JPH0673625B2 - Reactor - Google Patents
ReactorInfo
- Publication number
- JPH0673625B2 JPH0673625B2 JP26767886A JP26767886A JPH0673625B2 JP H0673625 B2 JPH0673625 B2 JP H0673625B2 JP 26767886 A JP26767886 A JP 26767886A JP 26767886 A JP26767886 A JP 26767886A JP H0673625 B2 JPH0673625 B2 JP H0673625B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reaction
- tube
- reactor
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規なメタノール合成用多管式反応器に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel multi-tube reactor for methanol synthesis.
炭化水素を主成分とするガスを水蒸気改質して主として
水素,一酸化炭素,二酸化炭素の混合ガスを得、これを
原料としてメタノール合成する方法はよく知られてい
る。A method is well known in which a gas containing hydrocarbon as a main component is steam-reformed to obtain a mixed gas of mainly hydrogen, carbon monoxide, and carbon dioxide, and methanol is synthesized using this as a raw material.
この種のメタノール合成の一例を表1(出典;触媒学会
編触媒講座NO.6「触媒反応装置とその設計」294頁,講
談社サイエンテイフイク刊,1985年12月)に、その一般
に用いられているメタノール合成プラントの機器配列と
管系を第6図に示す。An example of this kind of methanol synthesis is commonly used in Table 1 (Source: Catalysis Society of Japan, Catalyst Lecture NO.6 “Catalyst Reactor and its Design”, p. 294, published by Kodansha Scientific, December 1985). Figure 6 shows the equipment arrangement and pipe system of the existing methanol synthesis plant.
第6図において、炭化水素の水蒸気改質系より得られた
主として水素,一酸化炭素,二酸化炭素よりなる合成原
料ガス1は、合成ガス圧縮機2により圧縮後、メタノー
ル分離器3で分離された循環ガス4と混合され、循環ガ
ス圧縮機5で更に圧縮された後、熱交換器6で加熱さ
れ、メタノール合成反応器7に供給されメタノール合成
反応が行なわれる。合成済みのガスは熱交換器8で冷却
され、メタノール分離器3に送られ、こゝで循環ガス4
となる未反応ガスと粗メタノール液9に分離され、循環
ガス4の一部はパージガス10として一部系外に放出され
るが大部分は前述のように循環される。 In FIG. 6, a synthetic raw material gas 1 mainly composed of hydrogen, carbon monoxide and carbon dioxide obtained from a hydrocarbon steam reforming system was compressed by a synthetic gas compressor 2 and then separated by a methanol separator 3. After being mixed with the circulating gas 4 and further compressed by the circulating gas compressor 5, it is heated by the heat exchanger 6 and supplied to the methanol synthesizing reactor 7 to carry out the methanol synthesizing reaction. The synthesized gas is cooled by the heat exchanger 8 and sent to the methanol separator 3, where the circulating gas 4
The unreacted gas and the crude methanol solution 9 are separated, and a part of the circulating gas 4 is released as a purge gas 10 to the outside of the system, but most of it is circulated as described above.
第6図のメタノール合成反応器7としては、複数個の
反応管の管内に粒状固形触媒を充填し、この触媒層に水
素,一酸化炭素,二酸化炭素を有意物質とした加圧混合
ガスを流動、させて 2H2+CO→CH3OH……(1) という接触反応を生じさせると共に、適正反応温度より
も低い温度の飽和条件の加圧水を該反応管の外表面に位
置させて(1)式の発熱反応の進行に伴なつて発生する
熱を反応管の管壁を介した熱移動により水の蒸発潜熱に
転換し反応温度を適正条件範囲に維持しようとする反応
器(特公昭56-22854号公報参照)及び本発明者らが先
に提案してなる反応器、すなわち複数個の反応管の中央
に中心管を位置させ、反応管と中心管に囲まれた環状空
間を粒状触媒充填部とし、該中心管の下方より上方へ未
反応供給ガスが流通し、かつ該環状触媒層においては上
方より下方へガスが流通するようにした発熱反応を行わ
す反応器であつて、未反応供給ガスが流通する中心管が
上部に設置された一つ以上の混合室に連結され、該混合
室には中心管を出た未反応供給ガスより低い温度の冷い
未反応供給ガス導入部が設けられた反応器(特開昭60-2
25632号)などがある。As the methanol synthesis reactor 7 of FIG. 6, a plurality of reaction tubes are filled with a granular solid catalyst, and a pressurized mixed gas containing hydrogen, carbon monoxide, and carbon dioxide as significant substances is flowed in the catalyst layer. Then, the catalytic reaction of 2H 2 + CO → CH 3 OH (1) is generated, and pressurized water under saturated conditions at a temperature lower than the appropriate reaction temperature is positioned on the outer surface of the reaction tube (1). Reactor that tries to maintain the reaction temperature within the proper range by converting the heat generated by the exothermic reaction of water into the latent heat of vaporization of water by heat transfer through the wall of the reaction tube (Japanese Patent Publication No. 56-22854). (See Japanese Laid-Open Patent Publication No. 2003-242242) and a reactor previously proposed by the present inventors, that is, a central tube is located at the center of a plurality of reaction tubes, and an annular space surrounded by the reaction tubes and the central tube is provided with a granular catalyst filling section. And the unreacted supply gas flows from below to above the central tube, and A reactor for performing an exothermic reaction in which the gas flows from the upper side to the lower side in the catalyst layer, the central tube through which the unreacted supply gas flows is connected to one or more mixing chambers installed at the upper part. And a reactor provided with a cold unreacted feed gas introduction part having a temperature lower than that of the unreacted feed gas exiting the central tube (JP-A-60-2
25632) and so on.
上記の反応器の概略を第7図に示す。この反応器には
複数個(図では1個のみ示す)の反応管11が設けられて
おり、該管11内には第7図に示すように固形粒状触媒12
を充填し、この触媒層をガスが移動しつつ接触反応によ
りメタノールを生成し、反応熱は反応管11外に接した水
に伝達させて水蒸気を得る。An outline of the above reactor is shown in FIG. This reactor is provided with a plurality of (only one is shown in the figure) reaction tubes 11, and inside the tubes 11, as shown in FIG.
And methanol is generated by a catalytic reaction while the gas moves through this catalyst layer, and the heat of reaction is transferred to the water in contact with the outside of the reaction tube 11 to obtain steam.
