JPH0775846A - Production of high strength bolt excellent in delayed fracture resistance - Google Patents

Production of high strength bolt excellent in delayed fracture resistance

Info

Publication number
JPH0775846A
JPH0775846A JP22256293A JP22256293A JPH0775846A JP H0775846 A JPH0775846 A JP H0775846A JP 22256293 A JP22256293 A JP 22256293A JP 22256293 A JP22256293 A JP 22256293A JP H0775846 A JPH0775846 A JP H0775846A
Authority
JP
Japan
Prior art keywords
tempering
steel
less
temperature
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22256293A
Other languages
Japanese (ja)
Inventor
Masahiro Toda
正弘 戸田
Fusao Ishikawa
房男 石川
Hideo Kanisawa
秀雄 蟹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22256293A priority Critical patent/JPH0775846A/en
Publication of JPH0775846A publication Critical patent/JPH0775846A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To provide the production method of a high strength bolt excellent in delayed fracture resistance by using the steel of specified component and adjusting harm forging after annealing and tempering temp. CONSTITUTION:After the steel, in which C, Si, Mn, P, S, Cr, Mo, Al, V, Ti, Nb, N are specified, is subjected to supheroidizing, it is subjected to bolt forming with heating to 200-400 deg.C and at a working speed of >=200mm/sec, at executing subsequent quenching-tempering, the tempering temp. is >=400C. Further, in the case of forging with heating to >=400 deg.C, the punch having a surface temp. of <=100 deg.C is used, further after heat is withdrawn so that a steel surface temp. is <=100 deg.C and a temp. at 1/10 of stock diameter from the surface layer is >=250 deg.C, it is subjected to bolt forming at a working speed of average >=200mm/ sec, the tempering temp. at subsequent quenching.tempering is >=400 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は125kgf/mm2 以上の引
張強度を有する耐遅れ破壊特性の優れた高強度ボルトの
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high strength bolt having a tensile strength of 125 kgf / mm 2 or more and an excellent delayed fracture resistance.

【0002】[0002]

【従来の技術】高強度ボルトは機械、自動車、橋、建物
に数多く使用されている他、PC鋼棒、自動車部品等数
多く使用されている。しかし、どの品種についても引張
強度が125kgf/mm2 を超えると遅れ破壊の危険性が高
まることがよく知られており、実際に使用されているボ
ルトの強度は110kgf/mm2 級が上限となっているのが
現状である。しかしながら近年構造物の大型化に伴い、
継ぎ手効率の向上、軽量化の目的からボルトの高強度化
に対する要求は高く、また燃費向上を要望されている自
動車においても軽量化を達成するためにボルトの高強度
化が強く要望されている。
2. Description of the Related Art High-strength bolts are widely used in machines, automobiles, bridges and buildings, as well as in PC steel rods and automobile parts. However, it is well known that the risk of delayed fracture increases when the tensile strength exceeds 125 kgf / mm 2 for all types, and the maximum strength of bolts actually used is 110 kgf / mm 2 class. Is the current situation. However, with the increase in size of structures in recent years,
There is a strong demand for higher strength of bolts for the purpose of improving joint efficiency and weight reduction, and also for automobiles that are required to improve fuel consumption, higher strength of bolts is strongly demanded for achieving weight reduction.

【0003】高強度部材の遅れ破壊においては鋼中の水
素が原因とされている。特に常温近傍で容易に移動し得
る拡散性水素が引張応力集中部の結晶粒界に集積し、粒
界割れを助長するために遅れ破壊が起こると考えられて
いる。従って高強度機械構造用鋼を使用する場合、水素
特に拡散性水素に対する抵抗力のある鋼でなければなら
ない。
Hydrogen in steel is the cause of delayed fracture of high strength members. In particular, it is considered that diffusible hydrogen, which can easily move near room temperature, accumulates at the crystal grain boundaries in the tensile stress concentration portion and promotes grain boundary cracking, resulting in delayed fracture. Therefore, if high strength mechanical structural steel is used, it must be resistant to hydrogen, especially diffusible hydrogen.

【0004】そこで本発明者らは、耐遅れ破壊特性に及
ぼす合金元素および焼戻し温度の影響を調べたところ、
機械構造用鋼に比べて、Mn,Pの低下、Moの増加、
V,Ti,Nbの添加および400℃以上の焼戻しが有
効であることを見いだし、特願平4−127801号に
おいて、鋼の化学成分の調整、焼戻し温度の調整により
125kgf/mm2 以上の引張強度を有し、かつ遅れ破壊に
至らない限界の拡散性水素量(以下、限界拡散性水素と
呼ぶ)が増加できる機械構造用鋼と機械部品への成形方
法を提案した。
Then, the present inventors investigated the influence of alloying elements and tempering temperature on the delayed fracture resistance, and found that
Compared with machine structural steel, Mn, P decrease, Mo increase,
It was found that addition of V, Ti, and Nb and tempering at 400 ° C or higher are effective, and in Japanese Patent Application No. 4-127801, tensile strength of 125 kgf / mm 2 or more was adjusted by adjusting the chemical composition of steel and tempering temperature. We have proposed a method for forming mechanical structural steel and mechanical parts that has a high diffusible hydrogen content (hereinafter referred to as "critical diffusible hydrogen") and that does not cause delayed fracture.

