JPS6154229A - Reactor - Google Patents

Reactor

Info

Publication number
JPS6154229A
JPS6154229A JP17509684A JP17509684A JPS6154229A JP S6154229 A JPS6154229 A JP S6154229A JP 17509684 A JP17509684 A JP 17509684A JP 17509684 A JP17509684 A JP 17509684A JP S6154229 A JPS6154229 A JP S6154229A
Authority
JP
Japan
Prior art keywords
tube
reaction
diameter
reactor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17509684A
Other languages
Japanese (ja)
Inventor
Toshikazu Shinkawa
新川 利和
Hiroshi Makihara
牧原 洋
Daisaku Shozen
少前 大作
Kichiyoshi Arahata
新畠 吉良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17509684A priority Critical patent/JPS6154229A/en
Publication of JPS6154229A publication Critical patent/JPS6154229A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To make the temp. distribution uniform in the lengthwise direction of a tube of the titled reactor by making the tube different in diameter in coincidence with the magnitude of quantity of heat generated by reaction in a reactor in which the exothermic reaction of mixed gas is performed under the presence of a granular solid catalyst such as methanol synthesis using hydrogen and gaseous carbon monoxide. CONSTITUTION:In a reactor in which a reaction tube is positioned in the vertical direction and a granular solid catalyst 4 is packed into the inside of the tube and a reaction tube 10 different in diameter is formed by combining the tubes 10a, 10b different in diameter in the lengthwise direction of the tube, the gases to be allowed to react is fluidized from the upper part to the lower part in the inside of the above-mentioned tube 10 to cause the exothermic reaction and also the reaction heat is removed by the latent heat of vaporization of water which has saturated temp. and is brought into contact with the outside surface of the tube. The temp. distribution in the lengthwise direction of the tube is made uniform by making the tube diameter of the upper region high in the quantity of heat generated by reaction small, and making the tube diameter of the lower region small, in the quantity of heat generated by reaction, large.

Description

【発明の詳細な説明】 〔本発明の産業分野〕 本発明は、例えば、水素と一酸化炭素(および二酸化炭
素)ガスを用いたメタノール合成の如く、固形粒状触媒
の存在下で複数の元素から成る混合ガスの発熱反応を行
なわしめる目的で使用される反応器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of the Invention] The present invention relates to the synthesis of methanol from multiple elements in the presence of solid particulate catalysts, such as methanol synthesis using hydrogen and carbon monoxide (and carbon dioxide) gases. This invention relates to a reactor used for the purpose of carrying out an exothermic reaction of a mixed gas consisting of:

〔従来のメタノール合成用などの反応器〕メタノール合
成用などの発熱反応を伴う反応器においては、運転時の
発熱反応によるガス温度の上昇を制御する手段に種々の
提案がなされている。これは、第9図の[メタノール平
衡濃度に対する圧力と温度との関係図(、’H,: c
o  のモル比4:1)Jから明らかなように、即ちメ
タノール合成反応のメタノール平衡濃度に対する温度の
効果で明らかな如く、温度の上昇と共にメタノール平衡
濃度が低下し工業的プラントの経済性が損なわれるため
である。但し、触媒を使用しても反応速度は有限であシ
、反応速度は当然ながら温度の低下と共に小さくなるの
で、工業的には触媒性能を考慮したある適正温度範囲内
で運転することが好ましい。本発明者らは銅系触媒を用
いて水素、−酸化炭素、二酸化炭素を有意物質とした加
圧混合ガスを用いて工業的にメタノールを合成する場合
は220〜280℃が適正温度範囲であると考えておシ
、また、ガスの圧力(全圧力)としては50〜500ゆ
/−2Gが経済的な適正範囲であると考えている。但し
、とれらの条件範囲は将来の触媒の改良等で変シ得るも
のであって、特に拘束されないものである。
[Conventional Reactor for Methanol Synthesis, etc.] Various proposals have been made for means for controlling the rise in gas temperature due to the exothermic reaction during operation in reactors involving exothermic reactions, such as those for methanol synthesis. This is shown in Figure 9 [Relationship diagram between pressure and temperature for methanol equilibrium concentration (,'H,: c
As is clear from the molar ratio of 4:1)J, that is, the effect of temperature on the methanol equilibrium concentration in the methanol synthesis reaction, the methanol equilibrium concentration decreases with increasing temperature, impairing the economic efficiency of industrial plants. This is for the purpose of However, even if a catalyst is used, the reaction rate is limited, and the reaction rate naturally decreases as the temperature decreases, so industrially it is preferable to operate within a certain appropriate temperature range in consideration of catalyst performance. The present inventors found that 220 to 280°C is the appropriate temperature range when industrially synthesizing methanol using a pressurized mixed gas containing hydrogen, carbon oxide, and carbon dioxide as significant substances using a copper-based catalyst. Considering this, we also believe that the appropriate economic range for the gas pressure (total pressure) is 50 to 500 Y/-2G. However, these condition ranges may be changed due to future catalyst improvements, etc., and are not particularly restricted.