圧縮機(第6図中の2と5)で昇圧され、熱交換器(第
6図中の6)で予熱されたガス(未反応ガス)は、第7
図において、上部鏡13と上部管板14で仕切られた空間イ
内に送入される。このガスは複数個の反応管11内へ分散
流入し、(1)式の接触反応を生じつつ反応管11内を上
から下へ移動し、下部管板15と下部鏡16で仕切られた空
間ロへ流出し、その後、下部鏡16に設けられたガス出口
ノズルから取出される。上下部管板14,15と胴17、およ
び反応管11で囲まれた空間ハには飽和温度の加圧水が流
入されている。The gas (unreacted gas) that has been pressurized by the compressor (2 and 5 in FIG. 6) and preheated by the heat exchanger (6 in FIG. 6) is
In the figure, it is fed into a space a partitioned by an upper mirror 13 and an upper tube sheet 14. This gas disperses and flows into a plurality of reaction tubes 11 and moves in the reaction tubes 11 from top to bottom while causing the catalytic reaction of the formula (1), and is a space partitioned by a lower tube sheet 15 and a lower mirror 16. Then, it is taken out from the gas outlet nozzle provided in the lower mirror 16. Pressurized water at a saturated temperature is introduced into the space c surrounded by the upper and lower tube plates 14 and 15, the body 17, and the reaction tube 11.
また、上記の反応器の概略を第8図に示す。この反応
器は熱交換器(第6図中の6)を経由しないガスを用い
る。従つて、反応器に導入されるガスの温度は30〜150
℃と接触反応を生ぜさせるには低い温度であり、この点
が上記の反応器の場合と異なる。The outline of the above reactor is shown in FIG. This reactor uses a gas that does not pass through a heat exchanger (6 in FIG. 6). Therefore, the temperature of the gas introduced into the reactor is 30-150.
This is different from the case of the above-mentioned reactor because the temperature is low to cause the catalytic reaction with C.
この未反応ガスは、第8図において、下部鏡16と仕切板
18で囲まれた空間ホに流入する。その後、複数個(図で
は1個のみ示す)の反応管11内に位置された中心管19内
に分散流入し、該中心管19内を下から上へ流動し、上部
鏡13と上部管板14で仕切られた空間ヘ内へ流入する。こ
のガスは中心管19内を上昇する過程で接触反応熱を管壁
19を介した伝熱により与えられる(加熱昇温される)、
即ちこの過程でガスは適正温度に予熱されると共に、接
触反応温度の過上昇を防止する。このように中心管19は
熱交換器として機能し、未反応ガスは冷媒としての役割
を有する。This unreacted gas is the lower mirror 16 and the partition plate in FIG.
It flows into the space e surrounded by 18. After that, the plurality of (only one is shown in the figure) dispersion flows into the central tube 19 located in the reaction tubes 11, flows in the central tube 19 from bottom to top, and the upper mirror 13 and the upper tube sheet. It flows into the space partitioned by 14. This gas transfers heat of contact reaction to the wall of the tube as it rises in the central tube 19.
Given by heat transfer via 19 (heated and heated),
That is, in this process, the gas is preheated to an appropriate temperature and prevents the catalytic reaction temperature from rising excessively. In this way, the central tube 19 functions as a heat exchanger, and the unreacted gas has a role as a refrigerant.
空間ヘ内に流入させられた未反応ガスは、反応管11と中
心管19の間の円環柱状空間に充填された触媒12層を上か
ら下へ流動し、接触反応を行ない、下部管板15と仕切板
18で構成される空間トに流出し、その後ガス出口ノズル
から取出される。The unreacted gas flowing into the space flows from the top to the bottom of the catalyst 12 layer filled in the annular columnar space between the reaction tube 11 and the central tube 19 to cause a catalytic reaction, and the lower tube sheet. 15 and dividers
It flows out into a space composed of 18 and then taken out from a gas outlet nozzle.
この円環柱状空間をガスが移動しながら接触反応を生じ
る過程で発生する熱が上記の中心管19内のガスに与えら
れると共に、反応管11外に接した飽和温度の加圧水チに
反応管11の管壁を介した熱移動により与えられ、反応温
度の過上昇を防止する。水に与えられた熱は水蒸気とし
て取出し、動力用などの用途に利用する。The heat generated in the process of causing the contact reaction while the gas moves in the annular columnar space is given to the gas in the central tube 19 and the reaction tube 11 is in contact with the pressurized water at the saturation temperature outside the reaction tube 11. It is provided by the heat transfer through the tube wall of and prevents the reaction temperature from rising excessively. The heat given to water is taken out as water vapor and used for power and other purposes.
ところで、上記のようなメタノール合成反応器に用いら
れる触媒として、現在最も優れている銅系触媒は、適正
な反応温度範囲が220〜280℃であつて、この温度以上に
なると触媒の活性低下、平衡メタノール濃度の低下、好
ましくない副反応生成物の増加が生じるという欠点があ
る。この温度制御がメタノール合成用反応器の構造の良
否を支配する大きい要因となる。特に、触媒の改良によ
り反応速度が大となるに従い発生熱量も大となり、温度
制御技術が大きい問題となり、この点を解決しないと空
間速度を小とすることができない。By the way, as the catalyst used in the methanol synthesis reactor as described above, the most excellent copper-based catalyst at present is a proper reaction temperature range of 220 to 280 ° C., and the activity of the catalyst decreases when the temperature is higher than this temperature. There is a drawback that the equilibrium methanol concentration is lowered and undesirable side reaction products are increased. This temperature control is a major factor that controls the quality of the structure of the reactor for methanol synthesis. In particular, as the reaction rate increases with the improvement of the catalyst, the amount of heat generated also increases, which causes a serious problem in the temperature control technique. Unless this point is solved, the space velocity cannot be reduced.
この空間速度を小にすることができれば、触媒層をガス
が移動する際のガス流動抵抗、即ち圧力損失が小とな
り、循環ガス圧縮機の駆動エネルギー(動力費)を小と
することができると共に、接触反応時間が大となり、反
応器内のメタノール生成量を大とすることができる(平
衡濃度に近づける)という工業的な利点がある。If this space velocity can be made small, the gas flow resistance when the gas moves through the catalyst layer, that is, the pressure loss becomes small, and the driving energy (power cost) of the circulating gas compressor can be made small. The catalytic reaction time is long and the amount of methanol produced in the reactor can be large (close to the equilibrium concentration), which is an industrial advantage.