【0005】[0005]

【発明が解決しようとする課題】特願平4−12780
1号に記載されているように、冷間鍛造によって高強度
ボルトを成形する場合、鍛造前の素材強度が高いため鍛
造時の金型寿命が低く、実用に供さないのが現状であ
る。本発明は以上の知見および課題に鑑みなされたもの
であり、鋼の化学成分の調整、鍛造方法、焼戻し温度の
調整との組み合わせによって耐遅れ破壊特性の優れた1
25kgf/mm2 以上の引張強度を有し、かつ高い金型寿命
で製造可能な高強度ボルトの製造方法である。
[Problems to be Solved by the Invention] Japanese Patent Application No. 4-12780
As described in No. 1, when forming a high-strength bolt by cold forging, the material strength before forging is high, so that the die life during forging is short and it is not practically used. The present invention has been made in view of the above knowledge and problems, and has an excellent delayed fracture resistance in combination with the adjustment of the chemical composition of steel, the forging method, and the adjustment of the tempering temperature.
It is a manufacturing method of a high strength bolt having a tensile strength of 25 kgf / mm 2 or more and capable of being manufactured with a long mold life.

【0006】[0006]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、次の通りである。 (1)重量%で、C:0.15〜0.50%、Si:
0.05〜2.0%、Mn:0.1〜0.6%、P:
0.015%以下、S:0.02%以下、Cr:0.1
〜3.0%、Mo:0.2〜2.0%、Al:0.00
5〜0.05%、N:0.03%以下を含有し、さらに
鋼成分としてV:0.10超〜0.50%、Ti:0.
01超〜0.10%、Nb:0.01超〜0.10%の
一種または二種を含有し、残部がFeおよび不可避的不
純物よりなる棒鋼または線材を球状化焼鈍し、この鋼材
を鍛造直前温度が200℃以上、400℃未満になるよ
うに均一加熱した直後、平均200mm/秒以上の加工速
度で所定のボルト形状に鍛造成形し、その後焼入れ・焼
戻しを行うに際して焼戻しを400℃以上とすることを
特徴とする125kgf/mm2 以上の引張強度を有する耐遅
れ破壊特性の優れた高強度ボルトの製造方法。
The gist of the present invention is as follows. (1) C: 0.15 to 0.50% by weight, Si:
0.05-2.0%, Mn: 0.1-0.6%, P:
0.015% or less, S: 0.02% or less, Cr: 0.1
~ 3.0%, Mo: 0.2-2.0%, Al: 0.00
5 to 0.05%, N: 0.03% or less, and V: more than 0.10 to 0.50%, Ti: 0.
Steel bar or wire rod containing 01 or more than 0.10% and Nb: 0.01 to 0.10% of one or two kinds, and the balance of Fe and unavoidable impurities is spheroidized and annealed, and the steel is forged. Immediately after uniform heating to a temperature of 200 ° C or higher and lower than 400 ° C, forging is performed into a predetermined bolt shape at a processing speed of 200 mm / sec or more on average, and then tempering is performed at 400 ° C or higher for quenching and tempering. A method for producing a high-strength bolt having a tensile strength of 125 kgf / mm 2 or more and excellent delayed fracture resistance.

【0007】(2)上記(1)記載の組成からなる棒鋼
または線材を球状化焼鈍し、この鋼材を鍛造直前温度が
400℃以上になるように均一加熱した直後、平均20
0mm/秒以上の加工速度で鍛造直前の表面温度が100
℃以下のパンチを用いて所定のボルト形状に鍛造成形
し、その後焼入れ・焼戻しを行うに際して焼戻しを40
0℃以上とすることを特徴とする125kgf/mm2 以上の
引張強度を有する耐遅れ破壊特性の優れた高強度ボルト
の製造方法。
(2) A bar steel or wire rod having the composition described in (1) above is annealed by spheroidizing, and this steel material is uniformly heated to a temperature of 400 ° C. or more immediately before forging, and then an average of 20
The surface temperature immediately before forging is 100 at a processing speed of 0 mm / sec or more.
Forged into a predetermined bolt shape using a punch below ℃, and then temper 40
A method for producing a high-strength bolt having a tensile strength of 125 kgf / mm 2 or more and excellent delayed fracture resistance, which is characterized in that the temperature is 0 ° C. or more.