この温度調節の方法構造の公知例に特公昭57−385
68号公報に記載の発明がある。この公知例を第10図
に基づいて説明すると、該反応器は、上部管板1及び下
部管板2に反応管5を固定したシェル9からなり、そし
て反応管3内に触媒4が充填されている。予め適正温度
に加熱した水素、−酸化炭素、二酸化炭素などから成る
加圧混合ガスをガス人口5を介して触媒4を充填した反
応管3内を上方から下方へ流動せしめて接触反応(メタ
ノール合成反応)を行なわしめると共に、その反応熱を
抜管3の外表面に接せしめた適正圧力の飽和温度の水7
′の蒸発潜熱により取シ除く(当然に水蒸気が生成され
る)ことKよシ、抜管3の内部のガス温度を適正条件範
囲内に維持せんとするものである。
A known example of the structure of this temperature control method is published in Japanese Patent Publication No. 57-385.
There is an invention described in Publication No. 68. This known example will be explained based on FIG. 10. The reactor consists of a shell 9 in which a reaction tube 5 is fixed to an upper tube sheet 1 and a lower tube sheet 2, and a catalyst 4 is filled in the reaction tube 3. ing. A pressurized mixed gas consisting of hydrogen, carbon oxide, carbon dioxide, etc., which has been heated to an appropriate temperature, is caused to flow from the top to the bottom in the reaction tube 3 filled with the catalyst 4 through the gas port 5 to perform a catalytic reaction (methanol synthesis). water 7 at a saturation temperature and at an appropriate pressure brought into contact with the outer surface of the extruded tube 3.
The purpose is to maintain the gas temperature inside the extraction tube 3 within a range of appropriate conditions by removing the gas by the latent heat of vaporization (naturally, water vapor is generated).

なお、第10図において、反応管3は複数個設置されて
いるものであシ、そして、該反応管3内に反応ガスをガ
ス人口5から供給し、ガス出口6から反応終了ガスとし
て取シ出す。反応熱は、補給水入ロアから供給する水7
′によって吸収され、抜水7′は水蒸気となって水蒸気
出口8よシ放出される。
In addition, in FIG. 10, a plurality of reaction tubes 3 are installed, and a reaction gas is supplied into the reaction tube 3 from a gas port 5 and taken as a reaction-completed gas from a gas outlet 6. put out. The reaction heat is generated by water 7 supplied from the make-up water lower part.
The drained water 7' becomes water vapor and is discharged through the water vapor outlet 8.

この公知例の反応器は1反応管3が上部管板1及び下部
管板2に挿入、固定されており、この反応管3は等径管
が使用されている。即ち、接触反応が起り、この反応熱
を飽和温度の水7′の蒸発潜熱により取除いて、実質的
に反応器内で反応の総量を支配している領域の管長範囲
においては、等径管が使用されている。(等空間速度と
なされている。) 〔公知例の上記反応器の欠点〕 しかし、第10図における触媒4を充填した反応管3の
上方領域においては、流入する未反応ガスのメタノール
濃度が極く小さいのが普通である。この領域では、ガス
中のメタノール濃度は平衡濃度との差が大きく、大きい
反応速度(反応熱発生速度)で接触反応が起るが、この
発生熱は反応管3外の水7′へ移動する。この発生熱の
移動は、管壁伝熱面積、管内外壁熱伝達係数、管厚など
に支配され、一般には、発生熱量と熱移動量(冷却速度
)のアンバランスが起シ、第11回(公知構造の反応器
における反応管長方向の温度分布を示した図)に示すよ
うに、反応温度(ガス温度)の上昇が起る。
In the reactor of this known example, one reaction tube 3 is inserted and fixed into an upper tube sheet 1 and a lower tube sheet 2, and this reaction tube 3 is a tube of equal diameter. In other words, when a catalytic reaction occurs and the heat of reaction is removed by the latent heat of vaporization of water 7' at the saturation temperature, in the pipe length range of the region that substantially controls the total amount of reaction in the reactor, the equal diameter pipe is used. (The space velocity is assumed to be constant.) [Disadvantages of the above known reactor] However, in the upper region of the reaction tube 3 filled with the catalyst 4 in FIG. 10, the methanol concentration of the unreacted gas flowing in is extremely high. They are usually very small. In this region, the methanol concentration in the gas has a large difference from the equilibrium concentration, and the catalytic reaction occurs at a high reaction rate (reaction heat generation rate), but this generated heat is transferred to the water 7' outside the reaction tube 3. . The transfer of this generated heat is controlled by the tube wall heat transfer area, tube inner and outer wall heat transfer coefficients, tube thickness, etc., and generally, an imbalance between the amount of heat generated and the amount of heat transfer (cooling rate) occurs. As shown in FIG. 1 (a diagram showing the temperature distribution in the length direction of the reaction tube in a reactor with a known structure), the reaction temperature (gas temperature) increases.

一方、第10図の触媒4を充填した反応管3の下方領域
では、ガス中のメタノール濃度は反応平衡濃度との差が
大きくないため、反応速度は小さくなシ、ガス温度は次
第に低下して行く。
On the other hand, in the lower region of the reaction tube 3 filled with the catalyst 4 in FIG. 10, the methanol concentration in the gas does not differ greatly from the reaction equilibrium concentration, so the reaction rate is small and the gas temperature gradually decreases. go.

このガス温度の変化は発生熱量と管壁を介した熱移動量
の平衡として定まるのであるが、反応器性能としての見
地からは反応管出口メタノール濃度が1%でも高い方が
工業的に大きい価値があり、そのためには空間速度を小
としてガスと触媒の接触時間を大とならしめることが好
ましい。
This change in gas temperature is determined by the equilibrium between the amount of heat generated and the amount of heat transferred through the tube wall, but from the standpoint of reactor performance, it is industrially more valuable if the methanol concentration at the outlet of the reaction tube is even 1% higher. For this purpose, it is preferable to reduce the space velocity and increase the contact time between the gas and the catalyst.