しかし、上記のような構造では反応管の管壁を介した
熱移動量に制限があり、反応器の性能として限界があ
る。即ち、金属壁面で水が水蒸気泡を発生しながら熱移
動を行なう時の水側の熱伝達係数αは約10,000kcal/m2
・h・℃であり、これを大巾に増加させることは不可能
である。また一方、反応管内のガスと金属壁面間の熱伝
達係数は、圧力、ガス組成、流速により若干変動するも
α=1,000〜3,000kcal/m2・h・℃であり、これを大巾
に増加させることも不可能である。However, in the above structure, the amount of heat transfer through the tube wall of the reaction tube is limited, and the performance of the reactor is limited. That is, the heat transfer coefficient α on the water side when water transfers while generating steam bubbles on the metal wall surface is about 10,000 kcal / m 2
It is h · ° C, and it is impossible to increase it significantly. On the other hand, the heat transfer coefficient between the gas in the reaction tube and the metal wall surface is α = 1,000 to 3,000 kcal / m 2 · h · ° C, although it fluctuates slightly depending on the pressure, gas composition, and flow rate, and this is greatly increased. It is impossible to let them do it.
従つて、反応管の外表面に接触させた水に対する熱移動
のみでは今後の高性能反応器としては充分でなく、本発
明者らは反応管の中央に中心管を位置させ、この中心管
を伝熱管、即ち熱交換器として機能させた上記の反応
器を提案したのである。Therefore, the heat transfer to water brought into contact with the outer surface of the reaction tube is not sufficient as a high-performance reactor in the future, and the inventors have positioned the central tube in the center of the reaction tube and He proposed the above-mentioned reactor functioning as a heat transfer tube, that is, a heat exchanger.
なお、第6図において、メタノール分離器3で分離され
たガス4の組成は表1のパージガス組成で明らかなよう
にCO,CO2/H2比は小さく第6図中のH点で約0.05であ
る。一方、水蒸気改質系から供給されるガス1は表1の
合成ガス圧縮機入口ガス組成で明らかなようにCO,CO2/H
2比が大きく第6図中のG点で約0.30である。これは一
例であつて、水蒸気改質炉に供給される天然ガスの組成
C/H比、メタノール合成反応器の性能などで異なる。し
かし、具体的な値には若干の変動はあるものの、メタノ
ール分離器3出口ガス4と水蒸気改質系からの補給ガス
1との間でCO,CO2/H2比には大きい差がある。Incidentally, in FIG. 6, the composition of the gas 4 separated by the methanol separator 3 has a small CO, CO 2 / H 2 ratio as is clear from the purge gas composition of Table 1, and is about 0.05 at the point H in FIG. Is. On the other hand, the gas 1 supplied from the steam reforming system is CO, CO 2 / H as shown in the gas composition at the inlet of the synthesis gas compressor in Table 1.
The 2 ratio is large and is about 0.30 at point G in FIG. This is an example, and the composition of the natural gas supplied to the steam reformer
It depends on the C / H ratio and the performance of the methanol synthesis reactor. However, there is a large difference in the CO, CO 2 / H 2 ratio between the outlet gas 4 of the methanol separator 3 and the makeup gas 1 from the steam reforming system, although there are some fluctuations in the concrete values. .
表1におけるメタノール合成反応器7入口ガスは、水蒸
気改質系からの補給ガス1に対しメタノール分離器出口
ガスを3.75の割合で混合させている。これによりCO,CO2
/H2比約0.09の状態で反応器7内に送入させ、触媒に接
触させている。For the inlet gas of the methanol synthesis reactor 7 in Table 1, the outlet gas of the methanol separator is mixed at a ratio of 3.75 with respect to the supplementary gas 1 from the steam reforming system. As a result, CO, CO 2
The / H 2 ratio of about 0.09 is fed into the reactor 7 and brought into contact with the catalyst.
上記の構造の反応器を用いてメタノール合成反応を行
なわせた時の反応管の長さ方向の温度分布を第9図に示
す〔出典;野沢他「メタノール」化学工学Vol.46NO.9
(1982)512頁〕に示す。第9図(A)は第7図の反応
器と同じものを、第9図(B)は第9図(A)の対応位
置における温度分布を示している。Figure 9 shows the temperature distribution along the length of the reaction tube when a methanol synthesis reaction is performed using the reactor with the above structure [Source: Nozawa et al. "Methanol" Chemical Engineering Vol.46 NO.9
(1982) 512]. FIG. 9 (A) shows the same reactor as that of FIG. 7, and FIG. 9 (B) shows the temperature distribution at the corresponding position in FIG. 9 (A).
第9図(A),(B)に示すように触媒層入口で温度が
高くなるのは (1)流入するガスのメタノール濃度が実質的にゼロで
あり、反応平衡濃度との差が大きい、 (2)未反応のCO,CO2濃度が高い、 という理由から反応速度が大きい(単位管長即ち単位伝
熱面積当りの発生熱量が大きい)ためであり、これは触
媒活性向上、空間速度小により更に顕著となるはずであ
る。As shown in FIGS. 9A and 9B, the temperature rises at the catalyst layer inlet: (1) The methanol concentration of the inflowing gas is substantially zero, and the difference from the reaction equilibrium concentration is large. (2) This is because the reaction rate is large (the amount of heat generated per unit tube length, that is, the unit heat transfer area is large) because the unreacted CO and CO 2 concentrations are high. It should be even more prominent.
なお、この第9図では温度上昇−反応速度上昇という要
因も含まれている。Note that FIG. 9 also includes the factor of temperature increase-reaction rate increase.
また、触媒層入口、即ち第9図(A)反応管の上方域か
ら下方に行くに従い温度は次第に低下するが、これは 粒状固形触媒に接するガスが有意濃度のメタノールを
含有したものになり、反応平衡濃度との差はあるものの
上記(1)程のものではない 未反応のCO,CO2濃度が上記(2)よりも低下している という理由により反応速度が小となるためである。Further, the temperature gradually decreases as it goes downward from the catalyst layer inlet, that is, from the upper region of the reaction tube in FIG. 9 (A), which means that the gas in contact with the granular solid catalyst contains a significant concentration of methanol, This is because, although there is a difference with the reaction equilibrium concentration, the reaction rate is small because the unreacted CO and CO 2 concentrations, which are not as high as those in (1) above, are lower than in (2) above.
