JP3924039B2 - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP3924039B2
JP3924039B2 JP08355497A JP8355497A JP3924039B2 JP 3924039 B2 JP3924039 B2 JP 3924039B2 JP 08355497 A JP08355497 A JP 08355497A JP 8355497 A JP8355497 A JP 8355497A JP 3924039 B2 JP3924039 B2 JP 3924039B2
Authority
JP
Japan
Prior art keywords
tube
reactor
gas
reaction
unreacted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08355497A
Other languages
Japanese (ja)
Other versions
JPH10277382A (en
Inventor
一登 小林
宏 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP08355497A priority Critical patent/JP3924039B2/en
Publication of JPH10277382A publication Critical patent/JPH10277382A/en
Application granted granted Critical
Publication of JP3924039B2 publication Critical patent/JP3924039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/065Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • B01J2219/00213Fixed parameter value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00229Control algorithm taking actions modifying the operating conditions of the reaction system
    • B01J2219/00231Control algorithm taking actions modifying the operating conditions of the reaction system at the reactor inlet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素と一酸化炭素(および二酸化炭素)ガスを用いたメタノール合成の如く、固体触媒の存在下で複数の元素から成る混合ガスの発熱反応を行わす目的で使用される改善された反応器に関する。
【0002】
【従来の技術】
固体触媒の存在下で発熱反応を行わす目的で使用される反応器においては、運転中の発熱反応によるガス温度の上昇を制御する手段・構造に種々のものが提案されている。このような提案は、図5の例、例えばメタノール合成反応のメタノール平衡濃度に対する温度の効果が明らかな如く、温度の上昇とともにメタノール平衡濃度が低下し、工業的プラントの経済性が損なわれることを考慮してなされたものである。
【0003】
すなわち、図5は、化学工学VOL.46(1982)NO.9507頁“野沢”「メタノール」より引用したものであって、CO+2H2 →CH3 OH反応のCOとH2 の比を4とした計算値である。ただし、触媒を使用しても反応速度は有限であり、反応速度は当然ながら温度低下とともに小さくなるので、工業的には触媒性能を考慮したある適性温度範囲で運転することが好ましい。本発明者らは鋼系触媒を用いて水素、一酸化炭素、二酸化炭素を有意物質とした混合ガスからメタノールを合成する場合には、220〜280℃が適正であると考えており、またガスの圧力(全圧力)としては、50〜300kg/cm2 ・Gが経済的な適性圧力範囲であると考えているが、これは将来の触媒の改良等により変わり得るものであって特に拘束されない。
【0004】
本発明者らは、この温度調整の方法として二重管式発熱反応器を先に提案(特公平3−63425号公報及び特公平4−5487号公報)した。
特公平4−5487号公報を例にしてこの発明を説明する。この発明では図6に示すように反応管51を二重管とし、外管52と内管53との空間に円環柱状に粒状触媒54を充填して触媒層厚さを小さくするとともに、この触媒層の外管52の外表面では冷却水による冷却を行わせ、また当該触媒層の内管53の内表面では未反応供給ガスAによる冷却を行わせている。これにより本発明者らは、触媒層厚さ方向のガス温度を狭い温度範囲の適正条件に維持し、同時に未反応供給ガスAの予熱をし得るようにすることが、反応温度の制御に有利であり、かつ未反応供給ガス予熱用交換器を不要にし得る効果があること、並びに中心管を上昇して予熱された未反応供給ガスに更に冷たい未反応供給ガスを混合することにより、触媒層の入口温度を下げることができ、ひいては触媒層の温度を適宜調整できることを知った。
【0005】
図7を用いてこのような従来の技術を更に詳しく説明する。図7で示す反応器の構造は従来技術の一例である。このような反応器61の反応管62は、上下両端を2つの管板63にそれぞれ取付けられており、反応器61の中央には、内管64が設置され、反応管62と内管64との間の環状空間には、粒状触媒が充填された環状触媒層65が形成されている。
前記反応器61では、底部に設けられている未反応供給ガスノズル66より供給された未反応供給ガス67が分岐管68,69などを経て内管64の下部より流通し、上部に設置された混合室70に導かれる。また、冷たいもう一つの未反応ガス71は、反応器61の頂部に設けられたノズル72より混合室70へ導かれ、内管64を経た未反応供給ガス67と混合されて、環状触媒層65へ導かれる。
【0006】
この環状触媒層65を経たガスは触媒層出口73より下部の集合室74に流通して、反応器61の出口ノズル75を経て反応ガス76となり、反応器61の外部に流出する。
反応管62を管外より冷却する沸騰液77は、側部の入口ノズル78より流入し、側部の出口ノズル79を経て反応器61より流出するようになっている。
【0007】
【発明が解決しようとする課題】