【0008】(3)上記(1)記載の組成からなる棒鋼
または線材を球状化焼鈍し、この鋼材を鍛造直前温度が
400℃以上になるように均一加熱した後、鍛造直前の
鋼材表面が100℃以下で、表層から素材径の1/10
での温度が250℃以上になるよう潤滑液等を吹き付け
抜熱し、平均200mm/秒以上の加工速度で所定のボル
ト形状に鍛造成形した後、焼入れ・焼戻しを行うに際し
て焼戻しを400℃以上とすることを特徴とする125
kgf/mm2 以上の引張強度を有する耐遅れ破壊特性の優れ
た高強度ボルトの製造方法にある。
(3) A steel bar or wire rod having the composition described in (1) above is spheroidized and annealed, and this steel material is uniformly heated to a temperature of 400 ° C. or more immediately before forging, and the surface of the steel material immediately before forging becomes 100. Below ℃, 1/10 of the material diameter from the surface layer
At a temperature of 250 ° C or higher, a lubricant is blown to remove heat, and after forging into a predetermined bolt shape at an average processing speed of 200 mm / sec or higher, tempering is performed at 400 ° C or higher when performing quenching and tempering. Characterized by 125
It is a method for producing a high-strength bolt having a tensile strength of kgf / mm 2 or more and excellent in delayed fracture resistance.

【0009】本発明で用いられる鋼の合金成分は次の理
由で決定した。Cは、焼入れ・焼戻しにより高強度を得
るためには0.15%以上必要であるが、多すぎると靭
性を劣化させるとともに耐遅れ破壊特性も劣化させる元
素であるために0.50%以下とした。Siは鋼の脱酸
および強度を高めるのに必要な0.05%以上必要であ
るが、素材強度が増加して鍛造性を損なう元素であるた
めに、2.0%以下とした。
The alloy composition of the steel used in the present invention was determined for the following reasons. C is required to be 0.15% or more in order to obtain high strength by quenching and tempering, but if it is too much, it is an element that deteriorates toughness and delayed fracture resistance, so it is 0.50% or less. did. Si is required to be 0.05% or more, which is necessary for deoxidizing and increasing the strength of steel, but is 2.0% or less because it is an element that increases the material strength and impairs forgeability.

【0010】Mnは鋼の脱酸および焼入れ性の確保に
0.1%以上必要であるが、オーステナイト域加熱時に
粒界に偏析し粒界を脆化させるとともに耐遅れ破壊特性
を劣化させる元素であるために0.6%以下とした。P
は焼入れ性元素としては有効であるが、凝固時にミクロ
偏析し、さらにオーステナイト域加熱時に粒界に偏析し
粒界を脆化させるとともに耐遅れ破壊特性を劣化させる
元素であるために0.015%以下とした。
Mn is required to be 0.1% or more in order to secure deoxidation and hardenability of steel, but it is an element that segregates at the grain boundaries during heating in the austenite region to embrittle the grain boundaries and deteriorate delayed fracture resistance. Therefore, it is set to 0.6% or less. P
Is effective as a hardenability element, but is 0.015% because it is an element that microsegregates during solidification and segregates to grain boundaries during heating in the austenite region to embrittle the grain boundaries and deteriorate delayed fracture resistance. Below.

【0011】Sは不可避的不純物であるが、オーステナ
イト域加熱時に粒界に偏析し粒界を脆化させるとともに
耐遅れ破壊特性を劣化させる元素であるために0.02
%以下とした。Crは鋼の焼入れ性を得るためには0.
1%以上必要であるが、多すぎると靭性の劣化、冷間加
工性の劣化を招く元素であるために3.0%以下とし
た。Moは鋼の焼入れ性を得るために必要であるととも
に焼戻し軟化抵抗を有し、400℃以上の焼戻し温度で
安定して125kgf/mm2 以上の引張荷重を得るのに有効
な元素であるが、多すぎるとその効果は飽和しコストの
上昇を招くために2.0%以下とした。
Although S is an unavoidable impurity, it is 0.02 because it is an element that segregates to the grain boundaries during heating in the austenite region, embrittles the grain boundaries, and deteriorates delayed fracture resistance.
% Or less. In order to obtain the hardenability of steel, Cr is 0.1%.
It is required to be 1% or more, but if it is too much, it is an element that causes deterioration of toughness and cold workability, so the content was made 3.0% or less. Mo is an element that is necessary for obtaining hardenability of steel and has temper softening resistance, and is effective in obtaining a tensile load of 125 kgf / mm 2 or more stably at a tempering temperature of 400 ° C. or more, If it is too large, the effect is saturated and the cost is increased, so the content is made 2.0% or less.