換言すれば、この第9図の反応器は管長方向の反応負荷
分布が大きく異なり、触媒層入口付近の負荷が著しく大
きい(大に過ぎる)という問題を有している。In other words, the reactor shown in FIG. 9 has a problem that the reaction load distribution in the tube length direction is greatly different and the load in the vicinity of the catalyst layer inlet is extremely large (too large).
一方、本発明者らが提案した上記の反応器は中心管を
介した熱移動により第9図よりも大巾な改善はあるもの
の、傾向としては第9図に近い挙動を示す。On the other hand, the above-mentioned reactor proposed by the present inventors shows a behavior similar to that of FIG. 9 although there is a great improvement from that of FIG. 9 due to heat transfer through the central tube.
この温度上昇は、前述のように、触媒の失活、好ましく
ない副反応生成物増加の点で好ましくなく、空間速度を
小とする際の障害となる。As described above, this increase in temperature is not preferable in terms of deactivation of the catalyst and undesired increase of side reaction products, and becomes an obstacle in reducing the space velocity.
本発明は、以上のような欠点のない反応器を提案するも
のである。The present invention proposes a reactor without the above drawbacks.
本発明は、縦方向に位置させた複数個の反応管を上下の
管板に固定させると共に該反応管の中央に中心管を位置
させ、反応管と中心管で構成された円環状空間に粒状固
形触媒を充填し該触媒に水素,一酸化炭素,二酸化炭素
を有意物質とした加圧混合ガスを接触させてメタノール
合成反応を行なわせ、かつその反応熱を反応管外に位置
させた飽和温度の加圧水に移行させて水蒸気を得るよう
にした反応器において、各反応管の粒状固形触媒を充填
した円環状空間の上端からは気液分離で分離したガスを
循環ガス圧縮機で昇圧して流入するようにすると共に、
各中心管の管内には水蒸気改質法などの手段で製造した
補給ガスが流入するようにし、該中心管の管長方向の任
意の位置から該中心管の管壁を貫通した複数個のガス流
入孔より接触反応を生じつつある触媒層内へ上記補給ガ
スが流入するようにして接触反応温度の過上昇を防止す
るようにしたことを特徴とする反応器に関するものであ
る。According to the present invention, a plurality of reaction tubes positioned in the vertical direction are fixed to upper and lower tube plates, a central tube is positioned in the center of the reaction tubes, and a granular space is formed in an annular space composed of the reaction tube and the central tube. Saturation temperature at which a solid catalyst is filled and a pressurized mixed gas containing hydrogen, carbon monoxide, and carbon dioxide as significant substances is brought into contact with the catalyst to carry out a methanol synthesis reaction, and the reaction heat is located outside the reaction tube. In the reactor that is converted to pressurized water to obtain water vapor, the gas separated by gas-liquid separation is pressurized by a circulating gas compressor from the upper end of the annular space filled with the granular solid catalyst in each reaction tube and flows in. As well as
Make-up gas produced by means such as steam reforming is allowed to flow into each central tube, and a plurality of gas inflows through the tube wall of the central tube from any position in the longitudinal direction of the central tube. The present invention relates to a reactor characterized in that the above-mentioned supplementary gas is allowed to flow into a catalyst layer in which a catalytic reaction is occurring from a hole to prevent an excessive rise in the catalytic reaction temperature.
本発明反応器は、その一例を第1図(A)に示すよう
に、前記の反応器と同様、複数個〔第1図(A)では
1個のみ示す〕反応管11の中央に中心管19を位置させ
る。但し、この中心管19は反応管11の管長全体に設ける
必要はなく、第1図(A)に示すように反応管11の管長
の中間位置までとしてもよく、かつ第1図(B)に示す
ように中心管19の任意の位置にガス流出孔20を設ける。
複数個の反応管11は上下部の管板14,15に取付けられ
る。各中心管19は上端は仕切板18に取付けられ、下端は
端蓋21により閉じる。反応管11内には粒状固形触媒12を
充填する。反応管11内の触媒12は第1図(C)(D)の
ような充填形態となる。なお、第1図(C)は第1図
(A)の点における断面図、第1図(D)は第1図
(A)の点における断面図である。As shown in FIG. 1 (A), one example of the reactor of the present invention is a central tube at the center of a plurality of reaction tubes [only one is shown in FIG. Position 19. However, the central tube 19 does not have to be provided over the entire length of the reaction tube 11, but may be up to an intermediate position of the length of the reaction tube 11 as shown in FIG. 1 (A), and as shown in FIG. 1 (B). As shown, a gas outlet hole 20 is provided at an arbitrary position of the center tube 19.
The plurality of reaction tubes 11 are attached to the upper and lower tube plates 14 and 15. Each center tube 19 has its upper end attached to the partition plate 18 and its lower end closed by an end cover 21. The reaction tube 11 is filled with a granular solid catalyst 12. The catalyst 12 in the reaction tube 11 is in a packed form as shown in FIGS. Note that FIG. 1 (C) is a sectional view at the point of FIG. 1 (A), and FIG. 1 (D) is a sectional view at the point of FIG. 1 (A).
中心管19には反応器7補給ガス1として水蒸気改質法な
どで製造されたガスが流入するようにする。一方、第3
図のように、気液分離器3でメタノール(水および少量
の副反応生成物と溶液ガスを含む)液を分離した後の循
環ガス4、もしくはこれに若干量の新らしい補給ガス1
を添加したガスは熱交換器8で予熱されて反応器7の循
環ガスノズルから供給され、反応管11内へ流入するよう
にする。A gas produced by a steam reforming method or the like is allowed to flow into the central tube 19 as a supplementary gas 1 for the reactor 7. On the other hand, the third
As shown in the figure, the circulation gas 4 after separating the methanol (containing water and a small amount of side reaction products and solution gas) liquid in the gas-liquid separator 3 or a small amount of a new make-up gas 1
The gas added with is preheated by the heat exchanger 8 and supplied from the circulating gas nozzle of the reactor 7 so as to flow into the reaction tube 11.
