JPS62114644A - Exothermic reaction using double tube reactor - Google Patents

Exothermic reaction using double tube reactor

Info

Publication number
JPS62114644A
JPS62114644A JP25190185A JP25190185A JPS62114644A JP S62114644 A JPS62114644 A JP S62114644A JP 25190185 A JP25190185 A JP 25190185A JP 25190185 A JP25190185 A JP 25190185A JP S62114644 A JPS62114644 A JP S62114644A
Authority
JP
Japan
Prior art keywords
reaction
cooling liquid
temperature
reactor
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25190185A
Other languages
Japanese (ja)
Inventor
Kensuke Niwa
丹羽 健祐
Hideaki Nagai
永井 英彰
Kazuhiro Morita
守田 和裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Gas Chemical Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP25190185A priority Critical patent/JPS62114644A/en
Publication of JPS62114644A publication Critical patent/JPS62114644A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To adjust the temp. in the vicinity of the outlet of a catalyst bed to the b.p. of a cooling liquid or less, by properly regulating the temp. of unreacted supply gas at the inlet of an inner tube and supercooling the cooling liquid in a lower part and boiling the same in an upper part. CONSTITUTION:In performing exothermic reaction using a double tube reactor, the temp. of unreacted supply gas at the inlet of an inner tube is properly adjusted and a cooling liquid is supercooled in a lower part and boiled in an upper part to adjust the temp. of a catalyst bed to the b.p. of the cooling liquid or less in the lower part. By this method, because the unreacted supply gas is supplied to the reactor after the temp. thereof is lowered at least by 10 deg.C, even if a saturated liquid is supplied to a shell, a supercooling region is formed in the shell side and the temp. in the vicinity of the outlet of the catalyst bed can be lowered to the b.p. of the cooling liqiud or less.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二重管反応器を用いる発熱反応方法に関し、特
に、#′lヲ主成分とする触媒を用い次メタノール合成
反応に適した、発熱反応方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an exothermic reaction method using a double tube reactor, and in particular, a method suitable for the following methanol synthesis reaction using a catalyst containing #'l as the main component. Concerning an exothermic reaction method.

〔従来の技術〕[Conventional technology]

発熱反応を行わしめるのに、反応の進行に従って、系の
温度を徐々に下げる事が好ましいことは、よく知られて
いる。固定床触媒反応器にて、触媒層内の温度分布を、
入口部から出口部に向けて、下げる反応器で、しかも同
時反応熱を回収する方式が従来も提案されている。「メ
タノール製造における平衡条件を改良しかつ高圧蒸気を
得る方法、特開昭57−55420号公報」において提
案されている方法は、管式反応器で、シェル側にて水蒸
気を沸騰させて発生させるものであるが、反応平衡上触
媒層の出口において温度を下げるために、シェル側に中
間底に設けて2室に分割し、下方の室へは過冷却水を供
給して、触媒層を冷却している。この方法では、シェル
側に中間底を設ける必要があり、構造的に複雑であり、
過冷却域の伝熱面積が固定されていることから運転制御
面から出口温度を調整することが非常に難しい。又、也
の方法として、「反応器およびその使用法、特公昭58
−39572号公報」が提案されているが、この方法で
は触媒層と水管群とが配置され、断熱反応域と冷却域が
交互に存在し、徐々に温度を下げるのではなぐ、ジグザ
グの温度分布を与えるものである。これらの、反応器の
難点を改善すべく、二重管を用いた反応器として、先に
「二重管式発熱反応器、特願昭58−215724号」
及び「反応器、特願昭59−080053号」が、提案
されている。これらの二重管式反応器は、どエル側に冷
却用の沸騰液が流通し、二重管の内管には未反応供給ガ
スが流通し、内管と外管に囲まれ7’jJJ状空間に充
填された触媒層には、反応ガスが未反応供給ガスと向流
的に流通している。従って触媒層は、外側の沸騰液のみ
ならず、内管内の未反応供給ガスにても、冷却されてお
シ、入口部から出口部へ向けて、徐々に温度を下げるこ
とができる。第1図に二重管反応器の簡単な構造を示す
。未反応供給ガスは入口1よp導入され、内管2を経て
予熱され、上部チャンネルにおいて反転し、反応管3内
の触媒層を経て、反応が進行し、出口4より取シ出され
る。冷却液はシェル側人口5より導入され、蒸気と共に
出口6より取り出される。
It is well known that in order to carry out an exothermic reaction, it is preferable to gradually lower the temperature of the system as the reaction progresses. In a fixed bed catalytic reactor, the temperature distribution within the catalyst layer is
Conventionally, methods have been proposed in which the reactor is lowered from the inlet to the outlet, and the heat of reaction is simultaneously recovered. The method proposed in ``A method for improving equilibrium conditions in methanol production and obtaining high-pressure steam, Japanese Patent Application Laid-open No. 57-55420'' uses a tubular reactor to boil and generate steam on the shell side. However, in order to lower the temperature at the exit of the catalyst layer in terms of reaction equilibrium, it is installed at the middle bottom on the shell side and divided into two chambers, and supercooled water is supplied to the lower chamber to cool the catalyst layer. are doing. This method requires an intermediate bottom on the shell side and is structurally complex;
Since the heat transfer area in the supercooled region is fixed, it is extremely difficult to adjust the outlet temperature from an operational control perspective. Also, as a method of
In this method, a catalyst layer and a group of water tubes are arranged, and adiabatic reaction zones and cooling zones exist alternately, and the temperature is distributed in a zigzag manner instead of gradually lowering the temperature. It gives In order to improve these drawbacks of the reactor, a reactor using double tubes was first developed called "Double tube type exothermic reactor, Japanese Patent Application No. 1982-215724".
and "Reactor, Japanese Patent Application No. 59-080053" have been proposed. In these double tube reactors, boiling liquid for cooling flows through the well side, unreacted supply gas flows through the inner tube of the double tube, and the reactor is surrounded by an inner tube and an outer tube. The reaction gas flows countercurrently with the unreacted supply gas through the catalyst layer filled in the space. Therefore, the catalyst layer is cooled not only by the boiling liquid on the outside but also by the unreacted feed gas in the inner tube, and the temperature can be gradually lowered from the inlet to the outlet. Figure 1 shows a simple structure of a double tube reactor. Unreacted feed gas is introduced through the inlet 1, preheated through the inner tube 2, reversed in the upper channel, passed through the catalyst layer in the reaction tube 3, the reaction proceeds, and taken out through the outlet 4. Coolant is introduced from the shell side port 5 and taken out from the outlet 6 together with steam.

従来の二重管式反応器を用いる発熱反応における沸騰液
による冷却方式では、触媒層の温度を冷却液である沸騰
液の沸点以下に、冷却することは不可能である。
In the conventional cooling method using a boiling liquid in an exothermic reaction using a double tube reactor, it is impossible to cool the temperature of the catalyst layer below the boiling point of the boiling liquid as the cooling liquid.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来の二重管式反応器を用いる発熱反応方法の
欠点を解消し、反応器の構造に手を加えることなく、反
応条件を適当に選ぶことによって触媒層の出口付近の温
度を冷却液の沸点以下に下げることのできる発熱反応方
法を提供しようとするものである。
The present invention solves the drawbacks of the conventional exothermic reaction method using a double tube reactor, and cools the temperature near the outlet of the catalyst bed by appropriately selecting reaction conditions without modifying the structure of the reactor. The objective is to provide an exothermic reaction method that can lower the temperature below the boiling point of a liquid.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、一つ又は、複数個の反応管の中央に内管を位
置させ、反応管と内管に囲まれた環状空間を、粒径触媒
充填部とし、該内管の下方より上方へ未反応供給ガスが
流通し、かつ該環状触媒層においては、上方より下方へ
ガスが流通し、該反応管の外側のシェルを冷却液が下方
より上方へ流通する発熱反応方法において、該未反応供
給ガスの内管への入口温度を適当に調整することによっ
て、冷却液を下方においては過冷却せしめ、上方におい
ては沸騰せしめ、該触媒層の温度を、下方において該冷
却液の沸点により低くすることを特徴とする二重管反応
器を用いる発熱反応方法である。
In the present invention, an inner tube is located in the center of one or more reaction tubes, an annular space surrounded by the reaction tubes and the inner tube is used as a particulate-sized catalyst filling part, and a particle-sized catalyst is filled from the bottom of the inner tube to the upper side. In an exothermic reaction method in which unreacted feed gas flows, gas flows from above to below in the annular catalyst layer, and cooling liquid flows from below to above in the outer shell of the reaction tube, the unreacted By suitably adjusting the inlet temperature of the feed gas to the inner pipe, the coolant is subcooled in the lower part and boiled in the upper part, and the temperature of the catalyst bed is lowered by the boiling point of the coolant in the lower part. This is an exothermic reaction method using a double tube reactor.

〔作用〕[Effect]

未反応供給ガスの温度を少くとも、10℃だけ低くして
、該反応器へ供給することによって、シェル側へ飽和液
を供給しても、シェル側に過冷却域が作られ、該触媒層
の出口付近の温度を、冷却液を沸点以下に下げることが
できる。一旦、過冷却域が作られると、反応管とシェル
側の冷却液との伝熱は、自然対流に近いものとなシ、そ
の総括伝熱係数Uout  は、内管と反応管との総括
伝熱係数Uinに比べて非常に小さくなる。
By lowering the temperature of the unreacted feed gas by at least 10°C and supplying it to the reactor, even if the saturated liquid is supplied to the shell side, a supercooled region is created on the shell side, and the catalyst layer The temperature near the outlet of the cooling liquid can be lowered below the boiling point. Once the supercooled region is created, the heat transfer between the reaction tube and the cooling liquid on the shell side is close to natural convection, and the overall heat transfer coefficient Uout is the overall heat transfer coefficient between the inner tube and the reaction tube. It is much smaller than the thermal coefficient Uin.

従って、反応管内の触媒層における反応熱は、シェル側
冷却液へは伝わシに<<、内管部の未反応供給ガスへ伝
わシ易くなシ、このことから、触媒層の温度が未反応供
給ガスの温度により近くなシ、結果として冷却液の沸点
以下に触媒層の温度を下げることができる。又、触媒層
の入口付近では、単位触媒量、即ち単位伝熱面積当りの
発熱量も、多く、反応管と冷却液との伝熱は、沸騰伝熱
にて、行われる。本発明の方法によれば、未反応供給ガ
スの温度を変えるだけで、シェル側下方部に過冷却域を
作ることができ、又該過冷却域の長さも、未反応供給ガ
ス温度を変えるだけで、調整でき、触媒層出口付近の温
度分布を、自由に制御できる。
Therefore, the reaction heat in the catalyst layer in the reaction tube is not easily transmitted to the shell-side cooling liquid, and is not easily transmitted to the unreacted supply gas in the inner tube. It is closer to the temperature of the feed gas, and as a result the temperature of the catalyst layer can be lowered below the boiling point of the coolant. Further, near the inlet of the catalyst layer, the amount of heat generated per unit amount of catalyst, that is, per unit heat transfer area is also large, and heat transfer between the reaction tube and the cooling liquid is performed by boiling heat transfer. According to the method of the present invention, a supercooled region can be created in the lower part of the shell side simply by changing the temperature of the unreacted feed gas, and the length of the supercooled region can also be changed by simply changing the temperature of the unreacted feed gas. The temperature distribution near the outlet of the catalyst layer can be freely controlled.

〔実施例〕〔Example〕

本発明の発熱反応方法をメタノール合成反応に適用した
例を次に説明する。
An example in which the exothermic reaction method of the present invention is applied to a methanol synthesis reaction will be described next.

(1)未反応供給ガス ・組成  00:8.65モルチ 、H2ニア6.76
モルチa02  : 5.51 モル% 、  aH4
:9.o8モ、z%・供給方法 95ゆ/cr!? ・供給温度 150℃ (2)冷却液としてボイラ水、沸点220℃(5)  
5pace Volooity  5000 1 /h
(4)内管と触媒層との総括伝熱係数 : 400 kca17m”h℃ (5)反応管と冷却液との総括伝熱係数過冷却域: 5
0 kcal/mFhu沸騰域 : 900 kcal
/m’hc(6)触媒層出口温度:195℃ 本発明の方法によって、未反応供給ガスの温度を150
℃で供給すると、ボイラ水沸点220℃の圧力で運転し
ながら、触媒層出口温度を195℃迄下げることができ
、反応平衡上好ましい状態を作っている。この実施例で
は、冷却液沸点220℃に対して、25℃だけ低く、触
媒層の温度を下げることができ、それだけメタノール生
成濃度を上げることができ、近年開発が進んでいるより
低温低圧における高活性の触媒にとっては、不可欠の要
件を満すことになる。
(1) Unreacted supply gas/composition 00:8.65 molti, H2nia 6.76
Morti a02: 5.51 mol%, aH4
:9. o8mo, z%, supply method 95yu/cr! ?・Supply temperature 150℃ (2) Boiler water as cooling liquid, boiling point 220℃ (5)
5pace Voloity 5000 1/h
(4) Overall heat transfer coefficient between inner tube and catalyst layer: 400 kca17m”h°C (5) Overall heat transfer coefficient between reaction tube and cooling liquid Supercooling region: 5
0 kcal/mFhu Boiling range: 900 kcal
/m'hc (6) Catalyst layer outlet temperature: 195°C By the method of the present invention, the temperature of the unreacted feed gas is increased to 150°C.
When supplied at a temperature of 220° C., the catalyst bed outlet temperature can be lowered to 195° C. while operating at a pressure at the boiler water boiling point of 220° C., creating a favorable reaction equilibrium condition. In this example, the boiling point of the coolant is 25°C lower than the boiling point of 220°C, making it possible to lower the temperature of the catalyst layer and increase the methanol production concentration accordingly. This fulfills the essential requirements for an active catalyst.

第2図は二重反応器内の温度分布を示し友もので、実線
は過冷却域のない、従来の発熱反応によったものである
。この場合には、反応生成物の触媒層出口温度8を冷却
液であるボイラ水の沸点以下に下げることができない。
FIG. 2 shows the temperature distribution in the double reactor, and the solid line is for a conventional exothermic reaction without any supercooling region. In this case, the catalyst layer outlet temperature 8 of the reaction product cannot be lowered below the boiling point of boiler water, which is the coolant.

これに対して、破線は未反応供給ガス入口温度7を下げ
て、過冷却域を作り、触媒層出口温度8を冷却液のボイ
ラ水沸点以下に下げることができたことを示している。
On the other hand, the broken line indicates that the unreacted supply gas inlet temperature 7 was lowered to create a supercooled region, and the catalyst layer outlet temperature 8 was able to be lowered to below the boiler water boiling point of the coolant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、二重管反応器の断面図である。第2図は、反
応器内の温度分布を示したグラフであり、実線は過冷却
域のない従来の反応方法によったもので、破線は本発明
の方法による過冷却域を設けた場合のものである。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫
FIG. 1 is a cross-sectional view of a double tube reactor. Figure 2 is a graph showing the temperature distribution inside the reactor, where the solid line is the result of the conventional reaction method without a supercooling region, and the broken line is the result of the method of the present invention with a supercooling region. It is something. Sub-Agents 1) Meifuku Agent Ryo Hagiwara − Sub-Agent Atsuo Anzai

Claims (1)

【特許請求の範囲】[Claims] 一つ又は、複数個の反応管の中央に内管を位置させ、反
応管と内管に囲まれた環状空間を、粒径触媒充填部とし
、該内管の下方より上方へ未反応供給ガスが流通し、か
つ該環状触媒層においては、上方より下方へガスが流通
し、該反応管の外側のシェルを冷却液が下方より上方へ
流通する発熱反応方法において、該未反応供給ガスの内
管への入口温度を適当に調整することによつて、冷却液
を下方においては過冷却せしめ、上方においては沸騰せ
しめ、該触媒層の温度を、下方において該冷却液の沸点
により低くすることを特徴とする二重管反応器を用いる
発熱反応方法。
An inner tube is located in the center of one or more reaction tubes, and an annular space surrounded by the reaction tube and the inner tube is used as a particulate catalyst filling part, and unreacted supply gas is supplied from below to above the inner tube. In an exothermic reaction method in which gas flows from the top to the bottom in the annular catalyst layer and a cooling liquid flows from the bottom to the top in the outer shell of the reaction tube, the inside of the unreacted supply gas is By suitably adjusting the inlet temperature to the tubes, it is possible to subcool the cooling liquid in the lower part and boil it in the upper part, so that the temperature of the catalyst layer in the lower part is lowered by the boiling point of the cooling liquid. An exothermic reaction method using a characteristic double tube reactor.
JP25190185A 1985-11-12 1985-11-12 Exothermic reaction using double tube reactor Pending JPS62114644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25190185A JPS62114644A (en) 1985-11-12 1985-11-12 Exothermic reaction using double tube reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25190185A JPS62114644A (en) 1985-11-12 1985-11-12 Exothermic reaction using double tube reactor

Publications (1)

Publication Number Publication Date
JPS62114644A true JPS62114644A (en) 1987-05-26

Family

ID=17229636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25190185A Pending JPS62114644A (en) 1985-11-12 1985-11-12 Exothermic reaction using double tube reactor

Country Status (1)

Country Link
JP (1) JPS62114644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485129A (en) * 1987-09-25 1989-03-30 Mitsubishi Gas Chemical Co Fixed catalyst bed reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485129A (en) * 1987-09-25 1989-03-30 Mitsubishi Gas Chemical Co Fixed catalyst bed reactor

Similar Documents

Publication Publication Date Title
JP5667624B2 (en) Multi-stage, multi-tube shell-and-tube reactor
US5520891A (en) Cross-flow, fixed-bed catalytic reactor
US5869011A (en) Fixed-bed catalytic reactor
EP0194067B2 (en) Steam reforming hydrocarbons
US3825501A (en) Exothermic reaction process
JPH07196639A (en) Continuous method for exothermal reaction of propylene with hydrogen peroxide and catalyst converter used therefor
EP0080270B1 (en) Synthesis process and reactor
EP0256299B1 (en) Ammonia synthesis converter
US4767791A (en) Process for synthesizing methanol with an optimal temperature profile using a concentric pipe reactor
JPH0326326A (en) Modifying equipment for fuel cell
US5000926A (en) Catalyst layer-fixed reactor
EP0142170B1 (en) Ammonia synthesis converter
DE1542517B1 (en) Furnace for high pressure catalytic synthesis
US4938930A (en) Reaction vessel
IL28758A (en) Reactor for the continuous performance of exothermic catalyzed reactions in the gas phase under high pressure
JP5046437B2 (en) Method and apparatus for producing ammonia
JPS62114644A (en) Exothermic reaction using double tube reactor
JPS6154229A (en) Reactor
JPS60110328A (en) Catalytic reactor
JPS6010522B2 (en) Tubular reactor for high-pressure polymerization of α-olefins
JPH0424090B2 (en)
CA2240949A1 (en) Heat exchange catalytic reactor
BRPI0913102B1 (en) Method for producing ammonia
JP3924039B2 (en) Reactor
US3998932A (en) Process for the catalytic synthesis of ammonia