【0012】Alは鋼の脱酸に有効な元素であるために
0.005%以上必要であるが、多すぎると靭性の劣化
を招くために0.05%以下とした。Nはオーステナイ
ト加熱時に粒界に偏析し粒界を脆化させるとともに耐遅
れ破壊特性も劣化させる元素であるため0.03%以下
とした。V,Ti,Nbは、結晶粒の微細化に寄与し、
かつ水素との親和性に富み鋼中での水素の拡散、集積を
抑制することにより耐遅れ破壊特性向上に有効な元素で
あるため、それぞれV:0.10%超、Ti:0.01
%超、Nb:0.01%超必要である。ただし多すぎる
とその効果は飽和しむしろ靭性を劣化させる元素である
ためにそれぞれV:0.5%以下、Ti:0.1%以
下、Nb:0.1%以下とした。
[0012] Al is an element effective for deoxidizing steel, so 0.005% or more is necessary. However, if too much, it causes deterioration of toughness, so 0.05% or less. Since N is an element that segregates at the grain boundaries during austenite heating to embrittle the grain boundaries and deteriorates the delayed fracture resistance, the content of N is set to 0.03% or less. V, Ti and Nb contribute to the refinement of crystal grains,
In addition, since it is an element which is rich in affinity with hydrogen and effective in improving delayed fracture resistance by suppressing diffusion and accumulation of hydrogen in steel, V: more than 0.10% and Ti: 0.01, respectively.
%, Nb: more than 0.01% is required. However, when the amount is too large, the effect is saturated and rather deteriorates the toughness, so V: 0.5% or less, Ti: 0.1% or less, and Nb: 0.1% or less, respectively.

【0013】一方、本鋼材を球状化焼鈍しさらに鍛造直
前温度が200℃以上になるように加熱することによ
り、鋼材強度が低減され鍛造時の金型寿命が向上できる
が、これより低い加熱温度では金型寿命向上効果は小さ
い。また加工速度を平均200mm/秒以上とするのは、
これより加工速度が遅くなると鍛造中に鋼材温度が低下
するためである。
On the other hand, the strength of the steel material is reduced and the life of the die during forging can be improved by spheroidizing and annealing the steel material so that the temperature just before forging is 200 ° C. or higher, but the heating temperature lower than this Then, the effect of improving the mold life is small. The average processing speed of 200 mm / sec or more is
This is because if the processing speed becomes slower than this, the temperature of the steel material decreases during forging.

【0014】鍛造直前温度を400℃以上に加熱する場
合、パンチ下部において鋼材の加工発熱による軟化が激
しく、成形後形状不良を招くため鍛造直前のパンチ温度
を100℃以下として鋼材からパンチへの熱移動を制御
する必要がある。なお素材加熱に際しては、金型寿命を
決定するボルト頭部成形部分にあたる素材領域のみを加
熱する部分加熱とすることも可能である。
When the temperature just before forging is heated to 400 ° C. or higher, the steel material is severely softened by the heat generated by working at the lower part of the punch, which causes a defective shape after forming. Need to control movement. When heating the material, it is possible to perform partial heating in which only the material region corresponding to the bolt head molding portion that determines the life of the mold is heated.

【0015】さらに鍛造直前温度を400℃以上に加熱
する場合、加熱した素材を金型内に挿入した後に素材の
表層部を冷却することによってパンチ温度を制御するの
と同様の効果を得ることができる。この場合、鍛造直前
の鋼材表面が100℃以下で、表層から素材径の1/1
0での温度が250℃以上になるよう潤滑液等を吹き付
け抜熱するが、鋼材表層の温度を100℃以下とするの
は、これより高い温度ではパンチ下部の鋼材が加工発熱
による軟化により成形後形状不良を招くためである。ま
た表層から素材径の1/10での温度が250℃以上と
するのは、これより温度が低いと成形加重が大きくなり
金型寿命が低下するからである。なお抜熱には液体の
他、実質的に非酸化性ガスを用いることも可能である。
Further, when the temperature immediately before forging is heated to 400 ° C. or higher, the same effect as controlling the punch temperature can be obtained by cooling the surface layer of the material after inserting the heated material into the mold. it can. In this case, the temperature of the steel material just before forging is 100 ° C or less, and the surface diameter is 1/1
The temperature of the steel material surface layer is set to 100 ° C or less because the temperature of the surface layer of the steel material is 100 ° C or less. This is because it causes a defective rear shape. The temperature from the surface layer to 1/10 of the material diameter is set to 250 ° C. or higher, because if the temperature is lower than this, the molding load becomes large and the die life is shortened. In addition to liquid, it is possible to use substantially non-oxidizing gas for heat removal.

【0016】[0016]

【実施例】供試鋼の化学成分を表1に示す。A〜Eは本
発明のボルト用鋼に従ったものであり、F〜Jは比較鋼
である。これらのφ22mm棒鋼を球状化焼鈍した後、M
22トリミングボルト相当の頭部成形を行った。球状化
焼鈍は770℃に3hr保持後、0.5℃/min で710
℃まで徐冷し、710℃で4hr保持後空冷した。焼鈍後
これらの鋼材に燐酸亜鉛による潤滑処理を行った。
[Examples] Table 1 shows the chemical composition of the test steel. A to E are according to the steel for bolts of the present invention, and F to J are comparative steels. After spheroidizing and annealing these φ22 mm steel bars, M
A head portion equivalent to 22 trimming bolts was formed. Spheroidizing annealing was held at 770 ° C for 3 hours and then 710 at 0.5 ° C / min.
The mixture was gradually cooled to ℃, held at 710 ℃ for 4 hours and then air-cooled. After annealing, these steel materials were lubricated with zinc phosphate.