前記したように、気液分離器3出口ガス4はCO,CO2/H2
比が小さく、例えば前記表1のとおりであり、換言すれ
ば反応有意物質濃度が小さい。As mentioned above, the gas-liquid separator 3 outlet gas 4 is CO, CO 2 / H 2
The ratio is small, for example, as shown in Table 1 above, in other words, the reaction significant substance concentration is small.
即ち本発明は、メタノール濃度小の状態の未反応ガス4
が反応管11内の触媒12に接する時のCO,CO2/H2比を前記
した第6,7,8図の従来のものに比し小とすることができ
る構造の反応器である点に第1の特徴を有する。That is, according to the present invention, the unreacted gas with a low methanol concentration 4
Is a reactor having a structure in which CO, CO 2 / H 2 ratio when contacting the catalyst 12 in the reaction tube 11 can be made smaller than the conventional one shown in FIGS. 6, 7, and 8 described above. Has the first feature.
なお、反応平衡濃度との差が大であつても反応有意物質
の濃度が小であれば反応速度が大となり得ないことは当
然の理である。It is a matter of course that even if the difference from the reaction equilibrium concentration is large, the reaction rate cannot be high if the concentration of the reaction significant substance is small.
また本発明は、第3図に示すように触媒12層を移動しつ
つあるガス中のメタノール濃度が有意値に達した後に該
ガス中にCO,CO2/H2比の大きい反応器補給ガス1を添加
する、即ちCO,CO2の分圧を上げることのできる構造の反
応器である点に第2の特徴を有する。この反応器補給ガ
ス1は前述の第1図(B)のように中心管19内を移動
し、中心管19の管壁に設けたガス流出孔20(複数)から
触媒層12内のガスに補給される。Further, as shown in FIG. 3, according to the present invention, after the methanol concentration in the gas moving in the catalyst 12 layer reaches a significant value, CO, CO 2 / H 2 ratio in the gas is large in the reactor make-up gas. The second feature is that the reactor has a structure in which 1 can be added, that is, the partial pressure of CO and CO 2 can be increased. The reactor make-up gas 1 moves in the central tube 19 as shown in FIG. 1 (B) described above, and from the gas outflow holes 20 (plural) provided in the tube wall of the central tube 19 to the gas in the catalyst layer 12. Will be replenished.
なお、ガス中のメタノール濃度が有意値であれば、CO,C
O2分圧を上昇させても反応速度が過大となり得ないこと
は当然の理である。If the methanol concentration in the gas is significant, CO, C
It goes without saying that the reaction rate cannot be too high even if the O 2 partial pressure is increased.
更に本発明は前記の反応器のように中心管19内を流動
させるガスに冷媒としての役割を持たせることも含まれ
る。Further, the present invention also includes making the gas flowing in the central tube 19 have a role as a refrigerant like the above-mentioned reactor.
中心管19内へ供給する補給ガス1は圧縮機2吐出ガスを
ガス予熱器(図示省略)を経由して予熱して送入するこ
ともでき、また一方では接触反応温度よりも低い40〜15
0℃のガスを送入し、接触反応温度制御に用いることも
できる。The replenishment gas 1 supplied into the central tube 19 can be preheated with the gas discharged from the compressor 2 via a gas preheater (not shown), and on the other hand, 40 to 15 lower than the contact reaction temperature.
It is also possible to feed in a gas at 0 ° C. and use it for controlling the temperature of the catalytic reaction.
本発明において、中心管19を第1図(A)のように反応
管11の管長の中間の位置までとする場合、中心管有の位
置と中心管無の位置では、触媒12の充填状況が第1図
(C)(D)に示すように異なる。従つて、反応管11径
を同一とした場合は、中心管19の有無で空間速度が異な
ることになるが、これは反応速度が小となる領域、即ち
ガス中のメタノール濃度が上昇した領域では、接触反応
時間が大となるためメタノール生成量が増加(反応器7
出口メタノール濃度が上昇)する、ガスの流動抵抗が小
となるため圧損が小となるという利点があり、これは本
発明の第3の特徴である。In the present invention, when the central tube 19 is set to a position midway between the tube lengths of the reaction tube 11 as shown in FIG. 1 (A), the filling state of the catalyst 12 is different between the position with the central pipe and the position without the central pipe. It differs as shown in FIGS. 1 (C) and (D). Therefore, when the diameter of the reaction tube 11 is the same, the space velocity is different depending on the presence or absence of the central tube 19, but this is in the region where the reaction velocity is small, that is, in the region where the concentration of methanol in the gas is increased. , The contact reaction time becomes long, so the amount of methanol produced increases (reactor 7
There are advantages that the outlet methanol concentration rises) and the gas flow resistance becomes small, so that the pressure loss becomes small. This is the third feature of the present invention.
但し、本発明の実施形態として第4図に示すような場合
もあり、この場合はこの第3の特徴はなくなる。However, there is a case as shown in FIG. 4 as an embodiment of the present invention, and in this case, the third feature is eliminated.
〔作用〕〔実施例〕 本発明は、第3図に示すように、反応器7から出たガス
は熱交換器8で冷却され、メタノールを凝縮液化し、気
液分離器3でメタノール液を分離する。該気液分離器3
で分離されたガス4は一部をパージ10した後、残余のガ
ス循環ガス圧縮機5で昇圧し、熱交換器8で予熱した
後、反応器7に送入される。CO,CO2/H2比を調節するた
め若干量の補給ガス1を加えてもよい。[Operation] [Example] In the present invention, as shown in FIG. 3, the gas discharged from the reactor 7 is cooled by the heat exchanger 8, the methanol is condensed and liquefied, and the methanol liquid is separated by the gas-liquid separator 3. To separate. The gas-liquid separator 3
After partly purging 10 of the gas 4 separated in step 1, the residual gas circulating gas compressor 5 boosts the pressure, preheats it in the heat exchanger 8, and then sends it to the reactor 7. Some amount of make-up gas 1 may be added to adjust the CO, CO 2 / H 2 ratio.
図示省略の水蒸気改質などの手段で製造された新らしい
補給ガス1はCO,CO2/H2比が大きいが、このガスの全量
(もしくは大部分)は、循環ガス4と混合することな
く、反応器7に送入される。温度を調節するために図示
省略の熱交換器で予熱してもよい。The new make-up gas 1 produced by means such as steam reforming (not shown) has a large CO, CO 2 / H 2 ratio, but the total amount (or most) of this gas does not mix with the circulating gas 4. , Sent to the reactor 7. It may be preheated by a heat exchanger (not shown) to adjust the temperature.
