JPH0774042A - Manufacture of rare-earth magnet and molding apparatus used for it - Google Patents

Manufacture of rare-earth magnet and molding apparatus used for it

Info

Publication number
JPH0774042A
JPH0774042A JP5167422A JP16742293A JPH0774042A JP H0774042 A JPH0774042 A JP H0774042A JP 5167422 A JP5167422 A JP 5167422A JP 16742293 A JP16742293 A JP 16742293A JP H0774042 A JPH0774042 A JP H0774042A
Authority
JP
Japan
Prior art keywords
hydrophobic organic
molding
organic liquid
raw material
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5167422A
Other languages
Japanese (ja)
Inventor
Akira Kikuchi
亮 菊地
Kimio Uchida
公穂 内田
Osamu Taira
治 平
Kazuo Hayakawa
一夫 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP5167422A priority Critical patent/JPH0774042A/en
Publication of JPH0774042A publication Critical patent/JPH0774042A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To easily handle a molded body, to prevent the molded body from being oxidized and to reduce the contend of oxygen in a magnet by a method wherein the molded body obtained by a molding process is immersed in a hydrophobic organic-substance liquid. CONSTITUTION:A molded body 19 obtained by molding a raw material between an upper metal mold 14 and a lower metal mold 15 is conveyed onto a carrying- out belt 20 via a chute 18, it is housed further inside a hydrophobic organic- substance liquid container 5 via a chute 23, and it is transferred into a conveyance belt 24 which is arranged in a hydrophobic organic-substance liquid 5a. Then, in a process in which the molded body is transferred onto the conveyance belt 24, it is passed through the hydrophobic organic-substance liquid 5a, its surface is wetted with the hydrophobic organic-substance liquid 5a, and it is set to a state that it does not come into direct contact with the air. Thereby, the molded body can be handled easily its oxidation can be prevented, and the content of oxygen in a rare-earth permanent magnet can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はNd−Fe−B系永久磁
石等の希土類永久磁石の原料粉を成形する成形装置及び
これを用いた希土類磁石の製造方法及びその装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding apparatus for molding raw material powder of rare earth permanent magnets such as Nd-Fe-B system permanent magnets, a method for manufacturing rare earth magnets using the molding apparatus, and an apparatus therefor.

【0002】[0002]

【従来の技術】近年、従来のSmーCo系磁石に比較
し、より高磁気特性を有し、かつ資源的にも高価なSm
やCoを含まないNd−Fe−B系永久磁石の実用化が
進められている。このNd−Fe−B系永久磁石の磁気
特性は、酸素含有量により強く影響され、酸素含有量を
低く抑えるほど磁気特性は良好になることが知られてい
る。
2. Description of the Related Art In recent years, Sm which has higher magnetic characteristics and is more expensive in terms of resources than conventional Sm-Co magnets.
Practical application of Nd-Fe-B based permanent magnets containing no or Co is under way. It is known that the magnetic characteristics of the Nd-Fe-B system permanent magnet are strongly influenced by the oxygen content, and the magnetic characteristics become better as the oxygen content is suppressed to a lower level.

【0003】そこで従来からこのNd−Fe−B系永久
磁石についてその酸素含有量を低く抑えるための研究が
進められている。その研究の成果として原料粉末の成形
を不活性雰囲気中で行う永久磁石合金粉の成形方法等が
提案されている(特開昭61−287107号)。この
永久磁石合金粉の成形方法はNd−Fe−B系永久磁石
の酸素含有量を低減する方法として有効なものである。
Therefore, research has been conventionally conducted on the Nd-Fe-B system permanent magnets for suppressing the oxygen content thereof to a low level. As a result of the research, a method for molding a permanent magnet alloy powder in which the raw material powder is molded in an inert atmosphere has been proposed (Japanese Patent Laid-Open No. 61-287107). This method of molding the permanent magnet alloy powder is effective as a method of reducing the oxygen content of the Nd-Fe-B system permanent magnet.

【0004】[0004]

【発明が解決しようとする課題】しかし以上の従来のN
d−Fe−B系永久磁石の酸素含有量を低減するための
方法については以下に説明する問題があった。Nd等の
希土類は非常に酸化されやすく、大気中の酸素と反応し
て発火する。そのため、酸素含有量を低減した材料に
は、その取り扱いに常に火災等の危険があり、具体的に
は大気に接触すると材料自体が燃えてしまうため取り扱
いが困難であるという問題が伴う。また、成形を不活性
雰囲気中で行っても、その後焼結工程まで成形体を大気
と完全に遮断することは困難であり、Nd−Fe−B系
永久磁石の酸素含有量をさらにいっそう低くする為に
は、未だ不徹底であり、その点においてさらに改善の余
地があった。
However, the above-mentioned conventional N
The method for reducing the oxygen content of the d-Fe-B based permanent magnet has the problems described below. Rare earths such as Nd are very easily oxidized and react with oxygen in the atmosphere to ignite. Therefore, a material having a reduced oxygen content always has a risk of fire or the like when it is handled, and specifically, the material itself is burned when it comes into contact with the atmosphere, which causes a problem that the material is difficult to handle. Further, even if the molding is carried out in an inert atmosphere, it is difficult to completely shield the molded body from the atmosphere until the sintering step thereafter, so that the oxygen content of the Nd-Fe-B permanent magnet is further lowered. For that reason, it was still incomplete, and there was room for further improvement in that respect.

【0005】したがって本発明は以上の従来技術の問題
に鑑みてなされたものであって、Nd−Fe−B系永久
磁石等の希土類永久磁石の製造工程において、成形工程
により得られる成形体の取り扱いを容易にし、かつ成形
体の酸化を防止し、磁石の酸素含有量を徹底して低減で
きるようにした希土類磁石の製造方法およびそれに用い
る成形装置を提供することを目的とする。
Therefore, the present invention has been made in view of the above problems of the prior art, and in the manufacturing process of rare earth permanent magnets such as Nd-Fe-B system permanent magnets, handling of the molded product obtained by the molding process. It is an object of the present invention to provide a method for manufacturing a rare earth magnet and a molding apparatus used for the method, which facilitates the oxidation, prevents oxidation of the molded body, and thoroughly reduces the oxygen content of the magnet.

【0006】[0006]

【課題を解決するための手段】本発明者らは上述した本
発明の課題を達成するべく種々検討し、成形体を疎水性
有機物液体中に浸漬すれば、成形体の表面が疎水性有機
物液体により濡れて大気と遮断されるため、成形体中の
希土類の酸化を防止でき取り扱いが容易でNd−Fe−
B系永久磁石等の希土類磁石の酸素含有量を低減できる
ことに想到し、上記課題を達成した。
Means for Solving the Problems The inventors of the present invention have conducted various studies to achieve the above-mentioned objects of the present invention, and when the molded product is dipped in a hydrophobic organic liquid, the surface of the molded product is a hydrophobic organic liquid. Since it is wetted by and is shielded from the atmosphere, the rare earth in the molded body can be prevented from being oxidized, and the handling is easy, and Nd-Fe-
The inventors have come up with the idea that the oxygen content of rare earth magnets such as B-based permanent magnets can be reduced, and have achieved the above object.

【0007】すなわち本発明の製造方法は、成形工程を
有する希土類磁石の製造方法において、成形工程により
得られた成形体を疎水性有機物液体中に浸漬する希土類
磁石の製造方法である。また、不活性雰囲気中で成形さ
れた成形体を疎水性有機物液体中に浸漬すれば、より酸
素含有量の少ない希土類磁石を得ることができる。
That is, the manufacturing method of the present invention is a method for manufacturing a rare earth magnet having a molding step, in which the molded body obtained by the molding step is immersed in a hydrophobic organic liquid. Further, a rare earth magnet having a lower oxygen content can be obtained by immersing the molded product molded in the inert atmosphere in the hydrophobic organic liquid.

【0008】そして更に酸素含有量の少ない希土類磁石
を得るための製造方法を見いだした。すなわち、水素粉
砕処理工程と、粗粉砕処理工程と、微粉砕処理工程と、
成形工程と、焼結工程を有する希土類磁石の製造方法に
おいて、前記粗粉砕処理工程と、微粉砕処理工程と、成
形工程を不活性雰囲気下にて行うと共に、前記焼結工程
前までの前記各工程間の取り回しを不活性雰囲気下で行
い、前記成形工程で得られた成形体は、疎水性有機物液
体中に浸漬後、前記焼結工程に供される希土類磁石の製
造方法である。疎水性有機物液体とは、例えば、ノルマ
ルヘキサン、トルエン、フルオロカーボン等の有機溶剤
や鉱物油等である。疎水性有機物液体は、焼結時の加熱
によって揮発するため、磁気特性に悪影響を及ぼすほど
磁石中に不純物として残存することはない。
Further, a manufacturing method for obtaining a rare earth magnet having a low oxygen content was found. That is, a hydrogen pulverization treatment step, a coarse pulverization treatment step, a fine pulverization treatment step,
In a method for manufacturing a rare earth magnet having a molding step and a sintering step, the coarse pulverization processing step, the fine pulverization processing step, and the molding step are performed under an inert atmosphere, and each of the above-mentioned steps before the sintering step is performed. In the method for producing a rare earth magnet, the steps between the steps are carried out in an inert atmosphere, and the molded body obtained in the molding step is immersed in a hydrophobic organic liquid and then subjected to the sintering step. The hydrophobic organic liquid is, for example, an organic solvent such as normal hexane, toluene or fluorocarbon, or mineral oil. Since the hydrophobic organic liquid is volatilized by heating during sintering, it does not remain as an impurity in the magnet to the extent that it adversely affects the magnetic properties.