【0017】[0017]

【表1】 [Table 1]

【0018】鍛造時の荷重測定を行う供試材は、長さ1
00mmに切断した後、高周波により10〜20℃/秒の
速度で均一加熱し、サーボタイプの油圧圧縮試験機で所
定の加工速度で成形した。また金型寿命評価を行う場合
には、焼鈍コイルを用いボルト成形用パーツフォーマー
とコイルとの間で鋼材を高周波により均一加熱し、切断
後ボルト頭部成形を行った。なお、素材温度はどちらの
場合も、放射温度計により測温した。
The test material for measuring the load during forging has a length of 1
After cutting it to 00 mm, it was uniformly heated by a high frequency at a speed of 10 to 20 ° C./sec, and molded at a predetermined processing speed by a servo type hydraulic compression tester. Further, when performing die life evaluation, an annealing coil was used to uniformly heat the steel material between the bolt forming part former and the coil by high frequency, and after cutting, the bolt head was formed. The material temperature was measured by a radiation thermometer in both cases.

【0019】パンチには図1に示すようにヒーターを埋
め込むとともに、水冷パイプを通じて温度制御を行っ
た。鍛造前温度を400℃以上に加熱する場合には黒鉛
系潤滑材をパンチ表面に吹き付け、焼き付き防止ととも
にパンチ表面の温度制御を行った。パンチ温度の測定
は、図1に示すようにパンチ表面から2mmの位置に埋め
込んだ熱伝対によって行い、鍛造直前温度をもってパン
チ温度とした。なお金型形状は図1に示す通りである。
A heater was embedded in the punch as shown in FIG. 1, and the temperature was controlled through a water cooling pipe. When heating the pre-forging temperature to 400 ° C. or higher, a graphite-based lubricant was sprayed on the punch surface to prevent seizure and control the temperature of the punch surface. The punch temperature was measured by a thermocouple embedded at a position 2 mm from the punch surface as shown in FIG. 1, and the temperature immediately before forging was defined as the punch temperature. The mold shape is as shown in FIG.

【0020】[0020]

【表2】 [Table 2]

【0021】表2には成形実験の結果を示す。記号X1
〜X7が本発明法による場合であり、記号Y1〜Y9が
比較法の場合である。記号Y1,Y5が特願平4−12
7801号記載による冷間鍛造法による結果であるが、
最大荷重は180以上となり金型寿命は5000個以下
である。記号Y4,Y7,Y9ではパンチ温度が高いた
め、いずれの場合も図2に示すように頭部側面が段状と
なる形状不良に至った。そこで、記号Y4,Y7,Y9
については金型寿命評価は行わなかった。これに対し本
発明法ではいずれの場合も形状不良を生じることなく、
また金型寿命は17万個以上となり、比較法に比べ2倍
以上の金型寿命となった。
Table 2 shows the results of the molding experiment. Symbol X1
~ X7 is the case of the method of the present invention, and the symbols Y1 to Y9 are the case of the comparison method. Symbols Y1 and Y5 are Japanese Patent Application No. 4-12
It is the result of the cold forging method described in No. 7801,
The maximum load is 180 or more, and the die life is 5000 or less. Since the punching temperature was high in the symbols Y4, Y7, and Y9, in any case, the head side surface became stepped as shown in FIG. Therefore, the symbols Y4, Y7, Y9
The mold life was not evaluated for the above. On the other hand, in the method of the present invention, a shape defect does not occur in any case,
Further, the mold life was 170,000 or more, which was twice as long as that of the comparative method.

【0022】次に遅れ破壊特性を評価するために、本発
明法で成形されたボルト形状素材を表2に示す温度にて
焼入れ・焼戻しを行い、図3に示すM10ボルトで軸部
に2mmVの円周ノッチを設けた試験片を製作した。また
比較鋼F〜Jについても本発明法による成形を行い、焼
入れ・焼戻しを行った後に図3の試験片を製作した。な
おいずれの場合も焼入れ温度は900℃とし、焼戻し後
の引張強度が150〜160kgf/mm2 となるように焼戻
し温度を設定した。
Next, in order to evaluate the delayed fracture characteristics, the bolt-shaped material formed by the method of the present invention was quenched and tempered at the temperatures shown in Table 2, and the M10 bolt shown in FIG. A test piece having a circumferential notch was manufactured. Further, the comparative steels F to J were also formed by the method of the present invention, and after quenching and tempering, the test pieces of FIG. 3 were manufactured. In each case, the quenching temperature was 900 ° C., and the tempering temperature was set so that the tensile strength after tempering was 150 to 160 kgf / mm 2 .