なお第3図は第1,4図の構造の反応器に対応したもの
で、第2図の構造の反応器ではガス送入点の修正を要す
る。Note that FIG. 3 corresponds to the reactor having the structure shown in FIGS. 1 and 4, and in the reactor having the structure shown in FIG.
また、第1図(A)において、循環ガス4は仕切板18と
上部管板14で区切られた空間へ流入し、該空間から
各反応管11の上端へ分散流入し、触媒12層を上から下へ
接触反応によりメタノールを生じつつ移動して行く。水
蒸気改質などで製造された新らしい補給ガス1は上部鏡
13と仕切板18で区切られた空間へ流入し、該空間か
ら各中心管19の上端へ入り、流出孔20から触媒12層へ分
散流入する。Further, in FIG. 1 (A), the circulating gas 4 flows into the space partitioned by the partition plate 18 and the upper tube plate 14, and diffuses and flows into the upper end of each reaction tube 11 from the space, and the catalyst 12 layer is moved upward. From the bottom to the bottom while producing methanol by contact reaction. A new make-up gas 1 produced by steam reforming etc. is an upper mirror
It flows into a space partitioned by 13 and a partition plate 18, enters the upper end of each central tube 19 from the space, and diffuses and flows into the catalyst 12 layer from the outflow holes 20.
中心管19は、第1図(B)に示すように、仕切板〔第1
図(A)の18〕と触媒12層上端までの管長について
は、連結管の役割りをなす。触媒12層上端からガス流出
孔20域までの管長は補給ガス予熱領域(熱交換器の役
割)である。換言すれば補給ガス1は冷媒として機能し
接触反応温度の過上昇を抑制する。この管長の区間は
循環ガス4中のCO,CO2とH2の接触反応によりメタノール
が生成される。As shown in FIG. 1 (B), the central tube 19 has a partition plate [first
18] of FIG. (A) and the pipe length up to the upper end of the 12th layer of the catalyst play the role of a connecting pipe. The pipe length from the upper end of the catalyst 12 layer to the gas outflow hole 20 region is the make-up gas preheating region (role of heat exchanger). In other words, the supplementary gas 1 functions as a refrigerant and suppresses an excessive rise in the contact reaction temperature. In this section of pipe length, methanol is produced by the catalytic reaction of CO, CO 2 and H 2 in the circulating gas 4.
中心管19の管長は、有意メタノール濃度に達した循環
ガス4中にCO,CO2/H2比の大きい補給ガス1を添加する
領域である。これは中心管19の管壁に設けられた複数個
の小孔(ガス流出孔)20により行われる。このガス流出
孔20の孔径、孔の数、位置、分布、差圧については何ら
制限はない。The tube length of the central tube 19 is a region in which the supplementary gas 1 having a large CO, CO 2 / H 2 ratio is added to the circulating gas 4 which has reached a significant methanol concentration. This is done by a plurality of small holes (gas outflow holes) 20 provided in the tube wall of the central tube 19. There are no restrictions on the diameter, number, position, distribution, and differential pressure of the gas outflow holes 20.
管長は空間速度を大に維持する領域である。The pipe length is a region where the space velocity is maintained at a high level.
,,,の管長、中心管19の径についても何ら制
限はない。There are no restrictions on the tube length of the ,,, or the diameter of the central tube 19.
第1図(A)において、触媒12層で反応しつつ流下した
ガスは下部管板15と下部鏡16で構成された空間に流入
し、反応器7外へ取出される。上下部管板14,15と胴17
で仕切られた空間には飽和温度の加圧水が位置されて
いる。当然ながらその温度は適正な接触反応温度よりも
低い条件に維持される。In FIG. 1 (A), the gas flowing down while reacting in the catalyst 12 layer flows into the space defined by the lower tube sheet 15 and the lower mirror 16 and is taken out of the reactor 7. Upper and lower tube sheets 14 and 15 and body 17
Pressurized water at a saturation temperature is located in the space partitioned by. Of course, the temperature is maintained below the proper catalytic reaction temperature.
本発明反応器の他の実施形態を示す第2図(A)におい
て、循環ガス4は上部鏡13と仕切板18で区切られた空間
から各反応器11上端に流入される。補給ガス1は仕切
板18と上部管板14で区切られた空間から各中心管19上
端に流入される。In FIG. 2 (A) showing another embodiment of the reactor of the present invention, the circulating gas 4 flows into the upper end of each reactor 11 from the space partitioned by the upper mirror 13 and the partition plate 18. The makeup gas 1 flows into the upper end of each central tube 19 from the space defined by the partition plate 18 and the upper tube plate 14.
第2図のものは、上部管板14と仕切板18の間に、第1図
のものとは構造が異なり、第2図(B)に示すように上
部管板14と仕切板18の間で中心管19を屈曲させ、連結管
22の管壁を貫通して中心管19を位置させる。連結管22の
上端は仕切板18と上部鏡(第2図(A)中の13)で構成
される空間に開放する。The structure of FIG. 2 is different from that of FIG. 1 between the upper tube sheet 14 and the partition plate 18, and as shown in FIG. 2 (B), it is between the upper tube sheet 14 and the partition plate 18. Bend the central pipe 19 with
Position the central tube 19 through the tube wall at 22. The upper end of the connecting pipe 22 is opened to the space defined by the partition plate 18 and the upper mirror (13 in FIG. 2 (A)).
第2図のものは、上方については仕切板18と上部鏡13と
の間の空間、下方については下部管板15と下部鏡16と
の間の空間に中心管19、連結管22などがなく、前記
の反応器に比し、触媒充填、触媒抜き出しの作業が大巾
に容易となるという利点をも有する。In the case of FIG. 2, there is no central pipe 19, connecting pipe 22, etc. in the space between the partition plate 18 and the upper mirror 13 in the upper part and in the space between the lower tube plate 15 and the lower mirror 16 in the lower part. In comparison with the above-mentioned reactor, it also has an advantage that the work of filling the catalyst and extracting the catalyst can be greatly facilitated.