しかしながら、上述した従来の反応器61では、下部の集合室74に分岐管68,69などが設けられいるので、構造が複雑となりかつ重量が嵩む上に、下部の集合室74における触媒抜き出し作業が面倒であった。
【0008】
本発明者らは、先に発明した前記反応器の構造に更に改良を加え、前記従来の反応器の下部集合室における触媒抜き出し作業を容易にし、更に、分岐管を不要とするとともに、全体の軽量化を可能にする構造を有する反応器を提供することにある。
【0009】
【課題を解決するための手段】
前記従来技術の有する課題を解決するため、本発明に係る反応器の具体的構造は、
(1)内部に複数本の反応管を配設し、該反応管のほぼ中央に下端を閉じた内管を設置するとともに、該内管のほぼ中央に中心管を配置し、前記反応管と前記内管とで囲まれた環状空間を粒状触媒充填部として構成する一方、前記中心管を上部に設けられたガス供給室に連結し、該ガス供給室へ供給された未反応供給ガスが前記中心管の上方より下方へ流通して、前記中心管の下端出口より前記内管内へ流通し、更に前記未反応供給ガスが前記内管と前記中心管とで囲まれた環状流路を上方へ流れ、かつ前記粒状触媒充填部においては、上方より下方へ流れるように構成した反応器であって、前記内管のほぼ中央に位置する中心管の下端位置が、前記反応管の上端より、反応管長さの1/10から2/3の距離にあり、前記中心管の下端位置が前記反応管の下端位置よりも上方に位置すべく配設されている。
(2)又は、前記複数本の反応のほぼ中央に配置され、かつ下端を閉じた前記内管は、その下端が前記反応管の下端よりも上方に位置している。
(3)又は、前記内管から流出した未反応供給ガスよりも低い温度の冷たい未反応供給ガスを前記粒状触媒充填部の上端へ直接供給できる導入部が設けられている。
【0010】
【発明の実施の形態】
以下、本発明を図示の実施の形態に基づいて詳細に説明する。
【0011】
図1及び図2は、本発明に係る反応器の実施の形態を示している。ここで、図1は本反応器の構造を示す縦断面図、図2は図1のA−A線断面図である。
本反応器1は、外形がシェル状のケーシング2で形成されており、該ケーシング2の内部には反応管3が配設されている。この反応管3は、両端部が上下管板4a,4bにそれぞれ取付けられ、当該反応管3の中央には下端がプラグ5で塞がれた複数本の内管6が設置されている。しかも、これら内管6の中央には、中心管7が同心円状に配置されており、内管6と中心管7との間には環状流路8が形成されている。
【0012】
中心管7の下端は開放され、その長さは内管6よりも短く形成されており、下端の位置が内管6の下端よりも上方に位置すべく配設されている。また、中心管7の上端は取付管9を介して水平方向に延びる隔壁10に接続されている。この隔壁10は上部管板4aの上方に配設されており、ケーシング2の上部空間は、当該隔壁10によって未反応ガス供給室11と未反応ガス集合室12とに画成されている。そして取付管9の上端は、上方に位置する未反応ガス供給室11と連通している。
【0013】
前記反応管3と内管6とで囲まれた環状空間には、粒状触媒が充填された粒状触媒充填部の環状触媒層13が形成されている。未反応供給ガス14は、図1中の矢印Bで示す如く、ケーシング2の頂部に設けた未反応供給ガスノズル15より未反応ガス供給室11へ供給され、隔壁10に取付けられた取付管9を経て中心管7の上端入口より流通し、下端出口より流出して内管6内へ流入する。しかる後、中心管7と内管6との間の環状流路8を上方へ流れ、未反応ガス集合室12を経由して環状触媒層13へ導かれる。
【0014】
前記環状触媒層13に導かれた未反応供給ガス14は、該環状触媒層13内を上方より下方へ向かって流れ、流下しながらメタノールが合成されるとともに、触媒層出口16より下部集合室17に流入し、該ケーシング2の底部に設けた反応器出口ノズル18より反応ガス19となって反応器1から外部へ流出することになる。下部集合室17は、反応管3の下方であって、ケーシング2の下部に設けられている。
なお、反応管3を管外より冷却する沸騰液20は、ケーシング2の側部に設けた入口ノズル21より流入し、矢印Cで示す如く、当該入口ノズル21と反対側のケーシング2の側部に設けた出口ノズル22を経て反応器1から流出するようになっている。
【0015】
ところで、前記中心管7の下端位置は、前記反応管3の上端より、該反応管長さの1/10から2/3の距離に位置させるのが好ましい。この距離は、中心管7と環状流路8を未反応ガス14が通過するときの圧力損失の上昇をできるだけ抑制し、かつ環状触媒層13の内側からの冷却効果が期待できる値である。
【0016】
図3は本発明に係る反応器の他の実施の形態を示しており、前記実施の形態に比して内管の長さを短くした場合の実施態様である。この実施の形態では、内管6aの下端がプラグ5で塞がれ、環状触媒層13内での高さ位置が、反応管3の下端よりも上方に配置されている。このため、内管6aの下端位置の下方には、触媒粒子が充填された円筒触媒層23が形成されている。その他の構成は前記実施の形態と同様である。
図3において、未反応供給ガス14は矢印Bで示す如く、取付管9を経て中心管7を流下し、下端より内管6a内へ流入した後、中心管7と内管6aとの間の環状流路8を上方へ流れ、未反応ガス集合室12を経由して環状触媒層13へ導かれる。そして、環状触媒層13へ導かれた未反応供給ガス14は、環状触媒層13内を流下した後、内管6aの下端から円筒触媒層23中を流下し、触媒層出口16より集合室17及び反応器出口ノズル18を経て流出する。
なお、前記中心管7の下端位置は、内管6aの下端よりも上方に位置していることは明らかである。
【0017】
図4は本発明に係る反応器の更に他の実施の形態を示しており、本実施の形態では、内管6より流出する未反応ガスの温度よりも低い未反応ガスを未反応ガス集合室12へ供給し、触媒層へ流入する未反応ガスの温度を制御することのできる反応器構造の実施態様である。図4における冷却用未反応ガス24は、ケーシング2の側部に設けたノズル25から未反応ガス集合室12へ供給されるようになっている。その他の構成は図1で示す実施の形態と同様である。
本実施の形態においては、未反応供給ガス14が未反応ガス供給室11、取付管9、中心管7、環状流路8を経由して未反応ガス集合室12に流入する。そして、この未反応ガス集合室12で未反応供給ガス14は、前記冷却用未反応ガス24と混合し、冷却された未反応ガスは環状触媒層13を流下して、図1で示す実施の形態と同様の経路で反応器1より流出するようになっている。
【0018】
(実施例)
図1および図4に示す実施の形態について、それぞれ実施例1および実施例2として比較例1,2とともに下記の表1に示す。
