor 23 Methanol condenser (II ) 24 Methanol separator (II)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水素、一酸化炭素および炭酸ガスを含有す
る合成ガスを予め固定触媒反応器でメタノール合成反応
を行い、得られた反応ガスを冷却して粗メタノールを分
離した後、循環ガスと共に流動触媒反応器を用いたメタ
ノール合成装置に導入することを特徴とするメタノール
製造方法
1. A synthesis gas containing hydrogen, carbon monoxide and carbon dioxide is previously subjected to a methanol synthesis reaction in a fixed catalyst reactor, and the obtained reaction gas is cooled to separate crude methanol, and then the reaction gas is mixed with a circulating gas. A method for producing methanol, which is characterized in that it is introduced into a methanol synthesizer using a fluidized catalytic reactor.
【請求項2】固定触媒反応器に供給される合成原料ガス
量に対する流動触媒反応器に供給される循環ガス量の比
率が 3.0以下である請求項1のメタノール製造方法
2. The method for producing methanol according to claim 1, wherein the ratio of the amount of circulating gas supplied to the fluidized catalytic reactor to the amount of synthetic raw material gas supplied to the fixed catalytic reactor is 3.0 or less.
JP5231818A 1993-09-17 1993-09-17 Method for producing methanol Pending JPH0782185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5231818A JPH0782185A (en) 1993-09-17 1993-09-17 Method for producing methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5231818A JPH0782185A (en) 1993-09-17 1993-09-17 Method for producing methanol

Publications (1)

Publication Number Publication Date
JPH0782185A true JPH0782185A (en) 1995-03-28

Family

ID=16929504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5231818A Pending JPH0782185A (en) 1993-09-17 1993-09-17 Method for producing methanol

Country Status (1)

Country Link
JP (1) JPH0782185A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508506A (en) * 1999-09-07 2003-03-04 ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and equipment for producing methanol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508506A (en) * 1999-09-07 2003-03-04 ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and equipment for producing methanol
JP4837213B2 (en) * 1999-09-07 2011-12-14 ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and equipment for producing methanol

Similar Documents

Publication Publication Date Title
CN101959586B (en) Reactor for the preparation of methanol
US4865624A (en) Method for steam reforming methanol and a system therefor
CA1160817A (en) Chemical process and apparatus therefor
US4525482A (en) Process for producing a gas containing methane
CN1305821C (en) Methanol synthesis
US6300380B1 (en) Production process for methanol
EP0080270A2 (en) Synthesis process and reactor
JP2001517645A5 (en)
EP0483919A2 (en) Process for the production of methanol
GB2560784A (en) Method for revamping a methanol process
US4767791A (en) Process for synthesizing methanol with an optimal temperature profile using a concentric pipe reactor
US7232848B2 (en) Gas agitated multiphase reactor with stationary catalyst solid phase
US4731387A (en) Process for carrying out a chemical equilibrium reaction
JP2004315413A (en) Reactor for methanol synthesis and method for producing methanol
JPS6124372B2 (en)
JPH045487B2 (en)
WO1988004199A1 (en) Fluidized bed
JPH0782185A (en) Method for producing methanol
JP3924039B2 (en) Reactor
JP3428599B2 (en) Reactor for methanol reforming
JP2005193172A (en) Fluidized reaction method and method for producing acrylonitrile
CN213824710U (en) Acetylene method chloroethylene synthesis reactor
JP3924040B2 (en) Reactor
JPH0673625B2 (en) Reactor
JPH1171308A (en) Plant for synthesizing oxygen-containing hydrocarbon and synthesis thereof