しかし、第10図の如き従来公知の反応器においては、
管長方向に等空間速度になる如く構造せしめられておシ
、空間速度を小にすることは反応管上方領域での単位管
長(管長X周長=伝熱面積)当りの生成熱量が過大とな
り、管内ガス及び触媒の温度上昇が起る。良く知られて
いるように触媒には可使限界温度があシ、本発間者らは
現在の銅系メタノール合成触媒の限界温度は300〜5
50.℃と考えている。(これは触媒の改善で変り得る
。)従って、第1a図の如き公知例では空間速度を小と
するには限界がある。また、空間速度は小とせずに管長
を大としてガスと触媒の接触時間を大とせしめることも
可能ではあるが、現在工業的に供給し得る鋼管の製造可
能長さは25〜30mであってこの面からの制約がある
と共に、空間速度を小とせずに管長のみを大とした時に
は触媒充填反応管の入口出口間のガスの流動抵抗が大と
なり(圧損、差圧が大と々る)循環ガス圧縮機の動力費
が大となるなどの欠点がある。
However, in the conventionally known reactor as shown in FIG.
The structure is such that the space velocity is constant in the longitudinal direction of the tube, and if the space velocity is made small, the amount of heat generated per unit tube length (tube length x circumference = heat transfer area) in the upper region of the reaction tube will be excessive. The temperature of the pipe gas and catalyst increases. As is well known, catalysts have a usable limit temperature.
50. I think it's ℃. (This can be changed by improving the catalyst.) Therefore, in the known example as shown in FIG. 1a, there is a limit to how small the space velocity can be. Furthermore, it is possible to increase the contact time between the gas and the catalyst by increasing the length of the pipe without reducing the space velocity, but the length of steel pipe that can currently be manufactured industrially is 25 to 30 m. In addition to this restriction, if only the tube length is increased without reducing the space velocity, the gas flow resistance between the inlet and outlet of the catalyst-filled reaction tube becomes large (pressure loss and differential pressure become large). There are disadvantages such as high power costs for the circulating gas compressor.

〔本発明の目的〕[Object of the present invention]

本発明は、上記欠点を解消する反応器を提供するもので
あシ、詳細には、反応管の管長方向の温度分布を均一に
なるようKL、かつ、反応管下部に補給水流路を形成さ
せるようにした反応器を提供することを目的とする。
The present invention provides a reactor that eliminates the above-mentioned drawbacks. Specifically, the temperature distribution in the longitudinal direction of the reaction tube is made uniform, and a make-up water flow path is formed in the lower part of the reaction tube. The object of the present invention is to provide a reactor as described above.

〔本発明の構成〕[Configuration of the present invention]

そして、本発明は、2発明からなシ、第1発明は異径反
応管を使用し、管長上方領域の管径を下方領域のそれよ
り小とした点及び第2発明は、さらに反応管下部の管径
を小とした点にある。すなわち、本発明は、 1、 管内に粒状固形触媒を充填した反応管を垂直方向
に位置せしめ、該管内に反応せしめんとするガスを上方
から下方へ流動させて発熱反応を行なわしめると共に、
その反応熱を該管外表面に接せしめた飽和温度の水の蒸
発潜熱により除去する反応器に於いて、該反応管を管長
方向に異径管を組合せて異径反応管を形成せしめ、反応
生成熱量の大きい管長上方領域の管径を反応生成熱量の
小さい管長下方領域の管径に比し小とならしめたことを
特徴とする反応器。
The present invention is based on two inventions, the first invention uses reaction tubes with different diameters, and the tube diameter in the upper region of the tube length is smaller than that in the lower region, and the second invention further provides The reason is that the diameter of the tube has been reduced. That is, the present invention has the following features: 1. A reaction tube filled with a granular solid catalyst is positioned vertically, and a gas to be reacted is caused to flow from above to below in the tube to perform an exothermic reaction.
In a reactor in which the reaction heat is removed by the latent heat of vaporization of water at a saturated temperature in contact with the outer surface of the tube, the reaction tubes are combined with tubes of different diameters in the length direction to form reaction tubes of different diameters, and A reactor characterized in that a tube diameter in an upper region of the tube length where a large amount of heat is generated is made smaller than a tube diameter in a lower tube length region where a small amount of reaction generated heat is generated.

λ 管内に粒状固形触媒を充填した反応管を垂直方向に
位置せしめ、該管内に反応せしめん  −とするガスを
上方から下方へ流動させて発熱反応を行なわしめると共
に、その反応熱を該管外表面に接せしめた飽和温度の水
の蒸発潜熱により除去する反応器において、該反応管を
管長方向に異径管を組合せて異径反応管を形成せしめ、
反応生成熱量の大きい管長上方領域の管径を反応生成熱
量の小さい管長下方領域の管径に比し小とならしめ、か
つ、補給水供給側である反応管下部の管径を小とならし
めたことを特徴とする反応器。
A reaction tube filled with a granular solid catalyst is placed vertically inside the tube, and a gas to be reacted is caused to flow from above to below in the tube to carry out an exothermic reaction, and the reaction heat is transferred to the outside of the tube. In a reactor in which water is removed by the latent heat of vaporization of water at a saturated temperature in contact with the surface, the reaction tubes are combined with tubes of different diameters in the longitudinal direction to form reaction tubes of different diameters,
The diameter of the tube in the upper region of the tube length, where the amount of heat produced by the reaction is large, is made smaller than that in the region below the tube length, where the amount of heat produced by the reaction is smaller, and the diameter of the tube at the bottom of the reaction tube, which is the make-up water supply side, is made smaller. A reactor characterized by:

である。It is.

以下の記載で、本発明を2発明として区別する場合は第
1発明、第2発明と記載し、区別する必要がない場合は
単に本発明と記載する。
In the following description, when the present invention is to be distinguished as two inventions, it will be described as the first invention and the second invention, and when there is no need to distinguish, it will be simply described as the present invention.

以下本発明を図面に基づいて詳細に説明する。The present invention will be explained in detail below based on the drawings.