【0019】
【表1】

Figure 0003924039
【0020】
供給原料ガス組成、供給原料ガス空間速度、反応圧力は実施例、比較例共通である。
Figure 0003924039
【0021】
これらの実施例によって、本発明の実施の形態に係る構造の反応器1における環状触媒層13の温度特性を示す。冷却用の沸騰液20は飽和加圧水である。実施例2では、図4で示したノズル25より冷却用未反応ガス24を未反応ガス集合室12へ供給し、環状触媒層13へ流入するガス温度を低下させている。実施例1、2とも比較例とほぼ同様の温度特性を示しており、反応器構造が変更されているものの反応器の所期性能が得られていることが分かる。
【0022】
比較例1では触媒層入口温度が282℃であり、触媒層最高温度が315℃と高くなっている。なお、特に触媒活性の良い運転初期においては、触媒層の温度を全体に下げた方が、触媒の寿命をより長くすることができる。
比較例2では、図7の反応器による反応実施例である。内管を出た未反応供給ガスに冷たい未反応供給ガスであるクエンチガスを混合させて、触媒層の入口温度を下げた場合を示す。一方、本実施例では、加圧水の圧力を下げないで、触媒層の最高温度を可能にしている。
【0023】
加圧水は反応熱にて蒸発し、水蒸気の形で反応器より取り出され、各種のエネルギー源として有効に利用されるが、この場合には水蒸気の圧力は高い程、そのエネルギーとしての価値が高いことは言うまでもない。
従って、本発明による実施例が示すように、内管内に中心管を設置する反応器構造を用いることで、回収蒸気圧力を下げることなく、触媒層の最高温度を所定の値以下に保つことができる効果を有する。
【0024】
以上のように、本発明の反応器は、粒状固体触媒を用いて気相発熱反応を行わせる反応器として工業的に大きい価値を有するものであり、メタノール合成反応以外の用途にも適用可能であって、ガスの組成、触媒の種類、形状、空間速度、圧力、温度には特に拘束されない。
【0025】
なお、図1では省略したが、内管6や中心管7を反応管3の中央に位置させる構造、および下部管板4bに設けて触媒落下を防止させる構造はすでに公知であり、本発明はこれらについて何ら規定するものではない。また、触媒充填反応管3の長さ、内管6と中心管7の径についてもあるいは伝熱面積増加のために管表面に設けるフィン、溝の有無、管の材料、バッフル形状についても何ら特定するものではない。これらの要目は、圧力、ガス組成、温度、反応熱の大きさ、触媒性能などの多くの条件で決まるものであって、本発明においては、特に制限されるものではない。
【0026】
【発明の効果】
上述の如く、本発明に係る反応器では、内管に更に中心管を設け、その中心管の下端位置が、反応管の上端より、反応管長さの1/10から2/3の距離にあり、中心管の下端位置が反応管の下端位置よりも上方に位置すべく配設され、未反応ガスを反応器上部より供給することで、反応器の下部集合室における触媒抜き出し作業を効率化でき、更に、触媒充填時に下部集合室での分岐管の取付作業の効率化も図ることができる。しかも、上記距離によって、中心管とその周囲の環状流路を未反応ガスが通過するときの圧力損失の上昇をできるだけ抑制することが可能であり、環状触媒層の内側からの冷却効果が期待できる。
すなわち、本発明においては、触媒層内で反応しつつあるガスの反応熱の一部を内管の管壁を介したまま、中心管では環状流路と管壁を介した熱移動により環状流路および中心管内を流動する未反応ガスに与えて、この未反応ガスを予熱するので、当然ながら反応温度に比し中心管内および環状流路のガス温度を低く維持させる必要があり、この熱移動により未反応ガスの予熱と反応しつつある触媒層内ガスの冷却、温度制御を行わせている。ただし、残りの反応熱は反応管外表面に接しさせた飽和温度の加圧水に管壁を介した熱移動により水の蒸発潜熱として取り除き、発生した加圧水蒸気は反応器から取り出して他の用途に使用する。当然のことながら、反応温度に比し加圧水温度を低い条件に設定しなければ熱移動は起こらず反応熱の除去作用が生じないので、必要伝熱量、目標反応温度をベースに加圧水の圧力(飽和温度)を適性条件に設置すべきである。
【0027】
このように、本発明はメタノール合成反応器のごとく、固体粒状触媒を用いて発熱反応を行わす目的の反応器で反応温度の制御が反応器性能上好ましい場合に適したものであって、構造が単純で運転の安定性にも優れ、設計、制作、点検、補修、触媒充填、触媒抜き出しもより効率的に行うことができる構造を有しており、工業的に大きい価値を有するものである。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る反応器を示す縦断面図である。
【図2】図1におけるA−A線断面図である。
【図3】本発明の別の実施態様に係る反応器を示す縦断面図である。
【図4】本発明の更に別の実施態様に係る反応器を示す縦断面図である。
【図5】メタノール反応平衡濃度に対する圧力と温度の効果の関係を示すグラフである。
【図6】従来の反応器の反応管を示す水平断面図である。
【図7】従来の反応器を示す縦断面図である。
【符号の説明】
1 反応器
2 ケーシング
3 反応管
4a,4b 管板
5 プラグ
6,6a 内管
7 中心管
8 環状流路
9 取付管
10 隔壁
11 未反応ガス供給室
12 未反応ガス集合室
13 環状触媒層
14 未反応供給ガス
15 未反応供給ガスノズル
16 触媒層出口
17 下部集合室
18 反応器出口ノズル
19 反応ガス
20 沸騰液
21 入口ノズル
22 出口ノズル
23 円筒触媒層
24 冷却用未反応ガス
25 ノズル[0001]
BACKGROUND OF THE INVENTION
The present invention is an improvement used for the purpose of carrying out an exothermic reaction of a mixed gas composed of a plurality of elements in the presence of a solid catalyst, such as methanol synthesis using hydrogen and carbon monoxide (and carbon dioxide) gas. Reactor related.
[0002]
[Prior art]