【0023】以下に限界水素量を求める方法について述
べる。図3に示す試験片を2本組にして水素を富化する
ために、20〜36%HClに20〜120分間浸漬し
て試験片中の水素量を変化させる。このうち1本はHC
lに浸漬し大気中に30分放置した後、熱的分析法によ
り水素量を測定し、他の1本は浸漬後30分間大気中に
放置した後、図4に示した試験機で遅れ破壊試験を行
う。図4において1は試験片、2はバランスウェイト、
3は支点を示す。また遅れ破壊試験における試験荷重は
HCl溶液に浸漬する前の各試験片の破断荷重の70%
と一定にした。
A method for obtaining the limit hydrogen amount will be described below. In order to enrich the hydrogen by making the test piece shown in FIG. 3 into two sets, it is immersed in 20 to 36% HCl for 20 to 120 minutes to change the amount of hydrogen in the test piece. One of these is HC
After being immersed in 1 and left in the air for 30 minutes, the amount of hydrogen was measured by a thermal analysis method, the other one was left in the air for 30 minutes after the immersion, and then delayed fracture was performed with the tester shown in FIG. Perform the test. In FIG. 4, 1 is a test piece, 2 is a balance weight,
3 shows a fulcrum. The test load in the delayed fracture test is 70% of the breaking load of each test piece before being immersed in the HCl solution.
And made it constant.

【0024】以上の手順に従い、HClの濃度および浸
漬時間を種々変えた場合に、得られた拡散性水素量と遅
れ破壊試験における破断時間との関係を表3に示す。同
表から、4000分を経って遅れ破壊を起こさない上限
の拡散性水素量を限界拡散性水素量として各鋼種につい
て推定すると表4のようになる。この表より、開発鋼A
〜Eを用い本発明法により成形されたX1〜X7の試験
片は、比較鋼F〜Jを用いたZ1〜Z5に比べて限界水
素量が高く、遅れ破壊しにくいことがわかる。
Table 3 shows the relationship between the amount of diffusible hydrogen obtained and the breaking time in the delayed fracture test when the concentration of HCl and the immersion time were changed according to the above procedure. From the table, the upper limit of the amount of diffusible hydrogen that does not cause delayed fracture after 4000 minutes is estimated as the limit diffusible hydrogen amount for each steel type. From this table, developed steel A
It can be seen that the test pieces of X1 to X7 molded by the method of the present invention using ~ E have a higher limit hydrogen amount and are less prone to delayed fracture than Z1 to Z5 using comparative steels FJ.

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】表5には、鍛造前温度が400℃以上にな
るように高周波により均一加熱し、素材を金型に挿入し
た後にミスト状の黒鉛型潤滑材を噴射して抜熱を行った
場合の成形を示す。高周波加熱時の素材温度は、放射温
度計により測温した。また加熱した素材の抜熱時温度
は、荷重測定の際に用いるφ22*100mmの試験片に
表層から2.2mmの位置に埋め込んだ熱伝対と表層に付
けた熱伝対により、潤滑液噴射時の素材温度を測温し
た。
Table 5 shows the case where heat is applied uniformly by high-frequency heating so that the temperature before forging is 400 ° C. or higher, the material is inserted into a mold, and then a mist-like graphite type lubricant is sprayed to remove heat. Shows the molding of. The material temperature during high frequency heating was measured by a radiation thermometer. In addition, the temperature during heat removal of the heated material is sprayed with a lubricating fluid by a thermocouple embedded at a position of 2.2 mm from the surface layer in a φ22 * 100 mm test piece used for load measurement and a thermocouple attached to the surface layer. The material temperature at that time was measured.

【0028】そして表5に示す所定の温度条件になるよ
う噴出潤滑液の流量および液圧を設定した。荷重測定は
熱伝対を付け試験片を用い、所定の温度条件にあること
を確認した後に、そのまま鍛造成形した。金型寿命評価
では、設定した潤滑液の流量および液圧を用い、放射温
度計により表層温度を確認した後に鍛造成形した。
Then, the flow rate and the liquid pressure of the jetted lubricating liquid were set so that the predetermined temperature conditions shown in Table 5 were obtained. For load measurement, a thermocouple was used and a test piece was used. After confirming that the test piece was in a predetermined temperature condition, forging was performed as it was. In the die life evaluation, forging was performed after confirming the surface temperature with a radiation thermometer using the set flow rate and liquid pressure of the lubricating liquid.

【0029】表5より、本発明法では比較法に比べ2倍
以上の金型寿命で成形できることがわかる。なお本発明
法X8,X9について焼入れ温度900℃、焼戻し温度
525℃の焼入れ・焼戻しを行い、限界拡散性水素を測
定した。その結果、限界拡散性水素推定量は0.74pp
m と表4の本発明法と同様のレベルであり、比較法に比
べ高い耐遅れ破壊特性であった。
From Table 5, it can be seen that the method of the present invention enables molding with a mold life that is at least twice as long as that of the comparative method. With respect to the methods X8 and X9 of the present invention, quenching and tempering were performed at a quenching temperature of 900 ° C and a tempering temperature of 525 ° C, and the limiting diffusible hydrogen was measured. As a result, the critical diffusible hydrogen estimated amount is 0.74 pp.
m was the same level as the method of the present invention in Table 4, and the delayed fracture resistance was higher than that of the comparative method.