まず、第1発明を第1〜第4図に基づいて説明すると、
第1図は第1発明の実施例を示す反応器であシ、第2図
は該反応器に於ける異径反応管の1実施例であシ、第3
図は同異径反応管の他の実施例でアシ、第4図は同じく
その他の実施例である。第1図において、符号1〜9は
前述した第10図に基づく公知の反応器で説明したもの
と同一であり、従って、公知の反応器と異なる点のみ説
明すると、第1発明は、小径部の反応管10aと大径部
の反応管101)とからなる異径反応管10からなるも
のである。なお、第1図において、異径反応管10は複
数個設置されているものであるが、図では1個のみ示し
、他は省略しである。
First, the first invention will be explained based on FIGS. 1 to 4.
FIG. 1 shows a reactor showing an embodiment of the first invention, FIG. 2 shows an embodiment of reaction tubes of different diameters in the reactor, and FIG.
The figure shows another embodiment of the same different diameter reaction tube, and FIG. 4 shows another embodiment. In FIG. 1, numerals 1 to 9 are the same as those explained in the known reactor based on FIG. The reaction tube 10 is composed of a reaction tube 10a having a large diameter and a reaction tube 101) having a large diameter. Although a plurality of different diameter reaction tubes 10 are installed in FIG. 1, only one is shown in the figure and the others are omitted.

との異径反応管10を第2図に基づいて説明すると、未
反応ガスが流入する異径反応管10上部の反応速度大の
領域は、適切な管長4だけ管径屯を(i、に比し小とな
らしめる。即ち、空間速度を小とならしめて単位管長(
単位伝熱面積)当シの生成熱量を適切な条件まで抑制し
て温度の上昇を抑制し触媒4の劣化を防止せしめる。
To explain the reaction tube 10 of different diameters based on FIG. In other words, the space velocity is made small and the unit pipe length (
(Unit heat transfer area) The amount of heat generated by this unit is suppressed to an appropriate condition to suppress the temperature rise and prevent deterioration of the catalyst 4.

反応生成物濃度が次第に上昇し反応速度がある条件まで
低下すると管径d2の領域にガスが流入する如くならし
める。d2はdtK比し管径を大とならしめて空間速度
を小とならしめているだめ、管長t、を通過する間はガ
スと触媒の接触時間は大となり、管長を鵞の終端、即ち
触媒充填反芯管の出口ガスのメタノール濃度は従来構造
反応器に比し大とならしめることが可能である。
When the concentration of reaction products gradually increases and the reaction rate decreases to a certain condition, gas is caused to flow into the region of pipe diameter d2. Since d2 has a larger pipe diameter than dtK and a smaller space velocity, the contact time between the gas and the catalyst is longer while the gas passes through the pipe length t, and the pipe length is set at the end of the pipe, i.e., the catalyst-filled reactor. The methanol concentration in the exit gas of the core tube can be made higher than that in conventional reactors.

すなわち、反応平衡濃度に接近せしめることができる。That is, the reaction equilibrium concentration can be approached.

管径d2管長4の領域、すなわち大径部の反応管10b
では、反応速度(反応熱生成速度)が小であるため、空
間速度を小とならしめても単位管長機シの発生熱量は管
壁を介した水側への熱移動速度に適応したものとなυ、
反応温度は適正条件範囲に維持せしめ得る。なお、第2
図のt3は管径遷移領域であって、管径はdlからdl
へ徐々に変化せしめる。4と4の比、dlとa、の比、
4とdlの比、4とd、の比、ム、ムとt3の比は任意
に設定し得るものであυ特に拘束しないが、aI<ax
が本発明の大きい特徴である。
Reaction tube 10b in the region of tube diameter d2 and tube length 4, that is, the large diameter portion
In this case, since the reaction rate (reaction heat generation rate) is small, even if the space velocity is made small, the amount of heat generated by the unit pipe length machine will be adapted to the rate of heat transfer to the water side through the pipe wall. υ,
The reaction temperature can be maintained within a reasonable range of conditions. In addition, the second
t3 in the figure is the pipe diameter transition region, and the pipe diameter is from dl to dl
gradually change to The ratio of 4 and 4, the ratio of dl and a,
The ratio of 4 and dl, the ratio of 4 and d, and the ratio of M and M and t3 can be set arbitrarily and are not particularly restricted, but aI<ax
This is a major feature of the present invention.

第3図は第1発明の異径反応管10の他の実施例であシ
、これは、小径部反応管10a1大径部反応管10b及
び最大径部反応管10cからなるものである。小径部反
応管10a及び大径部反応管tabは第2図と同じであ
るが、この実施例における異径反応管10は、大径部反
応管101)から管径遷移領域kを介して管径d4、管
長ムを有する最大径部反応管10cとしたものである。
FIG. 3 shows another embodiment of the different diameter reaction tube 10 of the first invention, which consists of a small diameter reaction tube 10a, a large diameter reaction tube 10b, and a maximum diameter reaction tube 10c. The small diameter reaction tube 10a and the large diameter reaction tube tab are the same as those shown in FIG. The maximum diameter reaction tube 10c has a diameter d4 and a tube length m.

第4図は第1発明の異径反応管1oのその他の実施例で
あ)、これは、小径部反応管102L及び大径部反応管
10bからなる点では第2図と同じであるが、上部管板
1に固定する異径反応管10の管径asを小径部反応管
10aの管径dlよシも大きくしたものである。
FIG. 4 shows another embodiment of the different diameter reaction tube 1o of the first invention), which is the same as FIG. 2 in that it consists of a small diameter reaction tube 102L and a large diameter reaction tube 10b. The tube diameter as of the different diameter reaction tube 10 fixed to the upper tube plate 1 is also made larger than the tube diameter dl of the small diameter reaction tube 10a.