【0009】さらに本発明者等は、前記希土類磁石の製
造方法を実現する成形装置を見いだした。上金型と下金
型を有する成形機と成形体を浸漬する疎水性有機物液体
容器とからなる原料粉の成形装置である。成形機の成形
部(上金型と下金型およびその間の空間:図1成形部2
9参照)が不活性雰囲気に保持されれば、より酸素含有
量の少ない希土類磁石を得ることができる。
Further, the inventors of the present invention have found out a molding apparatus that realizes the method for manufacturing the rare earth magnet. It is a raw material powder molding device comprising a molding machine having an upper mold and a lower mold and a hydrophobic organic liquid container into which a molded body is dipped. Molding part of molding machine (upper mold and lower mold and space between them: Fig. 1 molding part 2
9) is maintained in an inert atmosphere, a rare earth magnet having a lower oxygen content can be obtained.

【0010】そして更に本発明の製造装置は、水素粉砕
処理手段と、その水素粉砕処理手段に連続する粗粉砕処
理手段と、その粗粉砕手段に連続する微粉砕処理手段
と、その微粉砕処理手段に連続する成形手段と、その成
形手段に連続する焼結手段とを有してなる希土類磁石の
製造装置において、前記粗粉砕処理手段と、前記微粉砕
処理手段と、成形手段とが不活性雰囲気下に配置される
と共に、前記水素粉砕処理手段と、粗粉砕処理手段と、
微粉砕処理手段と、成形手段との間に不活性雰囲気下に
おける取り回し手段が設けられ、成形機により成形され
た成形体を疎水性有機物液体容器内の疎水性有機物液体
中に外気遮断状態で搬送する搬送手段が設けられた成形
装置により前記成形手段が構成されてなることを特徴と
する。
Further, the manufacturing apparatus of the present invention further comprises hydrogen crushing means, coarse crushing means continuous with the hydrogen crushing means, fine crushing means continuous with the coarse crushing means, and fine crushing means. In a device for producing a rare earth magnet, which comprises a forming means continuous to the forming means, and a sintering means continuous to the forming means, the coarse pulverizing means, the fine pulverizing means, and the forming means are in an inert atmosphere. Along with being arranged below, the hydrogen pulverization processing means, the coarse pulverization processing means,
A handling means under an inert atmosphere is provided between the fine pulverization processing means and the molding means, and the molded body molded by the molding machine is conveyed into the hydrophobic organic liquid in the hydrophobic organic liquid container in a state where the outside air is blocked. It is characterized in that the molding means is constituted by a molding device provided with a conveying means for carrying out.

【0011】本発明において、不活性雰囲気とは、
2、CO2、Ar、He等の反応性の低いガスによって
形成された雰囲気をいう。不活性雰囲気中の酸素濃度は
20ppm〜6000ppmとするのがよい。6000
ppmを越える場合には、成形過程で被成形体が過剰な
酸素を含有することとなり、得られる希土類永久磁石の
品質が不満足なものとなる。一方酸素濃度を20ppm
未満とすることは工業的に極めて困難であり、かかる酸
素濃度を実現することができたとしてもそのために要す
るコストに見合う現実の利益は得られない。
In the present invention, the inert atmosphere means
An atmosphere formed by a gas having low reactivity such as N 2 , CO 2 , Ar, and He. The oxygen concentration in the inert atmosphere is preferably 20 ppm to 6000 ppm. 6000
When the content exceeds ppm, the molded body contains excessive oxygen during the molding process, and the quality of the obtained rare earth permanent magnet becomes unsatisfactory. On the other hand, oxygen concentration is 20ppm
It is extremely difficult industrially to make the amount less than the above value, and even if such oxygen concentration can be realized, the actual profit commensurate with the cost required therefor cannot be obtained.

【0012】前記粗粉砕処理から成形までの各工程間の
粉末の取り回しは不活性ガス搬送とするのがよい。本願
において不活性ガス搬送とは、N2、CO2、Ar、He
等の反応性の低いガスの気流によって粉末を搬送するこ
とをいう。
It is preferable that the powder is handled during each step from the coarse crushing process to the molding by carrying an inert gas. In the present application, the term “inert gas transportation” means N 2 , CO 2 , Ar, and He.
It means that the powder is conveyed by a gas flow of a gas having low reactivity such as.

【0013】[0013]

【作用】本発明によれば、疎水性有機物液体中に浸漬さ
れた成形体は、その表面が疎水性有機物液体により濡
れ、大気と直接接触しなくなるので成形体の酸化を防止
でき、大気中での取り扱いが安全でかつ容易になる。疎
水性有機物液体はノルマルヘキサンや鉱物油等の疎水性
の有機物であるため、除湿効果も得られる。また、不活
性雰囲気中で成形された成形体を疎水性有機物液体中に
浸漬すればより低酸素な希土類磁石が得られる。
According to the present invention, the molded body immersed in the hydrophobic organic liquid can be prevented from being oxidized because the surface of the molded body is wetted by the hydrophobic organic liquid and does not come into direct contact with the atmosphere. Is safe and easy to handle. Since the hydrophobic organic substance liquid is a hydrophobic organic substance such as normal hexane or mineral oil, a dehumidifying effect can be obtained. Further, by immersing the formed body formed in the inert atmosphere in the hydrophobic organic liquid, a rare earth magnet having lower oxygen can be obtained.

【0014】さらに水素粉砕処理工程以後から焼結以前
までの工程が一貫して不活性雰囲気下で行われる本発明
の希土類磁石の製造方法及び製造装置によれば、原料粉
の成形を完全な気密状態の下で行うことができ、しかも
得られた極低酸素成形体は外気遮断状態で接続された疎
水性有機物液体容器内の疎水性有機物液体中に外気遮断
状態で搬送されてその表面が疎水性有機物液体により濡
れて大気と直接接触しない状態で焼結手段に搬送される
ので、取り扱いの危険な極低酸素成形体を大気中で取り
扱っても安全かつ容易に焼結工程に供することができ、
水素粉砕処理後焼結・冷却が終了するまでワークの大気
接触が完全に防止され、極めて酸素含有量が低く、磁気
特性の良好な希土類永久磁石を安全な操業条件で得るこ
とができる。
Further, according to the method and apparatus for manufacturing a rare earth magnet of the present invention, the steps from the hydrogen crushing step to the step before sintering are consistently performed in an inert atmosphere, and the raw material powder is completely airtight. The ultra-low oxygen molded product obtained can be carried out under the conditions, and the obtained ultra-low oxygen molded product is transported to the hydrophobic organic liquid in the hydrophobic organic liquid container connected in the external air blocking condition in the external air blocking condition and its surface is hydrophobic. Since it is transported to the sintering means in a state where it is wet with the volatile organic liquid and does not come into direct contact with the atmosphere, it is possible to safely and easily perform the sintering process even if extremely low oxygen compacts that are dangerous to handle are handled in the atmosphere. ,
The atmosphere contact of the work is completely prevented until the sintering / cooling is completed after the hydrogen pulverization treatment, and the rare earth permanent magnet having an extremely low oxygen content and good magnetic properties can be obtained under safe operating conditions.

【0015】[0015]

【実施例】以下に本発明の一実施例である希土類磁石の
製造方法および原料粉の成形装置について説明する。図
1及び図2は本発明の原料粉の成形装置の概念図であ
り、図3は本発明の原料粉の成形装置の成形機部分を示
す部分斜視図である。
EXAMPLES A method for manufacturing a rare earth magnet and a molding apparatus for raw material powder, which are examples of the present invention, will be described below. 1 and 2 are conceptual views of a raw material powder molding apparatus of the present invention, and FIG. 3 is a partial perspective view showing a molding machine portion of the raw material powder molding apparatus of the present invention.

【0016】図に示されるように成形装置1は前工程で
ある粉砕・混合工程で得られた原料粉末が収納される原
料タンク2及び後工程である焼結を行う焼結炉3の間に
介在して配置され、基体1bに具備された成形機13の
成形部29が気密ボックス1aにより、気密に保持され
る。かかる成形装置1の気密ボックス1a内はAr雰囲
気とされて大気圧より少し高めに保持され、原料タンク
2とは気密バルブ4により接続される。原料タンク2は
原料粉が収納されるが、気密バルブ4上に直接取り付け
て用いることができ、原料粉を大気に触れさることはな
い。一方気密ボックス1aと焼結炉3との間には疎水性
有機物液体容器5が配置され、かかる疎水性有機物液体
容器5内には疎水性有機物液体容器5aが収納される。
なお、前記焼結炉3には大気・真空置換室6が設けら
れ、この大気・真空置換室6には大気側に密閉扉7が配
設されると共に前記焼結炉3との間には密閉扉8が配設
される。
As shown in the figure, the molding apparatus 1 includes a raw material tank 2 in which the raw material powder obtained in the crushing / mixing step, which is a pre-process, is stored, and a sintering furnace 3, which is a post-process, for sintering. The molding portion 29 of the molding machine 13 provided on the base 1b and interposed therebetween is airtightly held by the airtight box 1a. The inside of the airtight box 1a of the molding apparatus 1 is set to an Ar atmosphere and is maintained at a little higher than atmospheric pressure, and is connected to the raw material tank 2 by an airtight valve 4. Although the raw material powder is stored in the raw material tank 2, it can be directly mounted on the airtight valve 4 and used, and the raw material powder is not exposed to the atmosphere. On the other hand, a hydrophobic organic substance liquid container 5 is arranged between the airtight box 1a and the sintering furnace 3, and the hydrophobic organic substance liquid container 5a is accommodated in the hydrophobic organic substance liquid container 5.
It should be noted that the sintering furnace 3 is provided with an atmosphere / vacuum replacement chamber 6, and the atmosphere / vacuum replacement chamber 6 is provided with a closed door 7 on the atmosphere side and is provided between the sintering furnace 3 and the atmosphere. A closed door 8 is provided.

【0017】前記気密ボックス1a内の原料タンク2側
の前記気密バルブ4の下方位置には原料受けホッパー9
が配置され、かかる原料受けホッパー9により気密バル
ブ4を介して原料タンク2から流下する原料が収受され
る。この原料受けホッパー9には秤量器10が付設さ
れ、その秤量器10に近接して秤量器10の排出口側に
給粉装置11が設けられる。この給粉装置11は給粉台
12上に配置され、かかる給粉台12が成形機13の上
下金型14、15間に延長して配置される。また給粉装
置11は搬送シリンダ16を備え、かかる搬送シリンダ
16により給粉装置11は前後動可能にされ、給粉台1
2上を上下金型14、15間位置から秤量器10下方位
置にかけて往復動せしめられる。
A raw material receiving hopper 9 is provided below the airtight valve 4 on the raw material tank 2 side in the airtight box 1a.
The raw material receiving hopper 9 receives the raw material flowing down from the raw material tank 2 via the airtight valve 4. A weighing device 10 is attached to the raw material receiving hopper 9, and a powder feeding device 11 is provided near the weighing device 10 on the discharge port side of the weighing device 10. The powder feeding device 11 is arranged on the powder feeding table 12, and the powder feeding table 12 is arranged so as to extend between the upper and lower molds 14 and 15 of the molding machine 13. Further, the powder feeding device 11 is provided with a transfer cylinder 16, and the powder feeding device 11 can be moved back and forth by the transfer cylinder 16 so that the powder feeding table 1
It is reciprocated from the position between the upper and lower molds 14 and 15 to the position below the weighing device 10 on the upper part of the upper part 2.

【0018】図3に示されるように、前記成形機13は
基体1bに装備され、かかる基体1bが前記気密ボック
ス1aに対して気密フランジ17を介して取り付けら
れ、その結果気密ボックス1aと基体1bとがその内部
において一連であり、かつ外部に対して気密な状態で接
続される。
As shown in FIG. 3, the molding machine 13 is mounted on a base body 1b, and the base body 1b is attached to the airtight box 1a through an airtight flange 17, and as a result, the airtight box 1a and the base body 1b. And are in series inside and connected to the outside in a gastight manner.

【0019】すなわち前記気密フランジ17は気密ボッ
クス1aと一体に成形され、かかる気密フランジ17に
は多数の止め孔171が設けられる。一方前記基体1b
は前後に連通孔部1b1を有する箱状に形成され、その
前後側面部分1b2に前記気密ボックス1aの気密フラ
ンジ17を当接せしめると共に、止め孔171にビスを
螺合し、もって気密ボックス1aが気密フランジ17を
介して基体1bに対し外部に対して気密な状態で接続さ
れる。
That is, the airtight flange 17 is formed integrally with the airtight box 1a, and the airtight flange 17 is provided with a large number of stop holes 171. On the other hand, the base 1b
Is formed in a box shape having a communication hole portion 1b1 in the front and back, and the airtight flange 17 of the airtight box 1a is brought into contact with the front and rear side surface portions 1b2 of the airtight box 1a, and a screw is screwed into the stop hole 171 to form the airtight box 1a. The base 1b is connected to the outside in an airtight state via the airtight flange 17.

【0020】前記給粉台12の成形機13の上下金型1
4、15間に延長した端部はシュート18の一端部に接
続され、かかるシュート18の他端部は成形体19の搬
出帯20と連続し、かかる搬出帯20のシュート18側
端部下方には除粉装置21が配置される。かかる除粉装
置21は搬出体20上の成形体19の下方に配置される
交番磁場を発生させる電磁石から構成され、それにより
搬出帯20上の成形体が除粉される。
Upper and lower molds 1 of the molding machine 13 of the powder feeding table 12
The end extending between 4 and 15 is connected to one end of the chute 18, and the other end of the chute 18 is continuous with the carry-out zone 20 of the molded body 19 and is located below the end of the carry-out zone 20 on the chute 18 side. A powder removing device 21 is arranged. The dedusting device 21 is composed of an electromagnet that is arranged below the compact 19 on the unloading body 20 and generates an alternating magnetic field, so that the compact on the unloading band 20 is dedusted.

【0021】図1及び図2に示されるように疎水性有機
物液体容器5の一端は、気密ボックス1aに気密ボック
ス1aの端部22が疎水性有機物液体容器5内の疎水性
有機物液体5a中に浸漬され、気密ボックス1a内の気
密性が疎水性有機物液体5aにより保持されるよう配置
される。疎水性有機物液体容器5の他端は大気と接す
る。疎水性有機物液体容器5の内側から気密ボックス1
aにかけて前記成形体19の搬送手段としてのシュート
23が設けられ、かかるシュート23の一端は気密ボッ
クス1a内に配設された前記搬出帯20に連続し、また
かかるシュート23の他端は疎水性有機物液体容器5内
に収納された疎水性有機物液体容器5中に配置された搬
送帯24に連続する。さらにかかるシュート23は気密
ボックス1aと疎水性有機物液体容器5との間に配設さ
れる。
As shown in FIGS. 1 and 2, one end of the hydrophobic organic liquid container 5 is at the airtight box 1a, and the end 22 of the airtight box 1a is inside the hydrophobic organic liquid 5a inside the hydrophobic organic liquid container 5. It is soaked and arranged so that the airtightness in the airtight box 1a is maintained by the hydrophobic organic liquid 5a. The other end of the hydrophobic organic liquid container 5 contacts the atmosphere. Airtight box 1 from inside the hydrophobic organic liquid container 5
A chute 23 is provided as a means for transporting the molded body 19 to a, one end of the chute 23 is continuous with the carry-out zone 20 arranged in the airtight box 1a, and the other end of the chute 23 is hydrophobic. It continues to the transport belt 24 arranged in the hydrophobic organic liquid container 5 housed in the organic liquid container 5. Further, the chute 23 is arranged between the airtight box 1a and the hydrophobic organic liquid container 5.

【0022】したがって、疎水性有機物液体容器5の内
側と気密ボックス1aの内側とが気密に連通されること
から、気密ボックス1aの内側雰囲気と疎水性有機物液
体容器5の気密ボックス5a側の疎水性有機物液体5a
の上方の空間部分5bの雰囲気とは同一の状態に調整さ
れることとなる。
Therefore, since the inside of the hydrophobic organic liquid container 5 and the inside of the airtight box 1a communicate with each other in an airtight manner, the inner atmosphere of the airtight box 1a and the hydrophobic property of the hydrophobic organic liquid container 5 on the airtight box 5a side. Organic liquid 5a
The atmosphere of the space portion 5b above is adjusted to the same state.

【0023】さらに前記疎水性有機物液体容器5内の疎
水性有機物液体5a中に配置された前記搬送帯24は別
の搬送帯25に連続し、かかる搬送帯25はその一端が
前記搬送帯24に連続し、他端が疎水性有機物液体容器
5の外部に配置された搬送帯26に連続する。この搬送
帯26にはこれと並行して焼結皿27が準備され、図示
しない適宜手段により搬送帯26から焼結皿27への成
形体19の移送が可能にされる。また、前記搬送体26
の一端は前記搬送体25に連続するが、他端部近傍には
焼結炉3の大気・真空置換室6が配置され、前記焼結皿
27上に配置された成形体19はかかる大気・真空置換
室6を介して焼結炉3内に搬入される。
Further, the carrier band 24 arranged in the hydrophobic organic liquid 5a in the hydrophobic organic liquid container 5 is continuous with another carrier band 25, and one end of the carrier band 25 is connected to the carrier band 24. It is continuous and the other end is continuous with the carrier zone 26 arranged outside the hydrophobic organic liquid container 5. In parallel with this, a sintering dish 27 is prepared in the carrying zone 26, and the molded body 19 can be transferred from the carrying zone 26 to the sintering dish 27 by an appropriate means (not shown). In addition, the carrier 26
1 is continuous with the carrier 25, but the atmosphere / vacuum displacement chamber 6 of the sintering furnace 3 is arranged in the vicinity of the other end, and the molded body 19 arranged on the sintering plate 27 is exposed to the atmosphere. It is carried into the sintering furnace 3 through the vacuum displacement chamber 6.

【0024】したがって以上の実施例の原料粉の成形装
置によれば次のようにして原料粉の成形及び焼結炉への
搬出が行われる。予め気密ボックス1a内はArガス雰
囲気とされ、酸素濃度が20ppm〜6000ppmと
なるように調整される。その状態で先ず原料タンク2か
ら気密バルブ4を介して原料受けホッパー9に原料が供
給される。かかる原料は原料受けホッパー9に収容され
て、秤量器10により秤量されて所定量ずつ給粉台12
上に配置された給粉装置11に供給される。原料が供給
された給粉装置11は搬送シリンダ16により成形機1
3の上下金型14、15間に搬送されて所定の成形位置
にセットされ、給粉装置11が所定位置にセットされた
状態で上下金型14、15が作動し、成形体19が得ら
れる。得られた成形体19は、シュート18に搬送され
る。
Therefore, according to the raw material powder molding apparatus of the above-described embodiment, the raw material powder is molded and carried out to the sintering furnace as follows. The inside of the airtight box 1a is set to an Ar gas atmosphere in advance, and the oxygen concentration is adjusted to be 20 ppm to 6000 ppm. In this state, the raw material is first supplied from the raw material tank 2 to the raw material receiving hopper 9 through the airtight valve 4. The raw material is stored in the raw material receiving hopper 9 and is weighed by the weighing device 10 so that a predetermined amount of the raw material is supplied to the powder feeding table 12
The powder is supplied to the powder feeding device 11 arranged above. The powder feeding device 11 to which the raw material is supplied is transferred to the molding machine 1 by the transfer cylinder 16.
3 is conveyed between the upper and lower molds 14 and 15 and set at a predetermined molding position, and the upper and lower molds 14 and 15 are operated in a state where the powder feeding device 11 is set at a predetermined position to obtain a molded body 19. . The obtained molded body 19 is conveyed to the chute 18.

【0025】上下金型14、15間で原料を成形するこ
とにより得られた成形体19はシュート18を介して搬
出帯20上に搬送され、除粉装置21により搬出帯20
上で搬送される過程で除粉される。かかる成形体19は
搬出帯20からシュート23上を気密接続部22を介し
て疎水性有機物液体容器5内に収納された疎水性有機物
液体5a中に配置された搬送帯24に移送される。この
場合、前記気密ボックス1a内の酸素濃度が20ppm
〜6000ppmとされていることから前記疎水性有機
物液体容器5の気密ボックス1a側も同様に酸素濃度が
20ppm〜6000ppmの雰囲気となる。
The compact 19 obtained by molding the raw material between the upper and lower molds 14 and 15 is conveyed onto the unloading zone 20 via the chute 18 and is carried out by the powder removing device 21.
Powder is removed in the process of being conveyed above. The molded body 19 is transferred from the carry-out zone 20 onto the chute 23 via the airtight connection portion 22 to the transport zone 24 arranged in the hydrophobic organic matter liquid 5a contained in the hydrophobic organic matter liquid container 5. In this case, the oxygen concentration in the airtight box 1a is 20 ppm
Since it is set to ˜6000 ppm, the oxygen concentration is also in the atmosphere of 20 ppm to 6000 ppm on the airtight box 1a side of the hydrophobic organic liquid container 5.

【0026】搬送帯24に移送された成形体19は搬送
帯24上を移送される過程で疎水性有機物液体中を通過
し、その過程でその表面が疎水性有機物液体により濡
れ、大気と直接接触しなくなる状態となる。その後搬送
帯24上を移送された成形体19は搬送帯25上に移送
され、かかる搬送帯25により疎水性有機物液体容器5
内から大気中に搬出される。その後さらに成形体19は
搬送帯25から搬送帯26に移送され、搬送帯26上を
移送される過程で搬送帯26と並行に準備された焼結皿
27上に移送される。かかる焼結皿27は順次大気・真
空置換室6を介して焼結炉3内に搬入される。
The molded body 19 transferred to the transfer zone 24 passes through the hydrophobic organic liquid in the process of being transferred on the transfer zone 24, and in the process, the surface thereof is wet with the hydrophobic organic liquid and directly contacts the atmosphere. It will be in a state where it will not do. Thereafter, the molded body 19 transferred on the transport belt 24 is transferred on the transport belt 25, and the hydrophobic organic liquid container 5 is transferred by the transport belt 25.
It is transported from the inside to the atmosphere. After that, the molded body 19 is further transferred from the conveyor belt 25 to the conveyor belt 26, and in the process of being transferred on the conveyor belt 26, is transferred onto the sintering dish 27 prepared in parallel with the conveyor belt 26. The sintering dish 27 is sequentially carried into the sintering furnace 3 through the atmosphere / vacuum displacement chamber 6.

【0027】以上の搬送帯25、搬送帯26と順次移送
され、焼結皿27により大気・真空置換室6、密閉扉
7、8を介して焼結炉3内に搬入される過程では、それ
以前の搬送帯24上を移送される過程で、成形体19は
疎水性有機物液体中を通過し、その過程でその表面が疎
水性有機物液体により濡れ、大気と直接接触しなくなる
状態とされているため、大気中を移送されても特に変質
することはなく、安全にかつ容易に焼結炉3内に搬入さ
れる。
In the process in which the transfer belt 25 and the transfer belt 26 are sequentially transferred and carried into the sintering furnace 3 by the sintering plate 27 through the atmosphere / vacuum displacement chamber 6 and the sealing doors 7 and 8, The molded body 19 passes through the hydrophobic organic liquid in the process of being transported on the previous conveyor belt 24, and the surface thereof is wetted by the hydrophobic organic liquid in the process so that the molded body 19 is not in direct contact with the atmosphere. Therefore, even if it is transferred in the atmosphere, it is not particularly deteriorated and can be safely and easily carried into the sintering furnace 3.

【0028】したがって以上の実施例の原料粉の成形装
置によれば、成形機13への原料供給過程及びこれに続
く原料粉の成形過程を通じて一貫して酸素濃度が20p
pm〜6000ppmとなる様に調整されたArガス雰
囲気中でワークが取り扱われ、取り扱われるワークの酸
化は最小限に抑えられる。しかも、得られる成形体19
はArガス雰囲気中から疎水性有機物液体容器5内の疎
水性有機物液体5a中に直接移送され、かかる疎水性有
機物液体5a中を移送される過程でその表面が疎水性有
機物液体5aにより濡れ、大気と直接接触しなくなる状
態とされるため、成形装置1から、安全にかつ容易に焼
結炉3内に搬入される。
Therefore, according to the raw material powder molding apparatus of the above embodiments, the oxygen concentration is consistently 20 p during the raw material supply process to the molding machine 13 and the subsequent raw material powder molding process.
The work is handled in an Ar gas atmosphere adjusted to pm to 6000 ppm, and the oxidation of the handled work is minimized. Moreover, the obtained molded body 19
Is directly transferred from the Ar gas atmosphere into the hydrophobic organic liquid 5a in the hydrophobic organic liquid container 5, and in the process of being transferred through the hydrophobic organic liquid 5a, its surface is wetted by the hydrophobic organic liquid 5a, Since it is brought into a state where it does not come into direct contact with, it is safely and easily carried into the sintering furnace 3 from the molding apparatus 1.

【0029】本発明の製造方法において、疎水性有機物
液体が成形体を酸化から防止するので、数時間であれば
大気中に放置後、焼結に供してもよい。
In the production method of the present invention, since the hydrophobic organic substance liquid prevents the molded body from being oxidized, it may be left for a few hours in the air and then subjected to sintering.

【0030】次に以上の本発明の原料粉の成形装置を適
用した本発明の希土類永久磁石の製造装置の一実施例に
つき説明する。図4は本発明の一実施例の希土類永久磁
石製造装置を示し、図上破線で区分されたA〜Fの6大
工程にわけてこれを説明する。
Next, an embodiment of the apparatus for producing a rare earth permanent magnet of the present invention, to which the above-described apparatus for forming raw material powder of the present invention is applied, will be described. FIG. 4 shows a rare earth permanent magnet manufacturing apparatus according to an embodiment of the present invention, which will be described by dividing it into six major steps A to F divided by broken lines in the figure.

【0031】A 水素粉砕処理工程 原料インゴットを真空溶解し、さらに熱処理した希土類
永久磁石原料に対し、先ず図のAに示される水素粉砕処
理、すなわち水素を吸蔵させ崩壊させる処理が施され
る。なお、本実施例では溶解法によるインゴットを出発
原料としているが、直接還元拡散法(特開昭59-219404
号)による原料についても同様に適用できることはいう
までもない。
A Hydrogen Grinding Process Step A raw material ingot is vacuum-melted, and the heat-treated rare earth permanent magnet raw material is first subjected to the hydrogen crushing process shown in FIG. In this example, the ingot produced by the melting method is used as the starting material, but the direct reduction diffusion method (Japanese Patent Laid-Open No. 59-219404) is used.
It is needless to say that the same can be applied to the raw materials according to No.).

【0032】水素粉砕処理はH2吸蔵セル31、脱H2
ル32、冷却セル33によって構成されたH2粉砕処理
手段30において行われる。H2吸蔵セル31ではイン
ゴットに水素を吸蔵させる。水素吸蔵は、500℃以下
の温度で減圧、常圧、または加圧下で行うことができ
る。水素吸蔵されたインゴットはH2脱ガスセル32に
搬送され、ここでH2を除去(脱H2)することによりイ
ンゴットが崩壊し、粉砕される。この脱H2処理は温度
500〜800℃、0.1〜100torrで行うこと
ができる。次に粉砕塊は、冷却セル33に搬送される。
冷却セル33は不活性雰囲気に保持されるが、冷却効率
を向上させるために加圧雰囲気とすることが望ましい。
また、不活性雰囲気形成のためには比重の重いArガス
を用いることが冷却セル33内の置換迅速化のために望
ましい。なお、冷却セル33内の温度は常温程度に保持
すれば良い。冷却された粉砕塊は不活性雰囲気に保持さ
れた取り回しセル34に搬送される。
The hydrogen pulverization treatment is carried out in the H 2 pulverization treatment means 30 constituted by the H 2 occlusion cell 31, the de-H 2 cell 32 and the cooling cell 33. In the H 2 storage cell 31, the ingot stores hydrogen. Hydrogen absorption can be performed at a temperature of 500 ° C. or lower under reduced pressure, normal pressure, or under pressure. The hydrogen-occluded ingot is conveyed to the H 2 degassing cell 32, where H 2 is removed (de-H 2 ) to collapse and crush the ingot. This H 2 removal treatment can be performed at a temperature of 500 to 800 ° C. and a temperature of 0.1 to 100 torr. Next, the crushed mass is conveyed to the cooling cell 33.
The cooling cell 33 is maintained in an inert atmosphere, but it is desirable to use a pressurized atmosphere in order to improve cooling efficiency.
Further, it is desirable to use Ar gas having a high specific gravity for forming the inert atmosphere in order to speed up the replacement in the cooling cell 33. The temperature in the cooling cell 33 may be kept at about room temperature. The cooled crushed mass is conveyed to the handling cell 34 which is maintained in an inert atmosphere.

【0033】B 粗粉砕工程 Aの水素粉砕処理工程で水素粉砕された粉砕塊を次の微
粉砕工程に供するに足る程度の粒径まで粗粉砕処理す
る。前記H2粉砕処理手段30内を取り回しセル34に
向けて搬送された粉砕塊は取り回しロボット41によっ
てロールクラッシャー40に配送され、ここで粗粉砕処
理が行われる。粗粉砕処理後の粉末は200〜700μ
m程度である。なお、粗粉砕はロールクラッシャーの
他、ブラウンミル、ジョークラッシャー等他の粉砕機で
あっても良い。
B Coarse pulverizing step The pulverized lumps pulverized with hydrogen in the hydrogen pulverizing step of A are coarsely pulverized to a particle size sufficient for use in the next fine pulverizing step. The crushed lumps that have been circulated in the H 2 crushing means 30 and conveyed toward the cell 34 are delivered to the roll crusher 40 by the trolling robot 41, and the coarse crushing processing is performed there. Powder after coarse crushing is 200-700μ
It is about m. The coarse crushing may be performed by using a crusher such as a brown mill or a jaw crusher other than the roll crusher.

【0034】以上の過程でH2粉砕処理手段30はその
全体が大気から遮断された構造を有し、かかるH2粉砕
処理手段30内のプロセスにおいて原料が大気に触れて
酸素を含有する機会はない。但し、H2粉砕処理手段3
0の取り回しセル34から取り回しロボット41によっ
てロールクラッシャー40に配送される過程で従来大気
との接触による酸素の含有が生じていた。そこで本発明
では図1に示されるように、H2粉砕処理手段30の取
り回しセル34から取り回しロボット41によってロー
ルクラッシャー40に原料を配送する過程を図上一点鎖
線で示されるArガスが充填された不活性雰囲気室42
で行う。この場合H2粉砕処理手段30の取り回しセル
34からロールクラッシャー40に原料を配送する取り
回しは、取り回しロボット41によって行い、特に人手
に依存する構成を取らないことから、図上一点鎖線で示
される不活性雰囲気室42内をArガス雰囲気とするこ
とは公知の手段で工業的に行うことができる。
In the above process, the H 2 pulverizing means 30 has a structure in which the whole is shielded from the atmosphere, and in the process in the H 2 pulverizing means 30, there is no chance that the raw material comes into contact with the atmosphere and contains oxygen. Absent. However, H 2 pulverization processing means 3
In the process of being delivered from the handling cell 34 of 0 to the roll crusher 40 by the handling robot 41, conventionally, oxygen was contained due to contact with the atmosphere. Therefore, in the present invention, as shown in FIG. 1, the process of delivering the raw material from the handling cell 34 of the H 2 pulverization processing means 30 to the roll crusher 40 by the handling robot 41 is filled with Ar gas shown by the one-dot chain line in the figure. Inert atmosphere chamber 42
Done in. In this case, the handling of delivering the raw material from the handling cell 34 of the H 2 pulverization processing means 30 to the roll crusher 40 is performed by the handling robot 41, and since the configuration which does not particularly depend on manpower is not taken, it is indicated by a dashed line in the figure. The Ar gas atmosphere in the active atmosphere chamber 42 can be industrially performed by a known means.

【0035】C 微粉砕工程 Bの粗粉砕工程におけるロールクラッシャー40におい
て粗粉砕された原料粉末は搬送路23を介してN2ガス
によりサイクロン50に搬送されて微粉砕処理工程Cに
供される。サイクロン50において搬送ガスと粉末を分
離し、分離された粉末はホッパー51、供給装置52を
介して、ジェットミル53に搬送され、ジェットミル5
3において微粉砕された粉末は搬送路57a、風力分級
機54、搬送路58、サイクロン55、ホッパー56を
介して次工程に搬送路59を通じてN2ガスにより搬送
される。なお、この実施例では粉末を直接N2ガスで搬
送したが、粉末を容器に充填してその容器をN2ガス等
の不活性ガスで搬送するようにしてもよい。
C Fine Grinding Step The raw material powder coarsely crushed by the roll crusher 40 in the coarse crushing step B is conveyed by the N 2 gas to the cyclone 50 through the conveying path 23 and is supplied to the fine crushing step C. The carrier gas and the powder are separated in the cyclone 50, and the separated powder is transferred to the jet mill 53 through the hopper 51 and the supply device 52, and the jet mill 5
The powder finely pulverized in No. 3 is conveyed by N 2 gas through the conveying path 57a, the wind classifier 54, the conveying path 58, the cyclone 55, and the hopper 56 to the next step through the conveying path 59. In this embodiment, the powder was directly conveyed by N 2 gas, but the powder may be filled in a container and the container may be conveyed by an inert gas such as N 2 gas.

【0036】以上の工程においてサイクロン50、ホッ
パー51、供給装置52、ジェットミル53、風力分級
機54、サイクロン55、ホッパー56はそれぞれN2
ガス雰囲気とされ、さらにその間に介在する搬送路57
a、58、59においてもN2ガスによる搬送が行われ
るので、その処理過程で原料粉末が大気に接触すること
はない。なお、ジェットミル53による粉砕後でも粒径
の大きい粉末が含まれることがあるので風力分級機54
により選別し、十分微粉砕されていない粉末は図上破線
で示される搬送路57bを介して再度ジェットミル53
に供給され再度粉砕される。
In the above process, the cyclone 50, the hopper 51, the supply device 52, the jet mill 53, the wind classifier 54, the cyclone 55 and the hopper 56 are N 2 respectively.
A gas path is formed, and a transfer path 57 interposed therebetween is provided.
Also in a, 58, and 59, since the N 2 gas is used for transportation, the raw material powder does not come into contact with the atmosphere during the processing. Since the powder having a large particle size may be contained even after pulverization by the jet mill 53, the wind force classifier 54
The powder which has not been sufficiently pulverized by the jet mill 53 is re-sorted by the jet mill 53 through the conveying path 57b indicated by a broken line in the figure.
And is crushed again.

【0037】D 混合工程 Cの微粉砕工程で微粉砕された原料粉末は搬送路59を
通じてN2ガスによりDの混合工程に搬送される。混合
工程Dではサイクロン60から原料ホッパー61を介し
て混合機62に原料粉末が供給され、一方潤滑材ホッパ
ー63を介して同じく混合機62に潤滑材が供給され、
かかる混合機62において原料粉末と潤滑材が混合され
る。なお、この混合工程は次工程である成形工程におけ
る成形性を向上させるためのものであるが、粗粉砕工程
後に行ってもよいし、場合によっては行わなくてもよ
い。
D Mixing Step The raw material powder finely pulverized in the fine pulverizing step C is conveyed to the D mixing step by the N 2 gas through the conveying path 59. In the mixing step D, the raw material powder is supplied from the cyclone 60 to the mixer 62 via the raw material hopper 61, while the lubricant is also supplied to the mixer 62 via the lubricant hopper 63.
The raw material powder and the lubricant are mixed in the mixer 62. Although this mixing step is for improving the moldability in the molding step which is the next step, it may be carried out after the coarse crushing step or may not be carried out in some cases.

【0038】以上の過程においてサイクロン60、原料
ホッパー61、混合機62はそれぞれがN2ガス雰囲気
とされ、また潤滑材ホッパー63も潤滑材が充填された
状態で常時大気をN2ガスにより置換した状態とするの
で、この工程で原料粉末が大気と接触することは防止さ
れる。
In the above process, the cyclone 60, the raw material hopper 61, and the mixer 62 are each set in the N 2 gas atmosphere, and the lubricant hopper 63 is also filled with the lubricant, and the atmosphere is constantly replaced by the N 2 gas. As a result, the raw material powder is prevented from coming into contact with the atmosphere in this step.

【0039】E 成形工程 成形工程には本発明の原料粉の成形装置1が適用され、
予め気密ボックス1a内はArガス雰囲気とされ、酸素
濃度が20ppm〜6000ppmとなるように調整さ
れる。Dの混合工程で潤滑材と混合された原料粉末は搬
送路64を介して成形工程Eの原料タンク2にN2ガス
によって搬送される。原料タンク2において搬送N2
スと粉末を分離し、分離された粉末は気密バルブ4を介
して原料受けホッパー9に原料が供給される。かかる原
料は原料受けホッパー9に収容されて、秤量器10によ
り秤量されて所定量ずつ給粉台12上に配置された給粉
装置11に供給される。原料が供給された給粉装置11
は搬送シリンダ16により成形機13の上下金型14、
15間に搬送され、上下金型14、15間で原料を成形
することにより得られた成形体19はシュート18を介
して搬出帯20上に搬送され、除粉装置21により搬出
帯20上で搬送される過程で除粉される。その後成形体
19は搬出帯20からシュート23上を介して疎水性有
機物液体容器5内に収納された疎水性有機物液体容器5
中に配置された搬送帯24に移送され、搬送帯24に移
送された成形体19は搬送帯24上を移送される過程で
疎水性有機物液体5a中を通過し、その過程でその表面
が疎水性有機物液体により濡れ、大気と直接接触しなく
なる状態となる。その後さらに成形体19は搬送帯25
から搬送帯26に移送され、搬送帯26上を移送される
過程で搬送帯26と並行に準備された焼結皿27上に移
送され、順次大気・真空置換室6を介して焼結炉3内に
搬入される。
E Forming Step The forming apparatus 1 for raw material powder of the present invention is applied to the forming step,
The inside of the airtight box 1a is set to an Ar gas atmosphere in advance, and the oxygen concentration is adjusted to be 20 ppm to 6000 ppm. The raw material powder mixed with the lubricant in the mixing step D is conveyed to the raw material tank 2 in the molding step E by N 2 gas through the conveying path 64. In the raw material tank 2, the carrier N 2 gas and the powder are separated, and the separated powder is supplied to the raw material receiving hopper 9 through the airtight valve 4. The raw material is stored in the raw material receiving hopper 9, is weighed by the weighing device 10, and is supplied to the powder feeding device 11 arranged on the powder feeding table 12 by a predetermined amount. Powder feeding device 11 to which raw materials are supplied
The upper and lower molds 14 of the molding machine 13 by the transfer cylinder 16,
The compact 19 obtained by molding the raw material between the upper and lower molds 14 and 15 is conveyed to the unloading zone 20 via the chute 18 and is then moved to the unloading zone 20 by the powder removing device 21. Powder is removed in the process of being transported. After that, the molded body 19 is transferred from the carry-out zone 20 through the chute 23 to the hydrophobic organic liquid container 5 and stored in the hydrophobic organic liquid container 5.
The molded body 19 transferred to the transfer belt 24 disposed therein passes through the hydrophobic organic liquid 5a in the process of being transferred on the transfer belt 24, and the surface thereof is hydrophobic in the process. The liquid becomes wet with the organic liquid and loses its direct contact with the atmosphere. After that, the molded body 19 is further transferred to the conveyor belt 25.
From the transfer belt 26 to the transfer belt 26, and in the process of being transferred on the transfer belt 26, it is transferred onto the sintering plate 27 prepared in parallel with the transfer belt 26, and sequentially through the atmosphere / vacuum displacement chamber 6 to the sintering furnace 3 It is brought in.

【0040】以上の焼結炉3内に搬入される過程で、成
形体19は大気と直接接触しなくなる状態とされている
ため、大気中を移送されても特に変質することはなく、
安全にかつ容易に焼結炉3内に搬入される。
During the process of being carried into the sintering furnace 3 as described above, the molded body 19 is in a state where it does not come into direct contact with the atmosphere, so there is no particular change in quality even if it is transported in the atmosphere.
It is safely and easily carried into the sintering furnace 3.

【0041】F 焼結工程 焼結工程Fは、焼結炉3において行われ、かかる焼結炉
3は準備室82、焼結室83、冷却室84より構成され
る連続3室焼結炉とされる。
F Sintering Step The sintering step F is performed in the sintering furnace 3, and the sintering furnace 3 is a continuous three-chamber sintering furnace including a preparation chamber 82, a sintering chamber 83, and a cooling chamber 84. To be done.

【0042】前記大気・真空置換室6の雰囲気は、成形
体19が搬送された初期状態では大気であるが搬送後に
は真空に置換される。大気・真空置換室6が真空に置換
後、成形体19は真空に維持された準備室82に搬送さ
れる。その後成形体19は焼結室83に搬送され、真空
下で焼結される。以上において、準備室82を設けるこ
となく大気・真空置換室6から直接焼結室83に成形体
19を搬送することも勿論可能である。しかし、真空に
維持された準備室82内に成形体19を停留させていれ
ば、大気・真空置換室6内雰囲気が大気の状態であって
も焼結室83に成形体19を搬送することができ、作業
効率が向上する。すなわち、準備室82がないと大気・
真空置換室6が大気の状態で成形体19を焼結室83に
搬送すると焼結室83内の温度が下がるし、また真空状
態が解除され再度真空とする必要があるため作業効率を
低下させる。焼結室83において焼結が終了した焼結体
は冷却室84に搬送され冷却される。冷却室84は、当
初真空状態にあるが、焼結体搬入後Arガスが導入され
る。
The atmosphere in the atmosphere / vacuum replacement chamber 6 is the atmosphere in the initial state when the molded body 19 is transported, but is replaced with a vacuum after the transportation. After the atmosphere / vacuum replacement chamber 6 is replaced with a vacuum, the molded body 19 is conveyed to the preparation chamber 82 maintained in a vacuum. After that, the compact 19 is conveyed to the sintering chamber 83 and sintered under vacuum. In the above, it is of course possible to directly transfer the compact 19 from the atmosphere / vacuum displacement chamber 6 to the sintering chamber 83 without providing the preparation chamber 82. However, if the compact 19 is retained in the preparatory chamber 82 maintained in vacuum, the compact 19 can be transferred to the sintering chamber 83 even if the atmosphere in the atmosphere / vacuum displacement chamber 6 is in the atmospheric state. And work efficiency is improved. That is, without the preparation room 82,
If the compact 19 is conveyed to the sintering chamber 83 in a state where the vacuum displacement chamber 6 is in the atmosphere, the temperature inside the sintering chamber 83 drops, and the vacuum state needs to be released again to evacuate again, thus lowering work efficiency. . The sintered body that has been sintered in the sintering chamber 83 is conveyed to the cooling chamber 84 and cooled. Although the cooling chamber 84 is initially in a vacuum state, Ar gas is introduced after carrying in the sintered body.

【0043】したがって以上の実施例の希土類永久磁石
の製造装置によれば極めて酸素含有量の少ない希土類永
久磁石を効率的かつ安全に製造することができる。な
お、焼結はN2ガスあるいはArガス雰囲気でも行うこ
とができるが、N2ガスでは焼結体を窒化させ磁気特性
を低減させるおそれがあり、またArガスは高価である
ため、真空焼結とするのが望ましい。
Therefore, according to the apparatus for producing a rare earth permanent magnet of the above embodiment, the rare earth permanent magnet having an extremely small oxygen content can be efficiently and safely produced. Sintering can be performed in an N 2 gas or Ar gas atmosphere, but N 2 gas may nitride the sintered body and reduce magnetic properties, and since Ar gas is expensive, it is vacuum sintered. Is desirable.

【0044】本実施例の装置は、不活性雰囲気を形成す
るためのガスのリサイクルために圧縮機86を設けてい
る。すなわち、サイクロン50,55,60,2から回
収管87を介して圧縮機86に回収されたガスは、供給
管88を介して再度供給される。
The apparatus of this embodiment is provided with a compressor 86 for recycling gas for forming an inert atmosphere. That is, the gas recovered from the cyclones 50, 55, 60, 2 to the compressor 86 via the recovery pipe 87 is supplied again via the supply pipe 88.

【0045】(実施例1)次に図1〜図3に示す本発明
の一実施例の原料粉の成形装置によって実際に重量%で
Nd31%、B1%、残部が実質的にFeからなる原料
粉の成形を行い、得られた成形体をN−ヘキサン中に浸
漬後、30分間放置した後に焼結を行い、焼結体の酸素
含有量を測定した。その結果、酸素含有量は2200p
pmとなった。比較例1として、同一組成を有する原料
粉を図1〜図3に示す成形装置で成形し、得られた成形
体を焼結し、その焼結体の酸素含有量を測定した。比較
例では、N−ヘキサン中に浸漬せず、5分間大気中に放
置後焼結を行った。その結果、酸素含有量は8000p
pmとなった。原料粉の成形は、実施例、比較例1とも
前記気密ボックス1a内をAr雰囲気に保持し酸素濃度
を20ppmに設定して行った。疎水性有機物液体に浸
漬しない比較例では酸素含有量が8000ppmと多く
なるが、本発明の製造方法によれば、酸素含有量が22
00ppmと少ない焼結体が得られることがわかる。
(Embodiment 1) Next, by using a raw material powder molding apparatus of one embodiment of the present invention shown in FIGS. The powder was molded, the obtained molded body was dipped in N-hexane, allowed to stand for 30 minutes and then sintered, and the oxygen content of the sintered body was measured. As a result, the oxygen content is 2200p
It became pm. As Comparative Example 1, raw material powders having the same composition were molded by the molding apparatus shown in FIGS. 1 to 3, the resulting molded body was sintered, and the oxygen content of the sintered body was measured. In the comparative example, sintering was performed after leaving it in the atmosphere for 5 minutes without immersing it in N-hexane. As a result, the oxygen content is 8000p
It became pm. The forming of the raw material powder was performed in both the example and the comparative example 1 by keeping the inside of the airtight box 1a in an Ar atmosphere and setting the oxygen concentration to 20 ppm. In the comparative example not immersed in the hydrophobic organic liquid, the oxygen content is as high as 8000 ppm, but according to the production method of the present invention, the oxygen content is 22
It can be seen that a sintered body as small as 00 ppm can be obtained.

【0046】(実施例2)次に図1〜図3に示す本発明
の一実施例の原料粉の成形装置によって実際に原料粉の
成形を行い、得られた成形体を鉱物油に浸漬後焼結を行
い、焼結体の含有酸素量を測定した。その結果を表1に
示す。原料粉の成形は、前記気密ボックス1a内の酸素
濃度を種々に設定して行った。
(Embodiment 2) Next, the raw material powder was actually molded by the raw material powder molding apparatus of one embodiment of the present invention shown in FIGS. 1 to 3, and the obtained molded body was immersed in mineral oil. Sintering was performed and the oxygen content in the sintered body was measured. The results are shown in Table 1. The raw material powder was molded by setting various oxygen concentrations in the airtight box 1a.

【0047】[0047]

【表1】 [Table 1]

【0048】表1に示されるように気密ボックス1a内
の酸素濃度が高くなると得られる成形体を焼結した焼結
体の含有酸素量が増大することがわかる。
As shown in Table 1, it is understood that as the oxygen concentration in the airtight box 1a increases, the oxygen content of the sintered body obtained by sintering the obtained molded body increases.

【0049】次に図4に示す本発明の一実施例の希土類
磁石の製造装置によって実際に希土類磁石を製造した結
果について比較例と共に説明する。
Next, the result of actually producing a rare earth magnet by the apparatus for producing a rare earth magnet according to the embodiment of the present invention shown in FIG. 4 will be described together with a comparative example.

【0050】(実施例3)重量%で29.5%Nd−
1.5%Dy−1%B−1%Nb−残Feの最終焼結体
を得るように秤量して不活性(Ar)ガス中で溶解し合
金インゴットを得た。係る合金インゴットを原料として
図4に示す製造装置を用いて永久磁石を製造した。なお
成形用原料粉末の平均粒径は3.4μmと設定し、成形
工程Eの成形機13における成形圧は2.9t/cm2
し、16KOeの磁場中で成形を行った。またかかる成
形機13が収納された気密ボックス1a内はArガス雰
囲気とし、その酸素濃度は800ppmとした。また焼
結工程Fにおける真空雰囲気は10-4Torrとし、焼
結温度を1100℃として2hr焼結した後、1.5℃
/minの冷却速度で冷却した。なお、疎水性有機物とし
て、鉱物油を用いた。冷却後、再度加熱し、Arガス雰
囲気中で690℃×2hrの時効処理を行い、常温に急
冷後10×10×10mmに加工後、磁気特性の測定に供
した。
(Example 3) 29.5% by weight of Nd-
An alloy ingot was obtained by weighing so as to obtain a final sintered body of 1.5% Dy-1% B-1% Nb-remaining Fe and melting it in an inert (Ar) gas. Using the alloy ingot as a raw material, a permanent magnet was manufactured using the manufacturing apparatus shown in FIG. The average particle diameter of the raw material powder for molding was set to 3.4 μm, the molding pressure in the molding machine 13 in the molding step E was 2.9 t / cm 2, and molding was performed in a magnetic field of 16 KOe. Further, the inside of the airtight box 1a accommodating the molding machine 13 was an Ar gas atmosphere, and the oxygen concentration thereof was 800 ppm. The vacuum atmosphere in the sintering step F was 10 −4 Torr, the sintering temperature was 1100 ° C., the sintering was performed for 2 hours, and then the temperature was 1.5 ° C.
It cooled at the cooling rate of / min. Mineral oil was used as the hydrophobic organic substance. After cooling, it was heated again, subjected to an aging treatment at 690 ° C. for 2 hours in an Ar gas atmosphere, rapidly cooled to room temperature, processed to 10 × 10 × 10 mm, and then subjected to measurement of magnetic properties.

【005(比較例2)他は実施例3と同様にし、図4に
示す粗粉砕工程Bと成形工程Eの雰囲気を大気とし、さ
らにA〜Fの各工程間の原料の取り回しを大気中で行っ
て永久磁石を製造し、実施例3と同様にして磁気特性を
評価した。以上の実施例3及び比較例2の結果を表2に
示す。 【0052】
(Comparative Example 2) Others were the same as in Example 3, except that the atmosphere of the coarse crushing step B and the molding step E shown in FIG. 4 was atmospheric air, and the raw material was routed between the steps A to F in the atmospheric air. Then, a permanent magnet was manufactured, and the magnetic characteristics were evaluated in the same manner as in Example 3. Table 2 shows the results of the above Example 3 and Comparative Example 2. [0052]

【表2】 [Table 2]

【0053】表2に示されるように、本発明の実施例に
より得られた永久磁石は比較例のものに比べ、極めて良
好な磁気特性を示す。なお以上の実施例は29.5%N
d−1.5%Dy−1%B−1%Nb−残Feの組成を
有する磁石について述べたが、Ndの一部をPr,Ce
等の他の希土類元素で置換してもよく、またFeの一部
をCo,Niでも置換することもできる。さらに、A
l,Ti,Cr,Ga等の元素を添加することもでき
る。
As shown in Table 2, the permanent magnets obtained according to the examples of the present invention show extremely good magnetic characteristics as compared with those of the comparative examples. The above example is 29.5% N
Although a magnet having a composition of d-1.5% Dy-1% B-1% Nb-remaining Fe was described, a part of Nd was Pr, Ce.
Other rare earth elements such as Fe may be substituted, and part of Fe may be substituted with Co or Ni. Furthermore, A
Elements such as 1, Ti, Cr, and Ga can be added.

【0054】[0054]

【発明の効果】以上のように本発明の製造方法および製
造装置によれば、成形体の取り扱いが容易になり、かつ
酸化を防止できる。また、それにより希土類永久磁石の
酸素含有量を低減することができる。
As described above, according to the manufacturing method and the manufacturing apparatus of the present invention, the molded body can be easily handled and oxidation can be prevented. In addition, the oxygen content of the rare earth permanent magnet can be reduced thereby.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の原料粉の成形装置の概略
側面図である。
FIG. 1 is a schematic side view of a raw material powder molding apparatus according to an embodiment of the present invention.

【図2】 図1に示す実施例の原料粉の成形装置の概略
平面図である。
FIG. 2 is a schematic plan view of a raw material powder molding apparatus of the embodiment shown in FIG.

【図3】 図1に示す実施例の原料粉の成形装置の成形
機部分を示す部分斜視図である。
FIG. 3 is a partial perspective view showing a molding machine portion of the raw material powder molding apparatus of the embodiment shown in FIG.

【図4】 本発明の希土類系永久磁石の製造装置の概略
図である。
FIG. 4 is a schematic view of an apparatus for manufacturing a rare earth-based permanent magnet of the present invention.

【符号の説明】 1・・・成形装置、2・・・原料タンク、3・・・焼結
炉、5・・・疎水性有機物液体容器、5a・・・疎水性
有機物液体、1a・・・気密ボックス、6・・・大気・
真空置換室、13・・・成形機、14・・・上金型、1
5・・・下金型、16・・・搬送シリンダ、17・・・
気密フランジ A・・・水素粉砕処理工程、B・・・粗粉砕工程、C・
・・微粉砕工程、D・・・混合工程、E・・・成形工
程、F・・・焼結工程
[Explanation of Codes] 1 ... Molding device, 2 ... Raw material tank, 3 ... Sintering furnace, 5 ... Hydrophobic organic liquid container, 5a ... Hydrophobic organic liquid, 1a ... Airtight box, 6 ... Atmosphere
Vacuum displacement chamber, 13 ... Molding machine, 14 ... Upper mold, 1
5 ... Lower mold, 16 ... Transfer cylinder, 17 ...
Airtight flange A ... Hydrogen crushing process, B ... Coarse crushing process, C.
..Fine grinding process, D ... mixing process, E ... molding process, F ... sintering process

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 303 D H01F 1/053 1/08 (72)発明者 早川 一夫 埼玉県熊谷市三ヶ尻5200番地 日立金属株 式会社熊谷工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication C22C 38/00 303 D H01F 1/053 1/08 (72) Inventor Kazuo Hayakawa Mikkajiri, Kumagaya-shi, Saitama Prefecture 5200 Hitachi Metals Co., Ltd.Kumagaya Plant

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 成形工程を有する希土類磁石の製造方法
において、成形工程により得られた成形体を疎水性有機
物液体中に浸漬することを特徴とする希土類磁石の製造
方法。
1. A method for producing a rare earth magnet having a forming step, which comprises immersing the formed body obtained by the forming step in a hydrophobic organic liquid.
【請求項2】 不活性雰囲気中で成形された成形体を疎
水性有機物液体中に浸漬する請求項1に記載の希土類磁
石の製造方法。
2. The method for producing a rare earth magnet according to claim 1, wherein the molded body molded in an inert atmosphere is immersed in a hydrophobic organic liquid.
【請求項3】 不活性雰囲気中の酸素濃度が20ppm
〜6000ppmである請求項2に記載の希土類磁石の
製造方法。
3. The oxygen concentration in the inert atmosphere is 20 ppm.
The method for producing a rare earth magnet according to claim 2, wherein the content is 6000 ppm.
【請求項4】 水素粉砕処理工程と、粗粉砕処理工程
と、微粉砕処理工程と、成形工程と、焼結工程を有する
希土類磁石の製造方法において、前記粗粉砕処理工程
と、微粉砕処理工程と、成形工程を不活性雰囲気下にて
行うと共に、前記焼結工程前までの前記各工程間の取り
回しを不活性雰囲気下で行い、前記成形工程で得られた
成形体は、疎水性有機物液体中に浸漬後、前記焼結工程
に供されることを特徴とする希土類磁石の製造方法。
4. A method for manufacturing a rare earth magnet having a hydrogen pulverization treatment step, a coarse pulverization treatment step, a fine pulverization treatment step, a molding step, and a sintering step, wherein the coarse pulverization treatment step and the fine pulverization treatment step are performed. And the molding step is performed in an inert atmosphere, the routing between the steps before the sintering step is performed in an inert atmosphere, and the molded body obtained in the molding step is a hydrophobic organic liquid. A method for producing a rare earth magnet, which comprises subjecting to a sintering step after being immersed in the magnet.
【請求項5】 上金型と下金型を有する成形機と、成形
体が浸漬される疎水性有機物液体を保持する疎水性有機
物液体容器とからなることを特徴とする原料粉の成形装
置。
5. A molding apparatus for raw material powder, comprising a molding machine having an upper mold and a lower mold, and a hydrophobic organic liquid container holding a hydrophobic organic liquid in which the molded body is immersed.
【請求項6】 成形機の成形部が不活性雰囲気に保持さ
れる請求項5に記載の原料粉の成形装置。
6. The raw material powder molding apparatus according to claim 5, wherein the molding unit of the molding machine is held in an inert atmosphere.
【請求項7】 水素粉砕処理手段と、その水素粉砕処理
手段に連続する粗粉砕処理手段と、その粗粉砕手段に連
続する微粉砕処理手段と、その微粉砕処理手段に連続す
る成形手段と、その成形手段に連続する焼結手段とを有
してなる希土類磁石の製造装置において、 前記粗粉砕処理手段と、前記微粉砕処理手段と、成形手
段とが不活性雰囲気下に配置されると共に、前記水素粉
砕処理手段と、粗粉砕処理手段と、微粉砕処理手段と、
成形手段との間に不活性雰囲気下における取り回し手段
が設けられ、成形機により成形された成形体を疎水性有
機物液体容器内の疎水性有機物液体中に外気遮断状態で
搬送する搬送手段が設けられた成形装置により前記成形
手段が構成されてなることを特徴とする希土類磁石の製
造装置。
7. A hydrogen pulverization treatment means, a coarse pulverization treatment means continuous with the hydrogen pulverization treatment means, a fine pulverization treatment means continuous with the coarse pulverization treatment means, and a molding means continuous with the fine pulverization treatment means. In a rare earth magnet manufacturing apparatus having a sintering means continuous to the forming means, the coarse pulverizing means, the fine pulverizing means, and the forming means are arranged under an inert atmosphere, The hydrogen pulverizing means, the coarse pulverizing means, the fine pulverizing means,
A handling means under an inert atmosphere is provided between the molding means and a carrying means for carrying the molded product molded by the molding machine into the hydrophobic organic liquid in the hydrophobic organic liquid container in a state where the outside air is blocked. An apparatus for manufacturing a rare earth magnet, characterized in that the shaping means is constituted by the shaping apparatus.
JP5167422A 1993-06-14 1993-06-14 Manufacture of rare-earth magnet and molding apparatus used for it Pending JPH0774042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5167422A JPH0774042A (en) 1993-06-14 1993-06-14 Manufacture of rare-earth magnet and molding apparatus used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5167422A JPH0774042A (en) 1993-06-14 1993-06-14 Manufacture of rare-earth magnet and molding apparatus used for it

Publications (1)

Publication Number Publication Date
JPH0774042A true JPH0774042A (en) 1995-03-17

Family

ID=15849410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5167422A Pending JPH0774042A (en) 1993-06-14 1993-06-14 Manufacture of rare-earth magnet and molding apparatus used for it

Country Status (1)

Country Link
JP (1) JPH0774042A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005043558A1 (en) * 2003-10-31 2005-05-12 Tdk Corporation Method for producing sintered rare earth element magnet
JP2011216669A (en) * 2010-03-31 2011-10-27 Nitto Denko Corp Permanent magnet and method for manufacturing the same
JP2011216727A (en) * 2010-03-31 2011-10-27 Nitto Denko Corp Permanent magnet and method for manufacturing the same
JP2011216720A (en) * 2010-03-31 2011-10-27 Nitto Denko Corp Permanent magnet and method for manufacturing the same
CN117637335A (en) * 2024-01-26 2024-03-01 江苏普隆磁电有限公司 Pressing die for neodymium-iron-boron magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005043558A1 (en) * 2003-10-31 2005-05-12 Tdk Corporation Method for producing sintered rare earth element magnet
JP2011216669A (en) * 2010-03-31 2011-10-27 Nitto Denko Corp Permanent magnet and method for manufacturing the same
JP2011216727A (en) * 2010-03-31 2011-10-27 Nitto Denko Corp Permanent magnet and method for manufacturing the same
JP2011216720A (en) * 2010-03-31 2011-10-27 Nitto Denko Corp Permanent magnet and method for manufacturing the same
CN117637335A (en) * 2024-01-26 2024-03-01 江苏普隆磁电有限公司 Pressing die for neodymium-iron-boron magnet
CN117637335B (en) * 2024-01-26 2024-05-03 江苏普隆磁电有限公司 Pressing die for neodymium-iron-boron magnet

Similar Documents

Publication Publication Date Title
CN105723480B (en) Magnet regeneration is to generate the Nd-Fe-B magnet that magnetic behavior improves or restores
EP3180146B1 (en) Grain boundary engineering
EP2806438B1 (en) Method for producing r-t-b sintered magnet
EP2455954A1 (en) Process for production of r-t-b based sintered magnets and r-t-b based sintered magnets
US3748193A (en) Rare earth intermetallic compounds by a calcium hydride reduction diffusion process
US6403024B1 (en) Hydrogen pulverizer for rare-earth alloy magnetic material powder using the pulverizer, and method for producing magnet using the pulverizer
US3625779A (en) Reduction-fusion process for the production of rare earth intermetallic compounds
JPH06346102A (en) Raw powder compactor and method for producing rare-earth magnet and device therefor
JPH0774042A (en) Manufacture of rare-earth magnet and molding apparatus used for it
JPH06108104A (en) Production of rare earth magnet and its device
KR102695379B1 (en) Alloy powder and its manufacturing method
JP2731337B2 (en) Manufacturing method of rare earth sintered magnet
US6261515B1 (en) Method for producing rare earth magnet having high magnetic properties
CN113770355B (en) Sintering container for rare earth alloy sintering heat treatment and preparation method thereof
JPS6227506A (en) Production of alloy powder for rare earth-boron-ferrous permanent magnet
JPH0869908A (en) Manufacture of rare-earth permanent magnet
JPH09289127A (en) Manufacture of rare earth permanent magnet, and the rare earth permanent magnet
JP4212047B2 (en) Rare earth alloy powder manufacturing method and manufacturing apparatus
JPH06346112A (en) Coarsely crushing method and device therefor
JPH1012473A (en) Manufacture of rare-earth permanent magnet
JP4304917B2 (en) Hydrogen grinding method and method for producing rare earth magnetic material powder
JPH1064712A (en) R-fe-b rare earth sintered magnet
KR102698757B1 (en) Manufacturing method of rare earth sintered magnet
JPH06325962A (en) Wet molding equipment of rare earth magnet
JPS63211707A (en) Manufacture of sintered rare-earth magnet