【0030】[0030]

【発明の効果】本発明により125kgf/mm2 以上の引張
強度を有し、耐遅れ破壊特性の優れた高強度ボルトが高
い金型寿命で成形できる。これによってボルトの継ぎ手
効率の向上が図られ、かつ自動車等の軽量化に寄与でき
ることになり工業的効果は大きい。
According to the present invention, a high-strength bolt having a tensile strength of 125 kgf / mm 2 or more and excellent delayed fracture resistance can be molded with a long mold life. As a result, the joint efficiency of the bolt can be improved, and it can contribute to the weight reduction of automobiles and the like, which has a great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】鍛造時の金型形状とパンチ温度制御および温度
測定の説明図。
FIG. 1 is an explanatory view of a die shape, punch temperature control, and temperature measurement during forging.

【図2】鍛造時の形状不良状況を示す試験片断面図。FIG. 2 is a sectional view of a test piece showing a state of defective shape during forging.

【図3】試験片形状の説明図。FIG. 3 is an explanatory view of the shape of a test piece.

【図4】遅れ破壊試験装置の説明図。FIG. 4 is an explanatory diagram of a delayed fracture test device.

【符号の説明】[Explanation of symbols]

1 試験片 2 パンチ 3 ダイス 4 水冷パイプ 5 ヒーター 6 熱伝対取り付け用のドリル穴 1 Test piece 2 Punch 3 Die 4 Water cooling pipe 5 Heater 6 Thermocouple mounting drill hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B21K 1/46 Z 8824−4E ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // B21K 1/46 Z 8824-4E

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C :0.15〜0.50%、 Si:0.05〜2.0%、 Mn:0.1〜0.6%、 P :0.015%以下、 S :0.02%以下、 Cr:0.1〜3.0%、 Mo:0.2〜2.0%、 Al:0.005〜0.05%、 N :0.03%以下、 さらに鋼成分として V :0.10超〜0.50%、 Ti:0.01超〜0.10%、 Nb:0.01超〜0.10% の一種または二種を含有し、残部がFeおよび不可避的
不純物よりなる棒鋼または線材を球状化焼鈍し、この鋼
材を鍛造直前温度が200℃以上、400℃未満になる
ように均一加熱した直後、平均200mm/秒以上の加工
速度で所定のボルト形状に鍛造成形し、その後焼入れ・
焼戻しを行うに際して焼戻しを400℃以上とすること
を特徴とする耐遅れ破壊特性の優れた高強度ボルトの製
造方法。
1. C: 0.15 to 0.50% by weight%, Si: 0.05 to 2.0%, Mn: 0.1 to 0.6%, P: 0.015% or less, S : 0.02% or less, Cr: 0.1 to 3.0%, Mo: 0.2 to 2.0%, Al: 0.005 to 0.05%, N: 0.03% or less, and steel As a component, one or two kinds of V: more than 0.10 to 0.50%, Ti: more than 0.01 to 0.10%, and Nb: more than 0.01 to 0.10% are contained, and the balance is Fe and A steel rod or wire rod made of unavoidable impurities is spheroidized and annealed, and this steel material is uniformly heated to a temperature of 200 ° C or more and less than 400 ° C immediately before forging, and then a predetermined bolt shape at an average processing speed of 200 mm / sec or more. Forged and then quenched /
A method for producing a high-strength bolt having excellent delayed fracture resistance, characterized in that tempering is performed at 400 ° C. or higher when tempering is performed.
【請求項2】 請求項1記載の組成からなる棒鋼または
線材を球状化焼鈍し、この鋼材を鍛造直前温度が400
℃以上になるように均一加熱した直後、平均200mm/
秒以上の加工速度で鍛造直前の表面温度が100℃以下
のパンチを用いて所定のボルト形状に鍛造成形し、その
後焼入れ・焼戻しを行うに際して焼戻しを400℃以上
とすることを特徴とする耐遅れ破壊特性の優れた高強度
ボルトの製造方法。
2. A steel bar or a wire rod having the composition according to claim 1 is spheroidized and annealed, and the temperature immediately before forging of the steel bar is 400.
Immediately after being uniformly heated to ℃ or more, average 200 mm /
Delay resistance characterized by forging into a predetermined bolt shape using a punch with a surface temperature immediately before forging of 100 ° C or less at a processing speed of at least 2 seconds, and then tempering at 400 ° C or more when performing quenching / tempering. A method for manufacturing a high-strength bolt having excellent fracture characteristics.
【請求項3】 請求項1記載の組成からなる棒鋼または
線材を球状化焼鈍し、この鋼材を鍛造直前温度が400
℃以上になるように均一加熱した後、鍛造直前の鋼材表
面が100℃以下で、表層から素材径の1/10での温
度が250℃以上になるよう潤滑液等を吹き付け抜熱
し、平均200mm/秒以上の加工速度で所定のボルト形
状に鍛造成形した後、焼入れ・焼戻しを行うに際して焼
戻しを400℃以上とすることを特徴とする耐遅れ破壊
特性の優れた高強度ボルトの製造方法。
3. A steel bar or wire rod having the composition according to claim 1 is spheroidized and annealed, and the temperature immediately before forging of the steel bar is 400.
After uniformly heating to ℃ or more, the surface of the steel material just before forging is 100 ℃ or less, and 1/10 of the material diameter is sprayed from the surface layer to heat it to 250 ℃ or more. A method for producing a high-strength bolt having excellent delayed fracture resistance, which comprises forging into a predetermined bolt shape at a processing speed of not less than 1 / second and then tempering at 400 ° C. or more when performing quenching and tempering.
JP22256293A 1993-09-07 1993-09-07 Production of high strength bolt excellent in delayed fracture resistance Withdrawn JPH0775846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22256293A JPH0775846A (en) 1993-09-07 1993-09-07 Production of high strength bolt excellent in delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22256293A JPH0775846A (en) 1993-09-07 1993-09-07 Production of high strength bolt excellent in delayed fracture resistance

