JP2795799B2 - Manufacturing method of high strength bolts with excellent delayed fracture resistance - Google Patents

Manufacturing method of high strength bolts with excellent delayed fracture resistance

Info

Publication number
JP2795799B2
JP2795799B2 JP26025293A JP26025293A JP2795799B2 JP 2795799 B2 JP2795799 B2 JP 2795799B2 JP 26025293 A JP26025293 A JP 26025293A JP 26025293 A JP26025293 A JP 26025293A JP 2795799 B2 JP2795799 B2 JP 2795799B2
Authority
JP
Japan
Prior art keywords
forging
delayed fracture
less
fracture resistance
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26025293A
Other languages
Japanese (ja)
Other versions
JPH07112235A (en
Inventor
正弘 戸田
武司 三木
修 加田
房男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26025293A priority Critical patent/JP2795799B2/en
Publication of JPH07112235A publication Critical patent/JPH07112235A/en
Application granted granted Critical
Publication of JP2795799B2 publication Critical patent/JP2795799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は125kgf/mm2 以上の引
張強度を有する耐遅れ破壊特性の優れた高強度ボルトの
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength bolt having a tensile strength of 125 kgf / mm 2 or more and excellent in delayed fracture resistance.

【0002】[0002]

【従来の技術】高強度ボルトは機械、自動車、橋、建物
に数多く使用されている他、自動車部品等数多く使用さ
れている。しかし、どの品種についても引張強度が12
5kgf/mm2 を超えると遅れ破壊の危険性が高まることが
よく知られており、実際に使用されているボルトの強度
は110kgf/mm2 級が上限となっているのが現状であ
る。しかしながら近年構造物の大型化に伴い、継ぎ手効
率の向上、軽量化の目的からボルトの高強度化に対する
要求は高く、また燃費向上を要望されている自動車にお
いても軽量化を達成するためにボルトの高強度化が強く
要望されている。
2. Description of the Related Art High-strength bolts are widely used in machines, automobiles, bridges and buildings, and are also used in many parts such as automobile parts. However, the tensile strength was 12
It is well known that the risk of delayed fracture increases when the pressure exceeds 5 kgf / mm 2 , and at present, the strength of bolts actually used is 110 kgf / mm 2 class. However, in recent years, with the increase in size of structures, there is a high demand for higher strength bolts for the purpose of improving joint efficiency and reducing weight. There is a strong demand for higher strength.

【0003】高強度部材の遅れ破壊においては鋼中の水
素が原因とされている。特に常温近傍で容易に移動し得
る拡散性水素が引張応力集中部の結晶粒界に集積し、粒
界割れを助長するために遅れ破壊が起こると考えられて
いる。従って高強度機械構造用鋼を使用する場合、水素
特に拡散性水素に対する抵抗力のある鋼でなければなら
ない。
[0003] The delayed fracture of high strength members is attributed to hydrogen in steel. In particular, it is considered that diffusible hydrogen, which can easily move in the vicinity of room temperature, accumulates at the crystal grain boundary in the tensile stress concentration portion, and promotes grain boundary cracking, which causes delayed fracture. Therefore, when high strength mechanical structural steel is used, it must be resistant to hydrogen, especially diffusible hydrogen.

【0004】そこで本発明者らは、耐遅れ破壊特性に及
ぼす合金元素および焼戻し温度の影響を調べたところ、
機械構造用鋼に比べて、Si,Mn,Pの低下、Moの
増加および400℃以上での焼戻しが有効であることを
見いだした。またV,Ti,Nbの添加により一層の耐
遅れ破壊特性向上が可能なことを見いだし、特願平3−
323146号において、鋼の化学成分の調整、および
焼戻し温度の調整により125kgf/mm2 以上の引張強度
を有しかつ遅れ破壊に至らない限界の拡散性水素量(以
下、限界拡散性水素と呼ぶ)が増加できる機械構造用鋼
と機械部品への成形方法を提案した。
[0004] The inventors of the present invention examined the effects of alloying elements and tempering temperature on delayed fracture resistance.
Compared to steel for machine structural use, it has been found that reduction of Si, Mn, P, increase of Mo, and tempering at 400 ° C. or more are effective. In addition, they have found that the addition of V, Ti, and Nb can further improve the delayed fracture resistance.
In JP-A-323146, the amount of diffusible hydrogen that has a tensile strength of 125 kgf / mm 2 or more and does not lead to delayed fracture by adjusting the chemical composition of the steel and the tempering temperature (hereinafter referred to as the critical diffusible hydrogen) We proposed a method for forming steel for machine structural parts and machine parts that can increase the steel.

【0005】[0005]

【発明が解決しようとする課題】しかし、特願平3−3
23146号記載のボルト製造法は、球状化焼鈍後の冷
間鍛造によるボルト成形とその後の焼入れ・焼戻しを行
っており、2度にわたる熱処理を行っている。球状化焼
鈍は、鋼材を軟化させ冷間鍛造時の金型の早期破損を防
ぐために行われる工程であるが、700〜800℃にお
いて10時間以上の加熱および保持を必要とするため、
エネルギーコストは膨大である。加工コスト低減に対す
る要望が高い昨今、この球状化焼鈍省略は強く求められ
ている。また特願平3−323146号記載のボルト製
造法は、ボルトの鍛造成形後に焼入れ・焼戻しを行って
いるため、耐遅れ破壊特性向上に有効なメタルフローが
消滅している。
SUMMARY OF THE INVENTION However, Japanese Patent Application No. Hei.
In the bolt manufacturing method described in No. 23146, a bolt is formed by cold forging after spheroidizing annealing, followed by quenching and tempering, and heat treatment is performed twice. Spheroidizing annealing is a step performed to soften the steel material and prevent early damage of the mold during cold forging, but requires heating and holding at 700 to 800 ° C for 10 hours or more,
Energy costs are enormous. In recent years, there has been a strong demand for reduction in processing cost, and the omission of this spheroidizing annealing has been strongly demanded. In the bolt manufacturing method described in Japanese Patent Application No. 3-323146, quenching and tempering are performed after the forging of the bolt, so that the metal flow effective for improving the delayed fracture resistance has disappeared.

【0006】そこで、球状化焼鈍を省略しかつ耐遅れ破
壊特性を向上させるためにメタルフローを残した成形法
として、鋼材を焼入れ・焼戻し時の加熱直後に鍛造成形
することが考えられる。これに対し、関口らは塑性と加
工 Vol.24 No.271(1983)において同様の
成形方法として焼戻し温間鍛造を提案している。しかし
塑性と加工 Vol.24 No.271(1983)記載の
手法は、鍛造後の靭性向上を目指したものであり、メタ
ルフローの残留による耐遅れ破壊特性向上に関しては言
及されていない。また単に焼戻し時の加熱直後に温間鍛
造成形するだけでは、形状不良を招く可能性がある。
Therefore, as a forming method in which the spheroidizing annealing is omitted and the metal flow is left in order to improve delayed fracture resistance, forging forming of a steel material immediately after heating during quenching and tempering may be considered. On the other hand, Sekiguchi et al. 24 No. 271 (1983) proposes tempering warm forging as a similar forming method. However, plasticity and processing Vol. 24 No. 271 (1983) aims at improving toughness after forging, and does not mention improvement in delayed fracture resistance due to residual metal flow. Further, simply performing warm forging immediately after heating during tempering may lead to shape defects.

【0007】[0007]

【課題を解決するための手段】本発明は以上の知見およ
び課題に鑑みなされたものであり、エネルギーコストの
高い球状化焼鈍を省略しても特願平3−323146号
記載による方法と同等の鍛造金型寿命をもって成形で
き、かつ耐遅れ破壊特性の向上が可能な125kgf/mm2
以上の引張強度を有する耐遅れ破壊特性の優れた高強度
ボルトの製造を可能にする方法である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above findings and problems, and is equivalent to the method described in Japanese Patent Application No. 3-323146 even if spheroidizing annealing having high energy cost is omitted. 125kgf / mm 2 which can be molded with forging die life and can improve delayed fracture resistance
This method is capable of producing a high-strength bolt having the above-described tensile strength and excellent in delayed fracture resistance.

【0008】即ち本発明の要旨とするところは次の通り
である。 (1)重量%でC:0.15〜0.50%、Si:0.
05〜0.5%、Mn:0.1〜0.6%、P:0.0
15%以下、S:0.02%以下、Cr:0.1〜2.
0%、Mo:0.2〜2.0%、Al:0.005〜
0.05%、N:0.01%以下を含有し、残部がFe
および不可避的不純物よりなる圧延棒鋼または線材を焼
入れした後焼戻しする際に、焼戻し加熱直後に行う鍛造
において、鍛造直前の素材温度を450℃以上とし、平
均200mm/秒以上の加工速度で鍛造直前の表面温度が
100℃以下のパンチを用いて所定のボルト形状に鍛造
成形することを特徴とする125kgf/mm2 以上の引張強
度を有する耐遅れ破壊特性の優れた高強度ボルトの製造
方法。
That is, the gist of the present invention is as follows. (1) C: 0.15 to 0.50% by weight, Si: 0.
05 to 0.5%, Mn: 0.1 to 0.6%, P: 0.0
15% or less, S: 0.02% or less, Cr: 0.1 to 2.
0%, Mo: 0.2 to 2.0%, Al: 0.005 to
0.05%, N: 0.01% or less, the balance being Fe
When tempering after quenching a rolled steel bar or wire consisting of unavoidable impurities, in forging performed immediately after tempering heating, the raw material temperature immediately before forging is set to 450 ° C. or higher, and at an average processing speed of 200 mm / sec or more, the forging is performed immediately before forging. A method for producing a high-strength bolt excellent in delayed fracture resistance and having a tensile strength of 125 kgf / mm 2 or more, which is forged into a predetermined bolt shape using a punch having a surface temperature of 100 ° C. or less.

【0009】(2)重量%でC:0.15〜0.50
%、Si:0.05〜0.5%、Mn:0.1〜0.6
%、P:0.015%以下、S:0.02%以下、C
r:0.1〜2.0%、Mo:0.2〜2.0%、A
l:0.005〜0.05%、N:0.01%以下を含
有し、更に、V:0.001〜0.20%、Ti:0.
001〜0.050%、Nb:0.001〜0.050
%の一種または二種以上を含有し、残部がFeおよび不
可避的不純物よりなる圧延棒鋼または線材を用いて、上
記(1)の焼入れと、焼戻し加熱温度保持直後のボルト
成形を行うことを特徴とする125kgf/mm2 以上の引張
強度を有する耐遅れ破壊特性の優れた高強度ボルトの製
造方法。
(2) C: 0.15 to 0.50 by weight%
%, Si: 0.05 to 0.5%, Mn: 0.1 to 0.6
%, P: 0.015% or less, S: 0.02% or less, C
r: 0.1 to 2.0%, Mo: 0.2 to 2.0%, A
l: 0.005 to 0.05%, N: 0.01% or less, V: 0.001 to 0.20%, Ti: 0.
001 to 0.050%, Nb: 0.001 to 0.050
%, And the above-mentioned quenching (1) and bolt forming immediately after holding the tempering heating temperature are performed by using a rolled steel bar or a wire rod containing at least one of Fe and inevitable impurities. A method for manufacturing a high-strength bolt having a tensile strength of 125 kgf / mm 2 or more and excellent in delayed fracture resistance.

【0010】(3)上記(1)また(2)記載の組成か
らなる圧延棒鋼または線材を焼入れした後焼戻しする際
に、焼戻し加熱直後に行う鍛造において素材温度が45
0℃以上となるように焼戻し加熱を行い、その後の鍛造
において鍛造直前の鋼材表面が200℃以下となるよう
に潤滑液等を吹き付け抜熱し、平均200mm/秒以上の
加工速度で所定のボルト形状に鍛造成形することを特徴
とする125kgf/mm2以上の引張強度を有する耐遅れ破
壊特性の優れた高強度ボルトの製造方法にある。
(3) When a rolled steel bar or a wire having the composition described in the above (1) or (2) is quenched and tempered, the material temperature is 45 in the forging performed immediately after the tempering heating.
Tempering heating to 0 ° C or more, and in subsequent forging, lubricating liquid or the like is blown out so that the surface of the steel material immediately before forging is 200 ° C or less, and heat is removed. A method for producing a high-strength bolt having a tensile strength of 125 kgf / mm 2 or more and excellent in delayed fracture resistance, characterized by being forged.

【0011】本発明で用いられる鋼の合金成分は次の理
由で決定した。Cは、焼入れ・焼戻しにより高強度を得
るためには0.15%以上必要であるが、多すぎると靭
性を劣化させるとともに耐遅れ破壊特性も劣化させる元
素であるために0.50%以下とした。Siは鋼の脱酸
および強度を高めるのに0.05%以上必要であるが、
素材強度が増加して鍛造性を損なう元素であるために、
0.5%以下とした。
The alloy composition of the steel used in the present invention was determined for the following reasons. C is required to be 0.15% or more in order to obtain high strength by quenching and tempering, but if it is too much, it is an element that deteriorates toughness and delayed fracture resistance. did. Si is required at least 0.05% to increase the deoxidation and strength of steel.
Because it is an element that increases material strength and impairs forgeability,
0.5% or less.

【0012】Mnは鋼の脱酸および焼入れ性の確保に
0.1%以上必要であるが、オーステナイト域加熱時に
粒界に偏析し粒界を脆化させるとともに耐遅れ破壊特性
を劣化させる元素であるために0.6%以下とした。P
は焼入れ性元素としては有効であるが、凝固時にミクロ
偏析し、更にオーステナイト域加熱時に粒界に偏析し粒
界を脆化させるとともに耐遅れ破壊特性を劣化させる元
素であるために0.015%以下とした。Sは不可避的
不純物であるが、オーステナイト域加熱時に粒界に偏析
し粒界を脆化させるとともに耐遅れ破壊特性を劣化させ
る元素であるために0.02%以下とした。
Mn is required to be 0.1% or more in order to ensure the deoxidation and hardenability of steel. However, Mn is an element that segregates at the grain boundary during heating in the austenite region, embrittles the grain boundary and deteriorates delayed fracture resistance. Therefore, the content is set to 0.6% or less. P
Is effective as a quenchable element, but is 0.015% because it segregates microscopically during solidification, segregates at the grain boundaries during heating in the austenite region, embrittles the grain boundaries, and deteriorates delayed fracture resistance. It was as follows. Although S is an unavoidable impurity, it is segregated at the grain boundary during heating in the austenite region, embrittles the grain boundary, and deteriorates the delayed fracture resistance, so that the content of S is set to 0.02% or less.

【0013】Crは鋼の焼入れ性を得るためには0.1
%以上必要であるが、多すぎると靭性の劣化を招く元素
であるために2.0%以下とした。Moは鋼の焼入れ性
を得るために必要であるとともに焼戻し軟化抵抗を有し
450℃以上の焼戻し温度で安定して125kgf/mm2
上の引張荷重を得るのに有効な元素であり、0.2%以
上必要であるが、多すぎるとその効果は飽和しコストの
上昇を招くために2.0%以下とした。Alは鋼の脱酸
に有効な元素であるために0.005%以上必要である
が、多すぎると靭性の劣化を招くために0.05%以下
とした。
[0013] In order to obtain the hardenability of steel, Cr is 0.1%.
% Is necessary, but if it is too large, it is an element that causes deterioration of toughness. Mo is an element that is necessary for obtaining the hardenability of steel, has a tempering softening resistance, and is effective for obtaining a tensile load of 125 kgf / mm 2 or more at a tempering temperature of 450 ° C. or more. The content is required to be 2% or more, but if the content is too large, the effect is saturated and the cost is increased. Al is an element effective for deoxidation of steel, and therefore needs to be 0.005% or more. However, if it is too much, toughness is deteriorated.

【0014】Nはオーステナイト加熱時に粒界に偏析し
粒界を脆化させるとともに耐遅れ破壊特性も劣化させる
元素であるため0.01%以下とした。V,Ti,Nb
は、結晶粒の微細化に寄与し、かつ水素との親和性に富
み鋼中での水素の拡散、集積を抑制することにより耐遅
れ破壊特性向上に有効な元素であるため、それぞれ0.
001%以上必要である。ただし、多すぎるとその効果
は飽和しむしろ靭性を劣化させる元素であるためにそれ
ぞれV:0.2%以下、Ti:0.05%以下、Nb:
0.05%以下とした。
N is an element which segregates at the grain boundary during austenite heating, embrittles the grain boundary and also deteriorates the delayed fracture resistance, so that N is set to 0.01% or less. V, Ti, Nb
Is an element that contributes to the refinement of crystal grains and has a high affinity for hydrogen and is an element effective for improving delayed fracture resistance by suppressing diffusion and accumulation of hydrogen in steel.
001% or more is required. However, if the content is too large, the effect is saturated and the element is rather deteriorated in toughness. Therefore, V: 0.2% or less, Ti: 0.05% or less, Nb:
0.05% or less.

【0015】一方、本成分を有する圧延材を焼入れした
後焼戻しする際に、焼戻し加熱直後に行う鍛造におい
て、鍛造直前の素材温度を450℃以上としている。こ
れは、特願平3−323146号に記載されているよう
に、本発明者らは耐遅れ破壊特性に及ぼす合金元素およ
び焼戻し温度の影響を調べたところ、機械構造用鋼に比
べて、Si,Mn,Pの低下、Moの増加および400
℃以上での焼戻しが有効であること、また焼戻し加熱直
後の鍛造において、これより低い温度では金型寿命が低
下するからである。鍛造時の加工速度を平均200mm/
秒以上とするのは、これより加工速度が遅くなると鍛造
中に鋼材温度が低下し、金型寿命が低下するからであ
る。
On the other hand, when tempering after quenching a rolled material having this component, the temperature of the raw material immediately before forging is 450 ° C. or higher in forging performed immediately after tempering heating. As described in Japanese Patent Application No. 3-323146, the present inventors examined the effects of alloying elements and tempering temperature on the delayed fracture resistance, and found that the effect of Si was higher than that of steel for machine structural use. , Mn, P decrease, Mo increase and 400
This is because tempering at a temperature of not less than ° C. is effective, and in forging immediately after heating by tempering, at a lower temperature, the mold life is reduced. Processing speed during forging is 200mm / average
The reason for setting the time to seconds or longer is that if the processing speed is slower than this, the temperature of the steel material decreases during forging, and the life of the mold decreases.

【0016】パンチ温度を制御するのは、パンチ下部に
おいて鋼材の加工発熱による軟化が激しく成形後形状不
良を招くためであり、鍛造直前のパンチ温度を100℃
以下として鋼材からパンチへの熱移動を制御する必要が
ある。更に焼戻し加熱直後の鍛造において、素材を金型
内に挿入した後、素材の表層部を冷却することによって
パンチ温度を制御するのと同様の効果を得ることができ
る。この場合鍛造直前の鋼材表面が200℃以下となる
よう潤滑液等を吹き付け抜熱するが、鋼材表層の温度を
200℃以下とするのは、これより高い温度ではパンチ
下部の鋼材が加工発熱による軟化が生じるために、成形
後形状不良を招くことによる。なお抜熱には液体の他、
実質的に非酸化性のガスを用いることも可能である。
The reason why the punch temperature is controlled is that the lower part of the punch is so softened by the heat generated by the working of the steel that the shape becomes poor after forming.
It is necessary to control the heat transfer from the steel material to the punch as follows. Further, in forging immediately after tempering heating, the same effect as controlling the punch temperature can be obtained by cooling the surface layer of the material after inserting the material into the mold. In this case, a lubricating liquid or the like is sprayed and the heat is removed so that the surface of the steel material immediately before forging becomes 200 ° C. or less. However, the temperature of the steel material surface layer is set to 200 ° C. or less. Due to softening, shape defects are caused after molding. In addition to heat removal, in addition to liquid,
It is also possible to use a substantially non-oxidizing gas.

【0017】[0017]

【実施例】供試鋼の化学成分を表1に示す。A〜Hは本
発明のボルト用鋼に従ったものであり、I〜Mは比較鋼
である。これらのφ22mm、長さ120mm圧延棒鋼を9
00×1時間の加熱、保持後、油冷により焼入れし、各
焼戻し温度に加熱し、1時間保持した直後に、鍛造によ
りM22トリミングボルト相当の頭部成形を行い、その
後水冷した。なお焼戻し温度は、成形後の引張強度が1
50kgf/mm2 以上となるように設定した。
EXAMPLES The chemical components of the test steel are shown in Table 1. A to H are according to the steel for bolts of the present invention, and I to M are comparative steels. These rolled steel bars of φ22 mm and length 120 mm
After heating and holding for 00 × 1 hour, the steel was quenched by oil cooling, heated to each tempering temperature, and immediately after holding for 1 hour, a head equivalent to an M22 trimming bolt was formed by forging and then water-cooled. The tempering temperature is such that the tensile strength after molding is 1
It was set to be 50 kgf / mm 2 or more.

【0018】鍛造成形はサーボタイプの油圧圧縮試験機
で所定の加工速度で行い、成形荷重を測定し成形した。
金型寿命評価は、図1に示す成形荷重と金型寿命の関係
から推定した。図1の実線は、表2における記号Y1,
Y5,Y9,Y10での実験値を結んだ直線である。な
お表2の記号Y9,Y10は特願平3−323146号
記載による成形方法であり、金型寿命評価にあたっては
圧延コイルを球状化焼鈍し、ボルト成形用パーツフォー
マーを用いて頭部成形を行った。
The forging was carried out at a predetermined working speed with a servo type hydraulic compression tester, the forming load was measured and the forging was carried out.
The mold life evaluation was estimated from the relationship between the molding load and the mold life shown in FIG. The solid line in FIG.
This is a straight line connecting the experimental values at Y5, Y9, and Y10. Symbols Y9 and Y10 in Table 2 are molding methods described in Japanese Patent Application No. 3-323146. In evaluating the mold life, the rolling coil is subjected to spheroidizing annealing, and the head is formed using a bolt former. went.

【0019】鍛造直前の素材温度は、放射温度計により
測温した。パンチには図2に示すようにヒーターを埋め
込むとともに、水冷パイプを通じて温度制御を行った。
また黒鉛系潤滑材をパンチ表面に吹き付け、焼付き防止
とともにパンチ表面の温度制御を行った。パンチ温度の
測定は、図2に示すようにパンチ表面から2mmの位置に
埋め込んだ熱伝対によって行い、鍛造直前温度を以てパ
ンチ温度とした。なお金型形状は図2に示す通りであ
る。
The raw material temperature immediately before forging was measured with a radiation thermometer. As shown in FIG. 2, a heater was embedded in the punch, and the temperature was controlled through a water-cooled pipe.
A graphite lubricant was sprayed on the punch surface to prevent seizure and control the punch surface temperature. The punch temperature was measured by a thermocouple embedded at a position 2 mm from the punch surface as shown in FIG. 2, and the temperature immediately before forging was used as the punch temperature. The mold shape is as shown in FIG.

【0020】表2には成形実験の結果を示す。記号X1
〜X10が本発明法による場合であり、記号Y1〜Y8
が比較法の場合である。また記号Y9,Y10は、特願
平3−323146号記載による球状化焼鈍後に冷間鍛
造により成形した結果である。比較法Y3,Y4,Y7
では成形後図3に示すように、頭部側面が段状となる形
状不良に至った。そこで、金型寿命の測定は行わなかっ
た。また比較法Y1,Y2,Y5,Y6,Y8では金型
寿命が4万個以下であり、従来法のY9,Y10の半分
程度の金型寿命であった。これに対し本発明法ではいず
れの場合も8万個以上であり、従来法のY9,Y10と
同等ないしそれ以上の金型寿命で成形できた。
Table 2 shows the results of the molding experiment. Symbol X1
To X10 are the cases according to the method of the present invention, and symbols Y1 to Y8
Is the case of the comparison method. Symbols Y9 and Y10 are results obtained by cold forging after spheroidizing annealing described in Japanese Patent Application No. 3-323146. Comparison method Y3, Y4, Y7
After molding, as shown in FIG. 3, the shape of the head side became stepped, resulting in a shape defect. Therefore, the measurement of the mold life was not performed. In the comparative methods Y1, Y2, Y5, Y6, and Y8, the mold life was 40,000 or less, which was about half that of the conventional methods Y9 and Y10. In contrast, in the method of the present invention, the number of molds was 80,000 or more in each case, and molding was possible with a mold life equal to or longer than that of the conventional methods Y9 and Y10.

【0021】次に遅れ破壊性を評価するために、本発明
法で成形されたボルト形状素材を表2に示す温度にて焼
入れ・焼戻しを行い、図4に示すM22ボルトの首下直
下に4mmVの円周ノッチを設けた試験片を製作した。ま
た比較鋼I〜Mについても本発明法による成形を行い、
図4の試験片を製作した。なお、従来法のY9,Y10
に関しては、鍛造後に焼入れ・焼戻しを行った後に、図
4と同様の形状で、ボルトの首下直下に4mmVの円周ノ
ッチを設けた試験片を製作した。以下に限界水素量を求
める方法について述べる。
Next, in order to evaluate the delayed fracture property, the bolt-shaped material formed by the method of the present invention was quenched and tempered at the temperature shown in Table 2, and 4 mmV was immediately below the neck of the M22 bolt shown in FIG. A test piece provided with a circumferential notch was manufactured. Further, the comparative steels I to M were also molded by the method of the present invention,
The test piece of FIG. 4 was manufactured. The conventional methods Y9 and Y10
As for the test piece, after quenching and tempering after forging, a test piece having the same shape as that of FIG. 4 and having a circumferential notch of 4 mmV directly below the neck of the bolt was manufactured. The method for obtaining the limit hydrogen amount will be described below.

【0022】図4に示す試験片を2本組にして水素を富
化するために、20〜36%HClに20〜120分間
浸漬して試験片中の水素量を変化させる。このうち1本
はHCl浸漬し大気中に30分放置した後、熱的分析法
により水素量を測定し、他の1本は浸漬後30分間大気
中に放置した後、図5に示した試験機で遅れ破壊試験を
行う。図5において1は試験片、2はバランスウェイ
ト、3は支点を示す。また遅れ破壊試験における試験荷
重はHCl溶液に浸漬する前の各試験片の破断荷重の7
0%と一定にした。
In order to enrich the hydrogen in a set of two test pieces shown in FIG. 4, the amount of hydrogen in the test pieces is changed by immersion in 20 to 36% HCl for 20 to 120 minutes. One of them was immersed in HCl and allowed to stand in the air for 30 minutes, then the amount of hydrogen was measured by thermal analysis. The other was allowed to stand in the air for 30 minutes after immersion, and the test shown in FIG. Perform a delayed fracture test on the machine. In FIG. 5, 1 indicates a test piece, 2 indicates a balance weight, and 3 indicates a fulcrum. The test load in the delayed fracture test was 7% of the rupture load of each specimen before immersion in the HCl solution.
It was kept constant at 0%.

【0023】以上の手順に従い、HClの濃度および浸
漬時間を種々変えた場合に、得られた拡散性水素量と遅
れ破壊試験における破断時間との関係を表3に示す。同
表において、4000分を経って遅れ破壊を起こさない
上限の拡散性水素量を限界拡散性水素量として各鋼種に
ついて推定すると表4のようになる。この表より、開発
鋼A〜Hを用い本発明法により成形されたX1〜X10
の試験片は、比較鋼I〜Mを用いたZ1〜Z5に比べて
限界水素量が高く、遅れ破壊しにくいことがわかる。ま
た開発鋼D,Bを用いて特願平3−323146号記載
による球状化焼鈍し冷間鍛造後に焼入れ・焼戻しした場
合よりも限界水素量が高くなることがわかる。
Table 3 shows the relationship between the obtained amount of diffusible hydrogen and the rupture time in the delayed fracture test when the concentration of HCl and the immersion time were variously changed in accordance with the above procedure. In the same table, when the upper limit diffusible hydrogen amount that does not cause delayed fracture after 4000 minutes is estimated as the limit diffusible hydrogen amount for each steel type, Table 4 is obtained. From this table, X1 to X10 formed by the method of the present invention using the developed steels A to H are shown.
It can be seen that the test piece of No. has a higher critical hydrogen content than Z1 to Z5 using comparative steels I to M, and is less likely to be fractured with delay. Also, it can be seen that the critical hydrogen content becomes higher than in the case of spheroidizing annealing and quenching / tempering after cold forging described in Japanese Patent Application No. 3-323146 using developed steels D and B.

【0024】表5には、焼戻し加熱した素材を金型に挿
入した後にミスト状の黒鉛系潤滑液を試験片に噴射して
抜熱を行った場合の成形を示す。鍛造前の素材温度とし
ては、焼戻し加熱した後に金型に挿入する時の温度を放
射温度計により測温した。また加熱した素材の抜熱時温
度は、荷重測定の際に用いるφ22×120mmの試験片
の表層から2.2mmの位置に埋め込んだ熱伝対、および
表層に付けた熱伝対により、潤滑液噴射時の素材温度を
測温した。そして表5に示す所定の温度条件になるよう
噴出潤滑液の流量および液圧を設定した。荷重測定は熱
伝対を付けたままの試験片を用い、所定の温度条件にあ
ることを確認した後に、そのまま鍛造成形した。金型寿
命評価は、測定した荷重より図1を用いて推定した。
Table 5 shows molding in a case where a mist-like graphite-based lubricating liquid is injected into a test piece and heat is removed after inserting a material subjected to tempering and heating into a mold. As the material temperature before forging, the temperature at the time of inserting into a mold after tempering and heating was measured by a radiation thermometer. The temperature at the time of heat removal of the heated material is determined by a thermocouple embedded at a position of 2.2 mm from a surface layer of a φ22 × 120 mm test piece used for load measurement and a thermocouple attached to the surface layer. The material temperature at the time of injection was measured. Then, the flow rate and the pressure of the ejected lubricating liquid were set so as to satisfy the predetermined temperature conditions shown in Table 5. For load measurement, a test piece with a thermocouple attached was used, and after confirming that it was under a predetermined temperature condition, forging was performed as it was. The mold life evaluation was estimated from the measured load using FIG.

【0025】表5より、本発明法では形状不良を生じる
こともなく、比較法Y11,Y12に比べ4倍以上の金
型寿命で成形でき、また従来法であるY9,Y10より
やや低いもののほぼ同等である。なお本発明法X11,
X12については限界拡散性水素を測定したが、その結
果は、X11では0.75ppm 、X12では0.77pp
m と表4の本発明法と同様のレベルであり、従来法Y
9,Y10に比べ高い耐遅れ破壊特性であった。
From Table 5, it can be seen that the method of the present invention can be formed with a mold life four times or more longer than that of the comparative methods Y11 and Y12 without the occurrence of a shape defect, and is slightly lower than those of the conventional methods Y9 and Y10. Are equivalent. The method X11 of the present invention,
The critical diffusible hydrogen was measured for X12, and the result was 0.75 ppm for X11 and 0.77 pp for X12.
m and the same level as the method of the present invention in Table 4, and
9, which had higher delayed fracture resistance than Y10.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【発明の効果】本発明により125kgf/mm2 以上の引張
強度を有し、耐遅れ破壊特性の優れた高強度ボルトが球
状化焼鈍を行うことなくできる。これによってボルトの
継ぎ手効率の向上が図られ、かつ自動車等の軽量化に寄
与できることになり工業的効果は大きい。
According to the present invention, a high-strength bolt having a tensile strength of 125 kgf / mm 2 or more and having excellent delayed fracture resistance can be formed without performing spheroidizing annealing. As a result, the joint efficiency of the bolt is improved, and it is possible to contribute to the weight reduction of automobiles and the like, and the industrial effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ボルト成形時の成形荷重と金型寿命の関係を示
す図表。
FIG. 1 is a chart showing a relationship between a molding load and a mold life during bolt molding.

【図2】鍛造時の金型形状とパンチ温度制御および温度
測定の説明図。
FIG. 2 is an explanatory diagram of a die shape, punch temperature control, and temperature measurement during forging.

【図3】鍛造時の形状不良状況を示す試験片断面図。FIG. 3 is a cross-sectional view of a test piece showing a state of a shape defect during forging.

【図4】試験片形状の説明図。FIG. 4 is an explanatory view of a test piece shape.

【図5】遅れ破壊試験装置の説明図。FIG. 5 is an explanatory diagram of a delayed fracture test apparatus.

【符号の説明】[Explanation of symbols]

1 試験片 2 パンチ 3 ダイス 4 水冷パイプ 5 ヒーター 6 熱伝対取り付け用のドリル穴 Reference Signs List 1 test piece 2 punch 3 die 4 water cooling pipe 5 heater 6 drill hole for thermocouple installation

フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/00 301 C22C 38/00 301Z 38/22 38/22 (72)発明者 石川 房男 富津市新富20−1 新日本製鐵株式会社 技術開発本部内 (58)調査した分野(Int.Cl.6,DB名) B21K 1/44 B21J 1/06 B21J 5/00Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/00 301 C22C 38/00 301Z 38/22 38/22 (72) Inventor Fumio Ishikawa 20-1 Shintomi, Futtsu Nippon Steel Corporation (58) Investigated field (Int.Cl. 6 , DB name) B21K 1/44 B21J 1/06 B21J 5/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で C :0.15〜0.50%、 Si:0.05〜0.5%、 Mn:0.1〜0.6%、 P :0.015%以下、 S :0.02%以下、 Cr:0.1〜2.0%、 Mo:0.2〜2.0%、 Al:0.005〜0.05%、 N :0.01%以下 残部がFeおよび不可避的不純物よりなる圧延棒鋼また
は線材を焼入れした後焼戻しする際に、焼戻し加熱直後
に行う鍛造において、鍛造直前の素材温度を450℃以
上とし、平均200mm/秒以上の加工速度で鍛造直前の
表面温度が100℃以下のパンチを用いて所定のボルト
形状に鍛造成形し、125kgf/mm2 以上の引張強度を有
することを特徴とする耐遅れ破壊特性の優れた高強度ボ
ルトの製造方法。
C: 0.15 to 0.50%, Si: 0.05 to 0.5%, Mn: 0.1 to 0.6%, P: 0.015% or less by weight, S : 0.02% or less, Cr: 0.1 to 2.0%, Mo: 0.2 to 2.0%, Al: 0.005 to 0.05%, N: 0.01% or less, the balance being Fe When tempering after quenching a rolled steel bar or wire consisting of unavoidable impurities, in forging performed immediately after tempering heating, the raw material temperature immediately before forging is set to 450 ° C. or higher, and at an average processing speed of 200 mm / sec or more, the forging is performed immediately before forging. A method for producing a high-strength bolt excellent in delayed fracture resistance, wherein the bolt is forged into a predetermined bolt shape using a punch having a surface temperature of 100 ° C. or less and has a tensile strength of 125 kgf / mm 2 or more.
【請求項2】 重量%で V :0.001〜0.20%、 Ti:0.001〜0.050%、 Nb:0.001〜0.050% の一種または二種以上を含有することを特徴とする請求
項1記載の耐遅れ破壊特性の優れた高強度ボルトの製造
方法。
2. One or more of V: 0.001 to 0.20%, Ti: 0.001 to 0.050%, and Nb: 0.001 to 0.050% by weight%. The method for producing a high-strength bolt excellent in delayed fracture resistance according to claim 1, characterized in that:
【請求項3】 請求項1または請求項2記載の組成から
なる圧延棒鋼または線材を焼入れした後焼戻しする際
に、焼戻し加熱直後に行う鍛造において素材温度が45
0℃以上となるように焼戻し加熱を行い、その後の鍛造
において鍛造直前の鋼材表面が200℃以下となるよう
に潤滑液等を吹き付け抜熱し、平均200mm/秒以上の
加工速度で所定のボルト形状に鍛造成形し、125kgf/
mm2 以上の引張強度を有することを特徴とする耐遅れ破
壊特性の優れた高強度ボルトの製造方法。
3. When a rolled steel bar or a wire rod having the composition according to claim 1 or 2 is quenched and tempered, the material temperature is set to 45 in forging performed immediately after tempering heating.
Tempering heating to 0 ° C or more, and in subsequent forging, lubricating liquid or the like is blown out so that the surface of the steel material immediately before forging is 200 ° C or less, and heat is removed. Forged to 125kgf /
A method for producing a high-strength bolt excellent in delayed fracture resistance, having a tensile strength of not less than mm 2 .
JP26025293A 1993-10-18 1993-10-18 Manufacturing method of high strength bolts with excellent delayed fracture resistance Expired - Lifetime JP2795799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26025293A JP2795799B2 (en) 1993-10-18 1993-10-18 Manufacturing method of high strength bolts with excellent delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26025293A JP2795799B2 (en) 1993-10-18 1993-10-18 Manufacturing method of high strength bolts with excellent delayed fracture resistance

Publications (2)

Publication Number Publication Date
JPH07112235A JPH07112235A (en) 1995-05-02
JP2795799B2 true JP2795799B2 (en) 1998-09-10

Family

ID=17345470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26025293A Expired - Lifetime JP2795799B2 (en) 1993-10-18 1993-10-18 Manufacturing method of high strength bolts with excellent delayed fracture resistance

Country Status (1)

Country Link
JP (1) JP2795799B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2823160B2 (en) * 1987-03-03 1998-11-11 キヤノン株式会社 Image processing device
WO2000050185A1 (en) * 1999-02-23 2000-08-31 Kanemitsu Corporation Method of manufacturing form-rolled part
JP6687047B2 (en) * 2017-03-28 2020-04-22 Jfeスチール株式会社 Hot rolled steel
CN108531815A (en) * 2018-05-24 2018-09-14 本钢板材股份有限公司 High temperature bolt steel BG25Cr2MoVA and preparation method thereof
CN113667906B (en) * 2021-07-22 2023-01-31 河钢股份有限公司 Fine steel for straight weather-resistant high-strength bolt and production method thereof

Also Published As

Publication number Publication date
JPH07112235A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
JP6607199B2 (en) Non-tempered machine part wire, Non-tempered machine part steel wire, and Non-tempered machine part
JP5590246B2 (en) Non-tempered machine part wire, non-tempered machine part steel wire, non-tempered machine part and manufacturing method thereof
JP5521885B2 (en) Steel wire for machine parts with high strength and excellent hydrogen embrittlement resistance, machine parts and method for producing the same
JP3966493B2 (en) Cold forging wire and method for producing the same
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
TWI595101B (en) Cold forging and quenching and tempering after the delay breaking resistance of the wire with excellent bolts, and bolts
WO2016093183A1 (en) Stabilizer
JP2795799B2 (en) Manufacturing method of high strength bolts with excellent delayed fracture resistance
RU2643119C2 (en) Method of deformation-thermal processing of high-manganese steel
JP5597115B2 (en) Hard drawn wire, spring, and method of manufacturing hard drawn wire
JP2795800B2 (en) Manufacturing method of high strength bolts with excellent delayed fracture resistance
JP3153071B2 (en) High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same
JP3314830B2 (en) Manufacturing method of high strength bolts with excellent delayed fracture resistance
JPH0775846A (en) Production of high strength bolt excellent in delayed fracture resistance
KR100568058B1 (en) Steel wire for cold forging
JPH09202921A (en) Production of wire for cold forging
JP2005350736A (en) High-strength steel having superior corrosion resistance and fatigue characteristics for spring, and manufacturing method therefor
JPH05255738A (en) Production of steel for machine structural use excellent in delayed fracture resistance
JPH0625745A (en) Manufacture of steel for machine structural use excellent in delayed fracture resistance
JPH08291370A (en) High strength steel rod excellent in delayed fracture resistance and its production
JPH04362123A (en) Production of bearing steel stock
JP2954216B2 (en) Steel for high strength parts
JP2728084B2 (en) Manufacturing method of high strength parts
JP3339795B2 (en) Method for manufacturing linear motion bearing member
JP3820460B2 (en) Steel for high-strength bolts excellent in workability and delayed fracture resistance, high-strength bolts, and methods for producing high-strength bolts.

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980519