また、第2図を上下逆にした反応器もあり、この反応器
は触媒充填作業の点からより有利であり、この場合、触
媒層内のガス流れは下から上へとなる。There is also a reactor in which FIG. 2 is turned upside down, which is more advantageous in terms of catalyst filling work, in which case the gas flow in the catalyst bed is from bottom to top.
第4図に示す反応器は第1図の反応器の中心管19の長さ
を大として反応管11の下端の触媒12層下端以上まで延長
させたもの、即ち第1図(B)の領域の中心管の管長
を大としたものである。この場合は充填される触媒12層
は全長にわたり円環状となる。The reactor shown in FIG. 4 is obtained by extending the length of the central tube 19 of the reactor of FIG. 1 and extending it to the catalyst 12 layer lower end of the lower end of the reaction tube 11 or more, that is, the region of FIG. 1 (B). The length of the central tube is large. In this case, the catalyst 12 layer to be filled becomes an annular shape over the entire length.
第4図の中心管19の管長延長は第2図の反応器にも適用
できる。The extension of the central tube 19 shown in FIG. 4 can be applied to the reactor shown in FIG.
第9図の作図要領により本発明反応器の反応管内接触反
応温度の管長方向の分布を模式図で第5図に示す。The distribution of the contact reaction temperature in the reaction tube of the reactor of the present invention in the tube length direction is schematically shown in FIG. 5 according to the drawing procedure of FIG.
第6,7図に示す従来の反応器7では、循環ガス4に補給
ガス1を加えてCO,CO2/H2比を高めた状態で反応器7内
に送入し、これを触媒層に流入して触媒と接触させるも
のであるが、メタノール濃度が実質的にゼロで、かつC
O,CO2/H2比が大きいため、触媒12層上方では反応速度が
大となり、反応管11の管壁を介した熱移動速度と熱発生
速度の平衡から温度が上昇して行く。温度上昇と共に反
応速度も大となり、その温度はMに達する。このM点到
達後はメタノール濃度上昇とCO,CO2/H2比低下により反
応速度が減少し、温度も次第に低下して行く。In the conventional reactor 7 shown in FIGS. 6 and 7, the make-up gas 1 is added to the circulating gas 4 and the CO, CO 2 / H 2 ratio is increased to be fed into the reactor 7, which is then fed to the catalyst layer. Flow into the catalyst and come into contact with the catalyst, but the methanol concentration is practically zero and C
Since the O, CO 2 / H 2 ratio is large, the reaction rate becomes high above the catalyst 12 layer, and the temperature rises due to the equilibrium between the heat transfer rate and the heat generation rate through the tube wall of the reaction tube 11. The reaction rate increases as the temperature rises, and the temperature reaches M. After reaching the point M, the reaction rate decreases due to the increase in methanol concentration and the decrease in CO, CO 2 / H 2 ratio, and the temperature also gradually decreases.
一方、本発明反応器では、触媒12層にガスが流入する段
階でCO,CO2/H2比小の状態にしているので、この温度上
昇が小さい(第5図のm点)。なお、この領域を領域
となるように中心管19を位置させ、中心管19内のガスを
冷媒として機能させ、反応管11外に位置させた飽和温度
の加圧水の冷媒効果との複合作用によりm点の温度上昇
を小とする。On the other hand, in the reactor of the present invention, the CO and CO 2 / H 2 ratios are kept small when gas flows into the catalyst 12 layer, so this temperature rise is small (point m in FIG. 5). Note that the central tube 19 is positioned so that this area becomes the area, the gas in the central tube 19 functions as a refrigerant, and the combined effect of the pressurized water of the saturated temperature located outside the reaction tube 11 and the refrigerant effect makes m The temperature rise at the point is small.
m点をすぎて接触反応温度が若干低下した位置n点から
p点の領域では中心管19内からCO,CO2/H2比の大きい
補給ガス1を分散供給して接触反応に必要なCO,CO2を補
給する。これにより温度は再び上昇するが、分散供給で
あるため温度の過上昇は完全に防止することができる。In the region from the point n to the point p where the contact reaction temperature slightly decreased after passing the point m, the supplementary gas 1 with a large CO, CO 2 / H 2 ratio was dispersedly supplied from the inside of the central tube 19 to generate the CO required for the contact reaction. , CO 2 is replenished. As a result, the temperature rises again, but since it is a distributed supply, an excessive rise in temperature can be completely prevented.
p点から触媒12層下端までの領域では中心管19内から
補給ガス1は供給されないが、p点のガスに含有される
CO,CO2がH2と反応しつつ移動して行く。なお、CO,CO2濃
度の低下により反応速度が小となるので温度も次第に低
下して行くが、反応管11出口附近の接触反応温度が低い
程平衡メタノール濃度が大となるという公知事実から
領域の温度,触媒層高さ,空間速度は反応器性能上重要
な要因となる。In the region from the p point to the lower end of the catalyst 12 layer, the supplementary gas 1 is not supplied from the inside of the central tube 19, but is contained in the gas at the p point.
CO and CO 2 move while reacting with H 2 . It should be noted that, since the reaction rate becomes small due to the decrease of CO, CO 2 concentration, the temperature also gradually decreases, but from the known fact that the lower the contact reaction temperature near the outlet of the reaction tube 11, the higher the equilibrium methanol concentration becomes. The temperature, catalyst bed height, and space velocity are important factors for reactor performance.
本発明によれば、反応管全長にわたつて反応負荷を均一
にでき、また温度の過上昇を防止でき、しかも触媒の充
填,抜出し作業を容易にできる等種々の効果を奏しう
る。According to the present invention, various effects can be achieved such that the reaction load can be made uniform over the entire length of the reaction tube, the temperature can be prevented from rising excessively, and the work of filling and withdrawing the catalyst can be facilitated.