In a reactor used for the purpose of performing an exothermic reaction in the presence of a solid catalyst, various means and structures for controlling the increase in gas temperature due to an exothermic reaction during operation have been proposed. Such a proposal suggests that, as the temperature effect on the methanol equilibrium concentration in the example of FIG. 5 shows, for example, the methanol synthesis reaction, the methanol equilibrium concentration decreases with increasing temperature and the economic efficiency of the industrial plant is impaired. It was made in consideration.
[0003]
That is, FIG. 5 shows chemical engineering VOL. 46 (1982) NO. It is quoted from “Nozawa” and “methanol” on page 9507, and is a calculated value where the ratio of CO and H2 in the CO + 2H2 → CH3OH reaction is 4. However, even if a catalyst is used, the reaction rate is finite, and the reaction rate naturally decreases with a decrease in temperature. Therefore, it is preferable to operate in an appropriate temperature range considering the catalyst performance from an industrial viewpoint. The present inventors consider that 220 to 280 ° C. is appropriate when synthesizing methanol from a mixed gas containing hydrogen, carbon monoxide, and carbon dioxide as significant substances using a steel catalyst. The pressure (total pressure) of 50 to 300 kg / cm 2 · G is considered to be an economically suitable pressure range, but this can be changed by future improvements of the catalyst, and is not particularly restricted. .
[0004]
The present inventors previously proposed a double-tube exothermic reactor as a method for adjusting the temperature (Japanese Patent Publication No. 3-63425 and Japanese Patent Publication No. 4-5487).
The present invention will be described by taking Japanese Patent Publication No. 4-5487 as an example. In the present invention, as shown in FIG. 6, the reaction tube 51 is a double tube, and the space between the outer tube 52 and the inner tube 53 is filled with a granular catalyst 54 in an annular column shape to reduce the catalyst layer thickness. Cooling with cooling water is performed on the outer surface of the outer tube 52 of the catalyst layer, and cooling with unreacted supply gas A is performed on the inner surface of the inner tube 53 of the catalyst layer. Thus, the present inventors have an advantage in controlling the reaction temperature that the gas temperature in the catalyst layer thickness direction is maintained at an appropriate condition in a narrow temperature range and that the unreacted feed gas A can be preheated at the same time. And an effect of eliminating the need for an unreacted feed gas preheating exchanger, and by mixing the cold unreacted feed gas with the preheated unreacted feed gas by raising the central tube, the catalyst layer It has been found that the inlet temperature of the catalyst can be lowered and the temperature of the catalyst layer can be adjusted accordingly.
[0005]
Such a conventional technique will be described in more detail with reference to FIG. The reactor structure shown in FIG. 7 is an example of the prior art. The reaction tube 62 of the reactor 61 is attached to two tube plates 63 at both upper and lower ends, and an inner tube 64 is installed at the center of the reactor 61, and the reaction tube 62, the inner tube 64, An annular catalyst layer 65 filled with a granular catalyst is formed in the annular space between the two.
In the reactor 61, the unreacted supply gas 67 supplied from the unreacted supply gas nozzle 66 provided at the bottom flows from the lower part of the inner pipe 64 through the branch pipes 68, 69 and the like, and is mixed at the upper part. Guided to chamber 70. Further, another cold unreacted gas 71 is guided to the mixing chamber 70 from the nozzle 72 provided at the top of the reactor 61 and mixed with the unreacted supply gas 67 via the inner pipe 64, so that the annular catalyst layer 65. Led to.
[0006]
The gas that has passed through the annular catalyst layer 65 flows into the collecting chamber 74 below the catalyst layer outlet 73, passes through the outlet nozzle 75 of the reactor 61, becomes the reaction gas 76, and flows out of the reactor 61.
A boiling liquid 77 for cooling the reaction tube 62 from the outside flows from the side inlet nozzle 78 and flows out from the reactor 61 through the side outlet nozzle 79.
[0007]
[Problems to be solved by the invention]
However, in the above-described conventional reactor 61, since the lower collecting chamber 74 is provided with the branch pipes 68, 69 and the like, the structure is complicated and the weight is increased, and the catalyst extraction work in the lower collecting chamber 74 is performed. It was troublesome.
[0008]
The present inventors further improve the structure of the reactor invented earlier, facilitate the catalyst extraction work in the lower collecting chamber of the conventional reactor, further eliminate the need for a branch pipe, An object of the present invention is to provide a reactor having a structure that enables weight reduction.
[0009]
[Means for Solving the Problems]
In order to solve the problems of the prior art, the specific structure of the reactor according to the present invention is:
(1) A plurality of reaction tubes are disposed inside, an inner tube having a closed lower end is disposed at substantially the center of the reaction tube, and a central tube is disposed at approximately the center of the inner tube. An annular space surrounded by the inner pipe is configured as a granular catalyst filling unit, while the central pipe is connected to a gas supply chamber provided at an upper portion, and unreacted supply gas supplied to the gas supply chamber is It flows downward from above the central tube, flows from the lower end outlet of the central tube into the inner tube, and further, the unreacted supply gas moves upward in an annular flow path surrounded by the inner tube and the central tube. In the granular catalyst packed portion, the reactor is configured to flow downward from above, and the lower end position of the central tube located substantially at the center of the inner tube is more reactive than the upper end of the reaction tube. Located at a distance of 1/10 to 2/3 of the tube length, the lower end position of the central tube It is arranged to sit above the lower end position of the reaction tube.
(2) Alternatively, the lower end of the inner tube, which is disposed at substantially the center of the plurality of reaction tubes and whose lower end is closed, is located above the lower end of the reaction tube.
(3) or, that have introducing part cold unreacted feed gas having a lower temperature than the unreacted feed gas flows can be supplied directly to the upper end of the particulate catalyst filling portion is provided from the inner tube.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
[0011]
1 and 2 show an embodiment of a reactor according to the present invention. Here, FIG. 1 is a longitudinal sectional view showing the structure of the present reactor, and FIG. 2 is a sectional view taken along line AA of FIG.
The reactor 1 is formed of a casing 2 having a shell shape, and a reaction tube 3 is disposed inside the casing 2. Both ends of the reaction tube 3 are attached to the upper and lower tube plates 4 a and 4 b, and a plurality of inner tubes 6 whose lower ends are closed with plugs 5 are installed at the center of the reaction tube 3. In addition, a central tube 7 is concentrically arranged in the center of these inner tubes 6, and an annular flow path 8 is formed between the inner tube 6 and the central tube 7.
[0012]
The lower end of the center tube 7 is open and its length is shorter than that of the inner tube 6, and the lower end is disposed so as to be located above the lower end of the inner tube 6. The upper end of the center tube 7 is connected to a partition wall 10 extending in the horizontal direction via an attachment tube 9. The partition wall 10 is disposed above the upper tube plate 4 a, and the upper space of the casing 2 is defined by the partition wall 10 into an unreacted gas supply chamber 11 and an unreacted gas collecting chamber 12. The upper end of the attachment tube 9 communicates with the unreacted gas supply chamber 11 located above.
[0013]
In an annular space surrounded by the reaction tube 3 and the inner tube 6, an annular catalyst layer 13 of a granular catalyst filling portion filled with a granular catalyst is formed. The unreacted supply gas 14 is supplied to the unreacted gas supply chamber 11 from an unreacted supply gas nozzle 15 provided at the top of the casing 2 as indicated by an arrow B in FIG. Then, it flows from the upper end inlet of the central tube 7, flows out from the lower end outlet, and flows into the inner tube 6. Thereafter, the gas flows upward in the annular flow path 8 between the central tube 7 and the inner tube 6 and is guided to the annular catalyst layer 13 through the unreacted gas collecting chamber 12.
[0014]
The unreacted supply gas 14 guided to the annular catalyst layer 13 flows through the annular catalyst layer 13 from the upper side to the lower side, methanol is synthesized while flowing down, and the lower collecting chamber 17 is provided from the catalyst layer outlet 16. The reaction gas 19 flows from the reactor outlet nozzle 18 provided at the bottom of the casing 2 and flows out from the reactor 1 to the outside. The lower collecting chamber 17 is provided below the reaction tube 3 and below the casing 2.
The boiling liquid 20 for cooling the reaction tube 3 from the outside flows from an inlet nozzle 21 provided on the side of the casing 2, and as indicated by an arrow C, the side of the casing 2 opposite to the inlet nozzle 21. It flows out of the reactor 1 through an outlet nozzle 22 provided in the reactor.
[0015]
By the way, the lower end position of the central tube 7 is preferably located at a distance of 1/10 to 2/3 of the reaction tube length from the upper end of the reaction tube 3. This distance is a value that can suppress an increase in pressure loss when the unreacted gas 14 passes through the central tube 7 and the annular flow path 8 as much as possible and can expect a cooling effect from the inside of the annular catalyst layer 13.
[0016]
FIG. 3 shows another embodiment of the reactor according to the present invention, which is an embodiment in which the length of the inner tube is made shorter than that in the above embodiment. In this embodiment, the lower end of the inner tube 6 a is closed by the plug 5, and the height position in the annular catalyst layer 13 is arranged above the lower end of the reaction tube 3. For this reason, a cylindrical catalyst layer 23 filled with catalyst particles is formed below the lower end position of the inner tube 6a. Other configurations are the same as those in the above embodiment.
In FIG. 3, as shown by arrow B, the unreacted supply gas 14 flows down the central tube 7 through the attachment tube 9, flows into the inner tube 6a from the lower end, and then between the central tube 7 and the inner tube 6a. It flows upward through the annular flow path 8 and is guided to the annular catalyst layer 13 via the unreacted gas collecting chamber 12. The unreacted supply gas 14 guided to the annular catalyst layer 13 flows down in the annular catalyst layer 13, then flows down in the cylindrical catalyst layer 23 from the lower end of the inner pipe 6 a, and collects the chamber 17 from the catalyst layer outlet 16. And flows out through the reactor outlet nozzle 18.
It is obvious that the lower end position of the central tube 7 is located above the lower end of the inner tube 6a.
[0017]
FIG. 4 shows still another embodiment of the reactor according to the present invention. In this embodiment, unreacted gas lower than the temperature of unreacted gas flowing out from the inner pipe 6 is unreacted gas collecting chamber. 12 is an embodiment of a reactor structure that can control the temperature of the unreacted gas that is supplied to 12 and flows into the catalyst layer. The cooling unreacted gas 24 in FIG. 4 is supplied to the unreacted gas collecting chamber 12 from a nozzle 25 provided on the side of the casing 2. Other configurations are the same as those of the embodiment shown in FIG.
In the present embodiment, the unreacted supply gas 14 flows into the unreacted gas collecting chamber 12 through the unreacted gas supply chamber 11, the attachment tube 9, the central tube 7, and the annular flow path 8. Then, the unreacted supply gas 14 is mixed with the cooling unreacted gas 24 in the unreacted gas collecting chamber 12, and the cooled unreacted gas flows down the annular catalyst layer 13 to perform the operation shown in FIG. It flows out of the reactor 1 through the same path as the form.
[0018]
(Example)
The embodiment shown in FIGS. 1 and 4 is shown in the following Table 1 together with Comparative Examples 1 and 2 as Example 1 and Example 2, respectively.
[0019]
[Table 1]
Figure 0003924039
[0020]
The feed gas composition, feed gas space velocity, and reaction pressure are common to the examples and comparative examples.
Figure 0003924039
[0021]
These examples show the temperature characteristics of the annular catalyst layer 13 in the reactor 1 having the structure according to the embodiment of the present invention. The boiling liquid 20 for cooling is saturated pressurized water. In the second embodiment, the cooling unreacted gas 24 is supplied from the nozzle 25 shown in FIG. 4 to the unreacted gas collecting chamber 12, and the temperature of the gas flowing into the annular catalyst layer 13 is lowered. Both Examples 1 and 2 show substantially the same temperature characteristics as the comparative example, and it can be seen that the desired performance of the reactor is obtained although the reactor structure is changed.
[0022]
In Comparative Example 1, the catalyst layer inlet temperature is 282 ° C., and the maximum catalyst layer temperature is 315 ° C. In particular, at the initial stage of operation where the catalyst activity is good, the life of the catalyst can be further extended by lowering the temperature of the catalyst layer as a whole.
Comparative Example 2 is a reaction example using the reactor of FIG. The case where the quench gas which is a cold unreacted supply gas is mixed with the unreacted supply gas which has exited the inner pipe to lower the catalyst layer inlet temperature is shown. On the other hand, in this embodiment, the maximum temperature of the catalyst layer is made possible without lowering the pressure of the pressurized water.
[0023]
Pressurized water evaporates with heat of reaction and is taken out from the reactor in the form of water vapor, and is effectively used as various energy sources. In this case, the higher the water vapor pressure, the higher the value of that energy. Needless to say.
Therefore, as shown in the examples according to the present invention, the maximum temperature of the catalyst layer can be kept at a predetermined value or less without reducing the recovered steam pressure by using the reactor structure in which the central tube is installed in the inner tube. Has an effect that can be.
[0024]
As described above, the reactor of the present invention has industrially great value as a reactor for performing a gas phase exothermic reaction using a granular solid catalyst, and can be applied to uses other than the methanol synthesis reaction. The gas composition, catalyst type, shape, space velocity, pressure, and temperature are not particularly limited.
[0025]
Although omitted in FIG. 1, the structure in which the inner tube 6 and the center tube 7 are located in the center of the reaction tube 3 and the structure in which the lower tube plate 4b is provided to prevent the catalyst from falling are already known. There is no provision for these. In addition, the length of the catalyst-filled reaction tube 3, the diameters of the inner tube 6 and the central tube 7, or fins and grooves provided on the tube surface to increase the heat transfer area, the material of the tube, and the baffle shape are also specified. Not what you want. These points are determined by many conditions such as pressure, gas composition, temperature, magnitude of reaction heat, catalyst performance and the like, and are not particularly limited in the present invention.
[0026]
【The invention's effect】
As described above, in the reactor according to the present invention, the inner tube is further provided with a central tube, and the lower end position of the central tube is at a distance of 1/10 to 2/3 of the reaction tube length from the upper end of the reaction tube. The lower end position of the central tube is arranged to be higher than the lower end position of the reaction tube. By supplying unreacted gas from the upper part of the reactor, the catalyst extraction work in the lower collecting chamber of the reactor can be made efficient. Furthermore, it is possible to improve the efficiency of attaching the branch pipe in the lower collecting chamber when the catalyst is charged. In addition, the above-mentioned distance can suppress as much as possible an increase in pressure loss when unreacted gas passes through the central tube and the surrounding annular channel, and a cooling effect from the inside of the annular catalyst layer can be expected. .
In other words, in the present invention, a part of the reaction heat of the gas that is reacting in the catalyst layer is left through the tube wall of the inner tube, and the center tube is moved in an annular flow by heat transfer through the annular channel and the tube wall. Since this unreacted gas is preheated by giving it to the unreacted gas flowing in the channel and the central tube, it is natural that the gas temperature in the central tube and the annular flow path must be kept lower than the reaction temperature. Thus, cooling of the gas in the catalyst layer, which is reacting with preheating of the unreacted gas, and temperature control are performed. However, the remaining reaction heat is removed as latent heat of vaporization of water by heat transfer through the tube wall to pressurized water at the saturation temperature in contact with the outer surface of the reaction tube, and the generated pressurized water vapor is removed from the reactor and used for other purposes. To do. Naturally, if the pressurized water temperature is not set lower than the reaction temperature, heat transfer does not occur and the reaction heat removal action does not occur, so the pressure of the pressurized water (saturated based on the required heat transfer amount and the target reaction temperature) Temperature) should be installed at the appropriate conditions.
[0027]
As described above, the present invention is suitable for a reactor intended to conduct an exothermic reaction using a solid granular catalyst, such as a methanol synthesis reactor, and when the reaction temperature is preferably controlled in terms of reactor performance. However, it has a structure that can perform design, production, inspection, repair, catalyst filling, and catalyst extraction more efficiently and has great industrial value. .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a reactor according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a longitudinal sectional view showing a reactor according to another embodiment of the present invention.
FIG. 4 is a longitudinal sectional view showing a reactor according to still another embodiment of the present invention.
FIG. 5 is a graph showing the relationship between pressure and temperature effects on methanol reaction equilibrium concentration.
FIG. 6 is a horizontal sectional view showing a reaction tube of a conventional reactor.
FIG. 7 is a longitudinal sectional view showing a conventional reactor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reactor 2 Casing 3 Reaction tube 4a, 4b Tube plate 5 Plug 6, 6a Inner tube 7 Center tube 8 Annular channel 9 Mounting tube 10 Partition 11 Unreacted gas supply chamber 12 Unreacted gas collection chamber 13 Annular catalyst layer 14 Not Reaction supply gas 15 Unreacted supply gas nozzle 16 Catalyst layer outlet 17 Lower collecting chamber 18 Reactor outlet nozzle 19 Reactive gas 20 Boiling liquid 21 Inlet nozzle 22 Outlet nozzle 23 Cylindrical catalyst layer 24 Unreacted gas for cooling 25 Nozzle

Claims (3)

内部に複数本の反応管を配設し、該反応管のほぼ中央に下端を閉じた内管を設置するとともに、該内管のほぼ中央に中心管を配置し、前記反応管と前記内管とで囲まれた環状空間を粒状触媒充填部として構成する一方、前記中心管を上部に設けられたガス供給室に連結し、該ガス供給室へ供給された未反応供給ガスが前記中心管の上方より下方へ流通して、前記中心管の下端出口より前記内管内へ流通し、更に前記未反応供給ガスが前記内管と前記中心管とで囲まれた環状流路を上方へ流れ、かつ前記粒状触媒充填部においては、上方より下方へ流れるように構成した反応器であって、前記内管のほぼ中央に位置する中心管の下端位置が、前記反応管の上端より、反応管長さの1/10から2/3の距離にあり、前記中心管の下端位置が前記反応管の下端位置よりも上方に位置すべく配設されていることを特徴とする反応器。A plurality of reaction tubes are arranged inside, an inner tube having a closed lower end is installed at substantially the center of the reaction tube, and a center tube is arranged at almost the center of the inner tube, and the reaction tube and the inner tube are arranged. And the central tube is connected to a gas supply chamber provided at the top, and unreacted supply gas supplied to the gas supply chamber is connected to the central tube. Flowing downward from above, flowing from the lower end outlet of the central tube into the inner tube, and further, the unreacted supply gas flows upward in an annular flow path surrounded by the inner tube and the central tube, and In the granular catalyst filling unit, the reactor is configured to flow downward from above, and the lower end position of the central tube located substantially in the center of the inner tube is longer than the upper end of the reaction tube. 1/10 to 2/3, the lower end position of the central tube is Reactor, characterized in that it is arranged to sit above the lower end position of応管. 前記複数本の反応のほぼ中央に配置され、かつ下端を閉じた前記内管は、その下端が前記反応管の下端よりも上方に位置していることを特徴とする請求項1に記載の反応器。The lower end of the inner tube disposed at substantially the center of the plurality of reaction tubes and closed at the lower end is positioned above the lower end of the reaction tube. Reactor. 前記内管から流出した未反応供給ガスよりも低い温度の冷たい未反応供給ガスを前記粒状触媒充填部の上端へ直接供給できる導入部が設けられていることを特徴とする請求項1または2に記載の反応器。To claim 1 or 2, characterized that you have introduction portion is provided which can supply cold unreacted feed gas having a temperature lower than the unreacted feed gas flowing out of the inner tube directly into the upper end of the particulate catalyst packed section The reactor described.
JP08355497A 1997-04-02 1997-04-02 Reactor Expired - Lifetime JP3924039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08355497A JP3924039B2 (en) 1997-04-02 1997-04-02 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08355497A JP3924039B2 (en) 1997-04-02 1997-04-02 Reactor

Publications (2)

Publication Number Publication Date
JPH10277382A JPH10277382A (en) 1998-10-20
JP3924039B2 true JP3924039B2 (en) 2007-06-06

Family

ID=13805738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08355497A Expired - Lifetime JP3924039B2 (en) 1997-04-02 1997-04-02 Reactor

Country Status (1)

Country Link
JP (1) JP3924039B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097906A (en) * 1998-12-07 2001-04-10 Mitsubishi Heavy Ind Ltd Method for producing methanol
US6642281B1 (en) * 2000-09-01 2003-11-04 Exxonmobil Research And Engineering Company Fischer-tropsch process
JP2003080054A (en) * 2001-09-13 2003-03-18 Mitsubishi Heavy Ind Ltd Reaction method

Also Published As

Publication number Publication date
JPH10277382A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
US7670394B2 (en) Compact reforming reactor
US5167933A (en) Heat exchange reforming process and reactor system
US7670395B2 (en) Compact reforming reactor
US5520891A (en) Cross-flow, fixed-bed catalytic reactor
US5869011A (en) Fixed-bed catalytic reactor
EP0080270B1 (en) Synthesis process and reactor
JPH07481B2 (en) Method for producing gas stream containing hydrogen and carbon oxides and apparatus therefor
KR20100122898A (en) Method and reactor for the preparation of methanol
US5000926A (en) Catalyst layer-fixed reactor
JPH0363425B2 (en)
JP2652690B2 (en) Method for continuously generating and preheating a hydrocarbon gas / steam mixture as a charge for a reforming process for producing hydrogen or synthesis gas and an upright heat exchanger
JPH045487B2 (en)
JPS6124372B2 (en)
JP3924039B2 (en) Reactor
JP3924040B2 (en) Reactor
JP3428599B2 (en) Reactor for methanol reforming
JP2003080054A (en) Reaction method
JPH0673625B2 (en) Reactor
JPH0329723B2 (en)
JPH0782185A (en) Method for producing methanol
JPS6234967Y2 (en)
JPS6161632A (en) Reactor
JPS62114644A (en) Exothermic reaction using double tube reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

EXPY Cancellation because of completion of term