次に、第2発明を第5図及び第6図に基づいて説明する
と、第5図は第2発明の異径反応管の1実施例であシ、
第6図は同じく他の実施例である。第5図は前述の第2
図に対応するものであ−るが、異なるところは、大径部
反応管101)の下部であって、補給水供給ロア側の反
応管を、管径遷移領域ムを介して管径d3、管長t4と
しだ下部反応管10(lからなυ、この管径d3をd3
<dlとしたものである。
Next, the second invention will be explained based on FIGS. 5 and 6. FIG. 5 shows an embodiment of the different diameter reaction tube of the second invention.
FIG. 6 shows another embodiment. Figure 5 shows the above-mentioned second
This corresponds to the figure, but the difference is that in the lower part of the large-diameter reaction tube 101), the reaction tube on the makeup water supply lower side is connected to the tube diameter d3 through the tube diameter transition region M. The tube length t4 and the bottom reaction tube 10 (from l to υ, this tube diameter d3 is d3
<dl.

第1図に示すように、本発明の反応器はシェル9の下部
に設けられた補給水供給ロアからシェル9内に水7′を
供給するが、異径反応管1゜を反応器径方向に多数設置
した場合(工業的には多数設置するのが通例)には、管
径d!を犬としたため、管と管の間のシェル9側空間が
小となり第2図では反応器中央付近への補給水流路が小
さくなる可能性がある。これを改善するため第2発明で
は、第5図に示すように、補給水流路に相当する管長t
4の管径d3を(13< diとならしめたものである
。dlとd3は等径でも差支え々いが異径でも差支えな
い。ムは管径遷移領域であって、管径はd2からd3に
徐々に変化せしめる。
As shown in FIG. 1, the reactor of the present invention supplies water 7' into the shell 9 from the make-up water supply lower provided at the bottom of the shell 9. When a large number of pipes are installed (industrially, it is common to install a large number of pipes), the pipe diameter d! Since this is made into a dog, the space on the side of the shell 9 between the tubes becomes small, and in FIG. 2, there is a possibility that the make-up water flow path to the vicinity of the center of the reactor becomes small. In order to improve this, in the second invention, as shown in FIG.
dl and d3 may be the same diameter, but may also be different diameters. Mu is the pipe diameter transition region, and the pipe diameter changes from d2 to Gradually change to d3.

また、水蒸気(気水)出口8はシェル9の上部に設けら
れているが、この位置ではat < dxであって当然
ながら反応器゛径方向の水蒸気の移動抵抗は小さく問題
ない旨 第6図は、第2発明の異径反応管10の他の実施例であ
るが、これは小径部反応管10a1大径部反応管101
)及び下部反応管10dからなる点で第5図と同一であ
る。しかし、この実施例では、上部管板1及び下部管板
2に固定する異径反応管10の管径ag及びd6を管径
d1及びd3よシも小としたものである。
In addition, the water vapor (steam/water) outlet 8 is provided at the top of the shell 9, and at this position at < dx, the resistance to movement of water vapor in the radial direction of the reactor is small and there is no problem. is another embodiment of the different diameter reaction tube 10 of the second invention, which includes a small diameter reaction tube 10a1 and a large diameter reaction tube 101.
) and a lower reaction tube 10d. However, in this embodiment, the tube diameters ag and d6 of the different diameter reaction tubes 10 fixed to the upper tube sheet 1 and the lower tube sheet 2 are also smaller than the tube diameters d1 and d3.

さらに1第7図は本発明者等が先に提案した反応器に本
発明を適用した図である。この反応器は、反応ガスをガ
ス人口5から連結管11、反応管内の中心管12を経て
上部室13に供給し、次いで、反応管に導入し、該反応
管内の触媒4と接触反応させた後、ガス出口6から反応
終了ガスとして取シ出すようにしたものである。
Furthermore, FIG. 7 is a diagram in which the present invention is applied to a reactor previously proposed by the present inventors. In this reactor, a reaction gas was supplied from a gas population 5 to an upper chamber 13 via a connecting pipe 11 and a central pipe 12 in the reaction tube, and then introduced into the reaction tube and brought into contact with a catalyst 4 in the reaction tube. Thereafter, the reaction-completed gas is taken out from the gas outlet 6.

第7図はこの種の反応器において、本発明の異径反応管
10を適用したものである。
FIG. 7 shows this type of reactor to which the reaction tube 10 of different diameters of the present invention is applied.

本発明は、第2.3.5図に示すように、管長4の空間
速度を大にすると共に管長4の空間速度を小ならしめる
ことによ)、反応生成物濃度を大とならしめ、同時に触
媒の劣化をも防止するよりにした反応器を提供するもの
である。
As shown in Fig. 2.3.5, the present invention increases the reaction product concentration by increasing the space velocity of the tube length 4 and decreasing the space velocity of the tube length 4. At the same time, the present invention provides a reactor that can prevent deterioration of the catalyst.

本発明の利点を、前述した第9図を定性図とした第8図
(メタノール濃度と温度との関係図)に基づいて詳細に
説明すると、従来公知の等空開速度反応管を有する反応
器では点線A、本発明反応器では実線Bで示す挙動とな
る。先ず、点線入においては、a点の温度、メタノール
濃度で反応管上端から流入したガスは反応管上方領域で
大きい反応速度でメタノール生成反応が起り、第11図
に示す如く温度の上昇が起り、反応生成物濃度の上昇と
共に反応速度が低下して温度が低下して0点(反応管下
端)に至り、メタノール濃度C点で反応器から流出して
行く。
The advantages of the present invention will be explained in detail based on FIG. 8 (relationship diagram between methanol concentration and temperature), which is a qualitative diagram of FIG. 9 described above. In the case of the reactor of the present invention, the behavior is shown by the dotted line A, and the behavior is shown by the solid line B in the reactor of the present invention. First, at the dotted line, the gas flowing from the upper end of the reaction tube at the temperature and methanol concentration at point a undergoes a methanol production reaction at a high reaction rate in the upper region of the reaction tube, and the temperature rises as shown in FIG. 11. As the reaction product concentration increases, the reaction rate decreases, the temperature decreases, and reaches the 0 point (lower end of the reaction tube), and the methanol begins to flow out of the reactor at point C.

b点の温度を触媒可使限界温度以下に維持せしめるため
空間速度を小となし得ないため、メタノール濃度は0点
よりも高くなし得ない。一方、本発明の実線Bにおいて
は、a点の温度、メタノール濃度で反応管上端から流入
したガスは反応管上方のdl、4領域(第8図のa−0
間)では空間速度大とならしめているので温度上昇が効
果的に抑制され、運転条件許容範囲が犬となる。反応管
下方のdm + k領域(図のe−f間)では空間速度
を小(接触時間を犬)とならしめているので、反応管下
端のメタノール濃度はf点という高い値となし得る。
Since the space velocity cannot be made small in order to maintain the temperature at point b below the catalyst usability limit temperature, the methanol concentration cannot be made higher than the zero point. On the other hand, in the solid line B of the present invention, the gas flowing from the upper end of the reaction tube at the temperature and methanol concentration at point a is dl, 4 area (a-0 in Fig. 8) above the reaction tube.
(between), the space velocity is made large, so the temperature rise is effectively suppressed, and the allowable range of operating conditions becomes narrow. In the dm+k region below the reaction tube (between e and f in the figure), the space velocity is made small (the contact time is long), so the methanol concentration at the lower end of the reaction tube can be set to a high value of point f.

本発明は、メタノール合成用反応器として工業的に大き
い価値を有するものであるが、本発明は管内に粒状固形
触媒を充填して管内に反応せしめんとするガスを上方か
ら下方へ流動せしめて発熱反応を起さしめると共にその
反応熱を管外表面に接せしめた水の蒸発潜熱によυ取シ
除いて管内の反応を適正条件範囲に維持せしめんとする
反応器に広く適用できるものであって、メタノール合成
用反応器に用途を限定するものではない。従って、反応
器の管径d1+dl、管長4 + 4 、には特に拘束
しない。また第5図の如<d++dt+dms管長4 
+ k + t4の如く多段にせしめることも妨げない
。また、当然ながら、ガス組成、圧力、温度、触媒の種
類、反応生成物、管数、管材、管厚、シェル側水圧力等
にも拘束されないものである。
The present invention has great industrial value as a reactor for methanol synthesis.The present invention is a reactor for methanol synthesis in which a granular solid catalyst is filled in a tube and the gas to be reacted flows from above to below. It can be widely applied to reactors that cause an exothermic reaction and remove the reaction heat using the latent heat of vaporization of water in contact with the outer surface of the tube to maintain the reaction inside the tube within an appropriate range of conditions. However, the application is not limited to methanol synthesis reactors. Therefore, there are no particular restrictions on the tube diameter d1+dl and tube length 4+4 of the reactor. Also, as shown in Figure 5 <d++dt+dms pipe length 4
It is also possible to provide multiple stages such as + k + t4. Naturally, there are no restrictions on gas composition, pressure, temperature, type of catalyst, reaction product, number of tubes, tube material, tube thickness, shell side water pressure, etc.

また、本発明において、上部管板及び下部管板に挿入し
、固定する部分の異径反応管の管径は、上部管板のそれ
は触媒の抜き出し及び充填が可能であれば良く、また、
両管板の挿入、固定部の管径が小となる程力学的に該両
管板の強度が大となるものである。
In addition, in the present invention, the tube diameters of the different diameter reaction tubes inserted into and fixed in the upper tube sheet and the lower tube sheet may be those of the upper tube sheet as long as they can extract and fill the catalyst, and
The smaller the tube diameter of the insertion and fixing portions of both tube sheets, the greater the mechanical strength of both tube sheets.

〔本発明の効果〕[Effects of the present invention]

本発明は、以上詳記したように、異径反応管を使用し、
管長上方領域の管径を下方領域のそれよシ小としたもの
である(第1発明)から、該反応管の管長方向の温度分
布を均一にすることができる効果が生ずるものである。
As detailed above, the present invention uses reaction tubes with different diameters,
Since the tube diameter in the upper region of the tube length is smaller than that in the lower region (first invention), it is possible to make the temperature distribution of the reaction tube uniform in the tube length direction.

さらに、本発明は、反応管下部の管径を小としたもの(
第2発明)であるから、反応管下部の補給水流路が小さ
くなることがなく、反応器中央付近への補給水がスムー
スに供給できる効果が生ずるものである。
Furthermore, the present invention provides a reaction tube with a smaller tube diameter at the bottom (
(Second invention), the make-up water flow path at the bottom of the reaction tube does not become small, and make-up water can be smoothly supplied to the vicinity of the center of the reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1発明の実施例を示す反応器であり、第2図
は該反応器における異径反応管の1実施例であり、第5
図は同異径反応管の他の実施例であシ、第4図は同じく
その他の実施例である。第5図は第2発明の異径反応管
の1実施例であシ、第6図は同じく他の実施例である。 第7図は本発明者らが先に提案した反応器に本発明を適
用した図である。第8図はメタノール濃度と温度との関
係図であシ、第9図はメタノール平衡濃度に対する圧力
と温度との関係図である。第10図は従来の反応器であ
り、第11図は公知構造の反応器における反応管長方向
の温度分布を示した図である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 第5図 第6図 第8図 温度−+ 第9図 圧力(αta)
FIG. 1 shows a reactor showing an embodiment of the first invention, FIG. 2 shows an embodiment of reaction tubes with different diameters in the reactor, and FIG.
The figure shows another embodiment of the same different diameter reaction tubes, and FIG. 4 shows another embodiment as well. FIG. 5 shows one embodiment of the reaction tube with different diameters according to the second invention, and FIG. 6 shows another embodiment. FIG. 7 is a diagram in which the present invention is applied to the reactor previously proposed by the present inventors. FIG. 8 is a diagram showing the relationship between methanol concentration and temperature, and FIG. 9 is a diagram showing the relationship between pressure and temperature with respect to methanol equilibrium concentration. FIG. 10 shows a conventional reactor, and FIG. 11 shows a temperature distribution in the length direction of the reaction tube in a reactor having a known structure. Sub-agents 1) Meikoku agent Ryo Hagiwara - Figure 5 Figure 6 Figure 8 Temperature - + Figure 9 Pressure (αta)

Claims (1)

【特許請求の範囲】 1、管内に粒状固形触媒を充填した反応管を垂直方向に
位置せしめ、該管内に反応せしめんとするガスを上方か
ら下方へ流動させて発熱反応を行なわしめると共に、そ
の反応熱を該管外表面に接せしめた飽和温度の水の蒸発
潜熱により除去する反応器に於いて、該反応管を管長方
向に異径管を組合せて異径反応管を形成せしめ、反応生
成熱量の大きい管長上方領域の管径を反応生成熱量の小
さい管長下方領域の管径に比し小とならしめたことを特
徴とする反応器。 2、管内に粒状固形触媒を充填した反応管を垂直方向に
位置せしめ、該管内に反応せしめんとするガスを上方か
ら下方へ流動させて発熱反応を行なわしめると共に、そ
の反応熱を該管外表面に接せしめた飽和温度の水の蒸発
潜熱により除去する反応器において、該反応管を管長方
向に異径管を組合せて異径反応管を形成せしめ、反応生
成熱量の大きい管長上方領域の管径を反応生成熱量の小
さい管長下方領域の管径に比し小とならしめ、かつ、補
給水供給側である反応管下部の管径を小とならしめたこ
とを特徴とする反応器。
[Claims] 1. A reaction tube filled with a granular solid catalyst is placed vertically, and a gas to be reacted is caused to flow from above to below in the tube to carry out an exothermic reaction. In a reactor in which the heat of reaction is removed by the latent heat of vaporization of water at a saturated temperature in contact with the outer surface of the tube, the reaction tubes are combined with tubes of different diameters in the length direction to form reaction tubes of different diameters, and the reaction product is removed. A reactor characterized in that the diameter of the tube in the upper region of the tube length where the amount of heat produced is smaller than the tube diameter in the lower region of the tube length where the amount of reaction generated heat is smaller. 2. A reaction tube filled with a granular solid catalyst is positioned vertically, and the gas to be reacted is caused to flow inside the tube from top to bottom to perform an exothermic reaction, and the reaction heat is transferred outside the tube. In a reactor in which water is removed by the latent heat of vaporization of water at a saturated temperature in contact with the surface, the reaction tubes are formed by combining tubes with different diameters in the tube length direction, and the tubes in the upper region of the tube length where the amount of reaction generated heat is large. A reactor characterized in that the diameter of the tube is smaller than that of the lower region of the tube length where the amount of heat generated by the reaction is small, and the tube diameter of the lower portion of the reaction tube on the make-up water supply side is made smaller.
JP17509684A 1984-08-24 1984-08-24 Reactor Pending JPS6154229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17509684A JPS6154229A (en) 1984-08-24 1984-08-24 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17509684A JPS6154229A (en) 1984-08-24 1984-08-24 Reactor

Publications (1)

Publication Number Publication Date
JPS6154229A true JPS6154229A (en) 1986-03-18

Family

ID=15990175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17509684A Pending JPS6154229A (en) 1984-08-24 1984-08-24 Reactor

Country Status (1)

Country Link
JP (1) JPS6154229A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1033167A2 (en) * 1999-03-03 2000-09-06 Basf Aktiengesellschaft Bundle tube reactor with varying internal diameter
WO2003011449A1 (en) * 2001-08-02 2003-02-13 Bp Corporation North America Inc. Flow reactors for chemical conversions with hetergeneouos catalysts
WO2006120027A1 (en) * 2005-05-13 2006-11-16 Ashe Morris Ltd Heat exchanger with varying cross sectional area of conduits
US7297324B2 (en) 2002-03-11 2007-11-20 Battelle Memorial Institute Microchannel reactors with temperature control
WO2008032198A1 (en) * 2006-09-15 2008-03-20 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Variable tube diameter for methane steam reformer (smr)
JP2009520094A (en) * 2005-12-19 2009-05-21 ビーピー エクスプロレーション オペレーティング カンパニー リミテッド Process for the production of condensed phase products from one or more gas phase reactants
WO2010061690A1 (en) * 2008-11-25 2010-06-03 三菱化学株式会社 Reaction method using heat-exchange type reactor, and method for charging fillers in plate reactor
DE102010040757A1 (en) * 2010-09-14 2012-03-15 Man Diesel & Turbo Se Tube reactor
US8206666B2 (en) * 2002-05-21 2012-06-26 Battelle Memorial Institute Reactors having varying cross-section, methods of making same, and methods of conducting reactions with varying local contact time
WO2015068640A1 (en) * 2013-11-07 2015-05-14 株式会社日本触媒 Packing for reaction tube, reaction tube, and reaction method using same
CN108607475A (en) * 2018-04-28 2018-10-02 上海奕玛化工科技有限公司 A kind of preparing ethylene glycol by using dimethyl oxalate plus hydrogen reactor
JP2019098323A (en) * 2017-11-30 2019-06-24 株式会社Ihi Reaction apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1033167A2 (en) * 1999-03-03 2000-09-06 Basf Aktiengesellschaft Bundle tube reactor with varying internal diameter
EP1033167A3 (en) * 1999-03-03 2000-11-22 Basf Aktiengesellschaft Bundle tube reactor with varying internal diameter
WO2003011449A1 (en) * 2001-08-02 2003-02-13 Bp Corporation North America Inc. Flow reactors for chemical conversions with hetergeneouos catalysts
EA008849B1 (en) * 2001-08-02 2007-08-31 ИНЕОС ЮЭсЭй ЭлЭлСи Flow reactors for chemical conversions with heterogeneous catalysts
US7316804B2 (en) 2001-08-02 2008-01-08 Ineos Usa Llc Flow reactors for chemical conversions with heterogeneous catalysts
EP2314372A1 (en) * 2001-08-02 2011-04-27 BP Corporation North America Inc. Flow reactors for chemical conversions with heterogeneous catalysts
AU2002322502B2 (en) * 2001-08-02 2008-05-22 Bp Corporation North America Inc. Flow reactors for chemical conversions with heterogeneous catalysts
US7297324B2 (en) 2002-03-11 2007-11-20 Battelle Memorial Institute Microchannel reactors with temperature control
US8206666B2 (en) * 2002-05-21 2012-06-26 Battelle Memorial Institute Reactors having varying cross-section, methods of making same, and methods of conducting reactions with varying local contact time
WO2006120027A1 (en) * 2005-05-13 2006-11-16 Ashe Morris Ltd Heat exchanger with varying cross sectional area of conduits
JP2009520094A (en) * 2005-12-19 2009-05-21 ビーピー エクスプロレーション オペレーティング カンパニー リミテッド Process for the production of condensed phase products from one or more gas phase reactants
US7977391B2 (en) 2005-12-19 2011-07-12 Bp Exploration Operating Company Limited Process for producing condensed-phase product from one or more gas-phase reactants
WO2008032198A1 (en) * 2006-09-15 2008-03-20 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Variable tube diameter for methane steam reformer (smr)
WO2010061690A1 (en) * 2008-11-25 2010-06-03 三菱化学株式会社 Reaction method using heat-exchange type reactor, and method for charging fillers in plate reactor
DE102010040757A1 (en) * 2010-09-14 2012-03-15 Man Diesel & Turbo Se Tube reactor
US8961909B2 (en) 2010-09-14 2015-02-24 Man Diesel & Turbo Se Shell-and-tube reactor for carrying out catalytic gas phase reactions
WO2015068640A1 (en) * 2013-11-07 2015-05-14 株式会社日本触媒 Packing for reaction tube, reaction tube, and reaction method using same
JP6092421B2 (en) * 2013-11-07 2017-03-08 株式会社日本触媒 Packing for reaction tube, reaction tube, and reaction method using the same
JPWO2015068640A1 (en) * 2013-11-07 2017-03-09 株式会社日本触媒 Packing for reaction tube, reaction tube, and reaction method using the same
US10099189B2 (en) 2013-11-07 2018-10-16 Nippon Shokubai Co., Ltd. Packing for reaction tube, reaction tube, and reaction method using same
JP2019098323A (en) * 2017-11-30 2019-06-24 株式会社Ihi Reaction apparatus
CN108607475A (en) * 2018-04-28 2018-10-02 上海奕玛化工科技有限公司 A kind of preparing ethylene glycol by using dimethyl oxalate plus hydrogen reactor

Similar Documents

Publication Publication Date Title
US4921681A (en) Ethylene oxide reactor
US4822521A (en) Integrated process and apparatus for the primary and secondary catalytic steam reforming of hydrocarbons
US7067695B2 (en) Method of vapor phase catalytic oxidation using multitubular reactor
US5958364A (en) Heat exchange apparatus and process
US4650651A (en) Integrated process and apparatus for the primary and secondary catalytic steam reforming of hydrocarbons
US4690690A (en) Steam reforming hydrocarbons
JPS6154229A (en) Reactor
AU2003248394B2 (en) Process and apparatus for the preparation of synthesis gas
JPH0576748A (en) Method of nonadiabatic catalytic reaction and reactor therefor
JPS58112044A (en) Exothermic chemical reaction method and apparatus
EP0080270B1 (en) Synthesis process and reactor
US4767791A (en) Process for synthesizing methanol with an optimal temperature profile using a concentric pipe reactor
US4938930A (en) Reaction vessel
JPS6124372B2 (en)
US5152977A (en) Process for exothermic heterogeneous synthesis with external recovery of heat
US3431083A (en) Tubular catalytic reactor including heating and cooling means within the reactor
JPH0424090B2 (en)
EP0130807A2 (en) Process for production of ethylene oxide and reactor suitable therefor
Davis et al. Analysis of annular bed reactor for methanation of carbon monoxide
WO1997025136A1 (en) Heat exchange catalytic reactor
JPH04325401A (en) Method and equipment for producing gaseous hydrogen
Lokhat et al. Simulation and Optimization of a Multitubular Reactor Train for Acrylic Acid Production.
Elnashaie et al. The use of mathematical and computer models to explore the applicability of fluidized bed technology for highly exothermic catalytic reactions: II-oxidative dehydrogenation of ethylbenzene to styrene
JPH0454492B2 (en)
JP3924039B2 (en) Reactor