Publications (1)

Publication Number Publication Date
JPH0775846A true JPH0775846A (en) 1995-03-20

Family

ID=16784407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22256293A Withdrawn JPH0775846A (en) 1993-09-07 1993-09-07 Production of high strength bolt excellent in delayed fracture resistance

Country Status (1)

Country Link
JP (1) JPH0775846A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908689A (en) * 1997-01-24 1999-06-01 Ppg Industries, Inc. Glass fiber strand mats, thermosetting composites reinforced with the same and methods for making the same
JP2007255471A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Manufacturing method for self-pierce rivet
JP2011200906A (en) * 2010-03-25 2011-10-13 Kagoshima Prefecture Method and device for partial heating and heading small diameter bar
CN114875323A (en) * 2022-05-18 2022-08-09 首钢长治钢铁有限公司 High-strength-to-yield-ratio MG600 anchor rod steel and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908689A (en) * 1997-01-24 1999-06-01 Ppg Industries, Inc. Glass fiber strand mats, thermosetting composites reinforced with the same and methods for making the same
JP2007255471A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Manufacturing method for self-pierce rivet
JP4633661B2 (en) * 2006-03-20 2011-02-16 日産自動車株式会社 Self-piercing rivet manufacturing method
JP2011200906A (en) * 2010-03-25 2011-10-13 Kagoshima Prefecture Method and device for partial heating and heading small diameter bar
CN114875323A (en) * 2022-05-18 2022-08-09 首钢长治钢铁有限公司 High-strength-to-yield-ratio MG600 anchor rod steel and production method thereof

Similar Documents

Publication Publication Date Title
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
CN107406949B (en) Steel wire for machine structural parts
TW201715055A (en) Mechanical structure steel for cold-working and manufacturing method therefor
JP2021183710A (en) Steel wire, wire for non-heat-treated mechanical components, and non-heat-treated mechanical component
JP7200627B2 (en) High-strength bolt steel and its manufacturing method
US20040206426A1 (en) Quenched and tempered steel wire with excellent cold forging properties
JP3918587B2 (en) Spring steel for cold forming
JP2795799B2 (en) Manufacturing method of high strength bolts with excellent delayed fracture resistance
JPH0775846A (en) Production of high strength bolt excellent in delayed fracture resistance
JP2795800B2 (en) Manufacturing method of high strength bolts with excellent delayed fracture resistance
JP3776507B2 (en) Manufacturing method of high-strength stainless steel bolts
JP3314830B2 (en) Manufacturing method of high strength bolts with excellent delayed fracture resistance
KR100568058B1 (en) Steel wire for cold forging
JP4043004B2 (en) Manufacturing method of hollow forgings with high strength and toughness with excellent stress corrosion cracking resistance and hollow forgings
JP5916553B2 (en) Steel for connecting rod and connecting rod
JPH0625745A (en) Manufacture of steel for machine structural use excellent in delayed fracture resistance
JP2005350736A (en) High-strength steel having superior corrosion resistance and fatigue characteristics for spring, and manufacturing method therefor
JPH09202921A (en) Production of wire for cold forging
JPH05255738A (en) Production of steel for machine structural use excellent in delayed fracture resistance
JP7543687B2 (en) Manufacturing method for high strength bolt steel
JPH07316741A (en) High thermal expansion steel and high strength and high thermal expansion bolt
JP3806602B2 (en) Bolt wire or steel wire with excellent cold / warm forgeability and delayed fracture resistance
WO2006057470A1 (en) Steel wire for cold forging
JPH11181549A (en) Cold tool made of casting excellent in weldability and its production
JP2954216B2 (en) Steel for high strength parts

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001107