第1図(A)〜(D)は本発明反応器の一実施態様例を
示す図で、第1図(A)が全体図、第1図(B)はその
一部拡大断面図、第1図(C)は第1図(A)の点の
断面図、第1図(D)は第1図(A)の点の断面図、
第2図(A)(B)は本発明反応器の他の実施態様例を
示す図で、第2図(A)が全体図、第2図(B)はその
一部拡大断面図、第3図は本発明反応器の作用を説明す
るためのメタノール合成の全系を示す図、第4図は本発
明反応器の他の実施態様例を示す図、第5図は本発明反
応器の作用効果を説明するための図表、第6図は従来の
メタノール合成の全系を示す図、第7,8図は従来の反応
器を示す図、第9図(A)(B)は第7図に示す従来の
反応器の欠点を説明するための図である。1 (A) to 1 (D) are views showing an embodiment of the reactor of the present invention. FIG. 1 (A) is an overall view, and FIG. 1 (B) is a partially enlarged sectional view thereof. 1 (C) is a cross-sectional view of the point of FIG. 1 (A), FIG. 1 (D) is a cross-sectional view of the point of FIG. 1 (A),
2 (A) and 2 (B) are views showing another embodiment of the reactor of the present invention. FIG. 2 (A) is an overall view, and FIG. 2 (B) is a partially enlarged sectional view thereof. FIG. 3 is a diagram showing the whole system of methanol synthesis for explaining the operation of the reactor of the present invention, FIG. 4 is a diagram showing another embodiment of the reactor of the present invention, and FIG. 5 is a diagram of the reactor of the present invention. FIG. 6 is a diagram for explaining the action and effect, FIG. 6 is a diagram showing the whole system of conventional methanol synthesis, FIGS. 7 and 8 are diagrams showing a conventional reactor, and FIGS. It is a figure for demonstrating the fault of the conventional reactor shown in a figure.
Claims (2)
の管板に固定させると共に該反応管の中央に中心管を位
置させ、反応管と中心管で構成された円環状空間に粒状
固形触媒を充填し該触媒に水素,一酸化炭素,二酸化炭
素を有意物質とした加圧混合ガスを接触させてメタノー
ル合成反応を行なわさせ、かつその反応熱を反応管外に
位置させた飽和温度の加圧水に移行させて水蒸気を得る
ようにした反応器において、各反応管の粒状固形触媒を
充填した円環状空間の上端からは気液分離で分離したガ
スを循環ガス圧縮機で昇圧して流入するようにすると共
に、各中心管の管内には水蒸気改質法などの手段で製造
した補給ガスが流入するようにし、該中心管の管長方向
の任意の位置から該中心管の管壁を貫通した複数個のガ
ス流入孔より接触反応を生じつつある触媒層内へ上記補
給ガスが流入するようにして接触反応温度の過上昇を防
止するようにしたことを特徴とする反応器。1. A plurality of reaction tubes positioned in the vertical direction are fixed to upper and lower tube plates, and a central tube is positioned at the center of the reaction tubes to form an annular space composed of the reaction tube and the central tube. Saturation in which a granular solid catalyst is filled, a pressurized mixed gas containing hydrogen, carbon monoxide and carbon dioxide as significant substances is brought into contact with the catalyst to carry out a methanol synthesis reaction, and the reaction heat is located outside the reaction tube. In the reactor that was transferred to pressurized water at a temperature to obtain steam, the gas separated by gas-liquid separation was pressurized with a circulating gas compressor from the upper end of the annular space filled with the granular solid catalyst in each reaction tube. In addition to allowing the gas to flow in, the make-up gas produced by means such as steam reforming is allowed to flow into the pipe of each central pipe, and the pipe wall of the central pipe is removed from any position in the longitudinal direction of the central pipe. Contact from multiple gas inflow holes Reactor, characterized in that while results in response to certain catalyst layer was to prevent an excessive increase of the contact reaction temperature as above makeup gas flows.
一部を添加するようにした特許請求の範囲(1)記載の
反応器。2. The reactor according to claim 1, wherein a part of the supplementary gas is added to the gas separated by the gas-liquid separator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26767886A JPH0673625B2 (en) | 1986-11-12 | 1986-11-12 | Reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26767886A JPH0673625B2 (en) | 1986-11-12 | 1986-11-12 | Reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63123433A JPS63123433A (en) | 1988-05-27 |
JPH0673625B2 true JPH0673625B2 (en) | 1994-09-21 |
Family
ID=17448006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26767886A Expired - Fee Related JPH0673625B2 (en) | 1986-11-12 | 1986-11-12 | Reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0673625B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2764414B2 (en) * | 1988-11-30 | 1998-06-11 | キヤノン株式会社 | Camera device and interchangeable lens |
DE10021986A1 (en) * | 2000-05-05 | 2001-11-15 | Deggendorfer Werft Eisenbau | Tubular reactor for safe exothermic gas reaction, e.g. catalytic oxidation of hydrocarbons, includes separate chambers for reagent gases and concentric mixing tube system |
CN105960277A (en) * | 2014-02-10 | 2016-09-21 | 霍尼韦尔国际公司 | Reactor design for liquid phase fluorination |
-
1986
- 1986-11-12 JP JP26767886A patent/JPH0673625B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63123433A (en) | 1988-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4865624A (en) | Method for steam reforming methanol and a system therefor | |
US5961933A (en) | Process and apparatus for operation of a slurry bubble column with application to the fischer-tropsch synthesis | |
US7547332B2 (en) | Apparatus for the preparation of synthesis gas | |
US3825501A (en) | Exothermic reaction process | |
US7670394B2 (en) | Compact reforming reactor | |
AU2007235916B2 (en) | Apparatus and process for cooling hot gas | |
US6331283B1 (en) | Low-temperature autothermal steam reformation of methane in a fluidized bed | |
US7141231B2 (en) | Internally circulating fluidized bed membrane reactor system | |
US20070000175A1 (en) | Compact reforming reactor | |
US4778662A (en) | Synthesis process and reactor | |
JP2001517645A5 (en) | ||
KR20040027457A (en) | Process and apparatus for the preparation of synthesis gas | |
NO328140B1 (en) | A method and apparatus utilizing a plate arrangement for heating and preheating reactants | |
US20010045375A1 (en) | Apparatus and method for conversion of hydrocarbon feed streams into liquid products | |
JPH045487B2 (en) | ||
JPH0673625B2 (en) | Reactor | |
JP2004315413A (en) | Reactor for methanol synthesis and method for producing methanol | |
JP2003306311A (en) | Autothermal reforming device and autothermal reforming method using the same | |
JP3924039B2 (en) | Reactor | |
JP3924040B2 (en) | Reactor | |
Westerterp | New methanol processes | |
JPH0640702A (en) | Steam reforming reactor | |
JP6518480B2 (en) | Bubble column slurry bed reactor | |
GB2624044A (en) | Reactor and reaction method | |
JPS6161632A (en) | Reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |