JPH06346102A - Raw powder compactor and method for producing rare-earth magnet and device therefor - Google Patents
Raw powder compactor and method for producing rare-earth magnet and device thereforInfo
- Publication number
- JPH06346102A JPH06346102A JP5167421A JP16742193A JPH06346102A JP H06346102 A JPH06346102 A JP H06346102A JP 5167421 A JP5167421 A JP 5167421A JP 16742193 A JP16742193 A JP 16742193A JP H06346102 A JPH06346102 A JP H06346102A
- Authority
- JP
- Japan
- Prior art keywords
- airtight
- airtight box
- raw material
- molding
- inert atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はNdーFeーB系永久磁
石等の希土類永久磁石の原料粉を成形する成形装置及び
これを用いた希土類磁石の製造方法及びその装置に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding apparatus for molding raw material powder of rare earth permanent magnets such as Nd-Fe-B system permanent magnets, a method for manufacturing rare earth magnets using the molding apparatus, and an apparatus therefor.
【0002】[0002]
【従来の技術】近年、従来のSmーCo系磁石に比較
し、より高磁気特性を有し、かつ資源的にも高価なSm
やCoを含まないNdーFeーB系永久磁石の実用化が
進められている。このNdーFeーB系永久磁石の磁気
特性は、酸素含有量により強く影響され、酸素含有量を
低く抑えるほど磁気特性は良好になることが知られてい
る。2. Description of the Related Art In recent years, Sm which has higher magnetic characteristics and is more expensive in terms of resources than conventional Sm-Co magnets.
Practical application of Nd-Fe-B based permanent magnets not containing Co or Co is under way. It is known that the magnetic characteristics of the Nd-Fe-B system permanent magnet are strongly influenced by the oxygen content, and the magnetic characteristics are improved as the oxygen content is suppressed to a low level.
【0003】そこで従来からこのNdーFeーB系永久
磁石についてその酸素含有量を低く抑えるための研究が
進められている。かかる研究の成果として本出願人は特
開昭61−287107号において原料粉末の成形を不
活性雰囲気中で行う永久磁石合金粉の成形方法を提案し
た。この本出願人の提案に係る永久磁石合金粉の成形方
法はNdーFeーB系永久磁石の酸素含有量を低減する
方法として有効なものである。Therefore, studies have been made so far on the Nd-Fe-B system permanent magnets for suppressing the oxygen content thereof to a low level. As a result of such research, the present applicant has proposed a method for molding a permanent magnet alloy powder in which the raw material powder is molded in an inert atmosphere in Japanese Patent Laid-Open No. 61-287107. The molding method of the permanent magnet alloy powder proposed by the present applicant is effective as a method for reducing the oxygen content of the Nd-Fe-B system permanent magnet.
【0004】[0004]
【発明が解決しようとする課題】しかし従来、原料粉末
の成形を不活性雰囲気中で行う場合、 成形機全体をボックスで囲み内部を不活性雰囲気にす
る 成形機を設置してある部屋全体を不活性雰囲気にする 等の方法で行われていた。これは広範囲を不活性雰囲気
に保持するため、大量の不活性ガスが必要となりコスト
高につながる、雰囲気中の酸素濃度が低下しにくい等の
問題があり、工業的な実施は困難であった。そのため、
NdーFeーB系永久磁石の酸素含有量をさらにいっそ
う低くする為には、未だ不徹底であり、その点において
さらに改善の余地があった。However, conventionally, when the raw material powder is molded in an inert atmosphere, the entire molding machine is surrounded by a box so that the inside is in an inert atmosphere. It was done by a method such as making it an active atmosphere. Since this maintains a wide range in an inert atmosphere, a large amount of inert gas is required, leading to high costs, and there are problems such as difficulty in lowering the oxygen concentration in the atmosphere, making industrial implementation difficult. for that reason,
In order to further reduce the oxygen content of the Nd-Fe-B based permanent magnet, it was still unsatisfactory, and there was room for further improvement in that respect.
【0005】したがって本発明は以上の従来技術の問題
に鑑みてなされたものであって、NdーFeーB系永久
磁石等の希土類永久磁石の酸素含有量を徹底して低減で
きると共に、工業的な実施が可能で、希土類永久磁石の
実用品質を向上することができる原料粉の成形装置及び
これを用いた希土類磁石の製造方法及びその装置を提供
することを目的とする。Therefore, the present invention has been made in view of the above problems of the prior art, and it is possible to thoroughly reduce the oxygen content of rare earth permanent magnets such as Nd-Fe-B system permanent magnets, and at the same time industrially. It is an object of the present invention to provide a raw material powder molding apparatus capable of various implementations and improving the practical quality of a rare earth permanent magnet, a method for manufacturing a rare earth magnet using the same, and an apparatus therefor.
【0006】[0006]
【課題を解決するための手段】本発明者らは上述した本
発明の課題を達成するべく種々検討し、本出願人の提案
に係る特開昭61−287107号に記載された発明の
実施を可能にする原料粉の成形装置の開発に成功すると
共にかかる成形装置を適用した希土類磁石の製造方法及
びその装置に想到し、上記課題を達成した。すなわち本
発明の原料粉の成形装置は、連通孔部を有する基体に少
なくとも一方が相対移動可能な上金型または下金型を装
備し、該基体の連通孔部と該気密ボックスがその内部に
おいて一連となるように該基体に気密ボックスを連接す
る原料粉の成形装置である。このような構成にすること
により、成形機全体を囲まなくても、成形機の成形部
(上金型、下金型の成形体接触面とその間の空間:図1
成形部29参照)が基体と気密ボックスの内部に気密な
状態で保持されるため、所望の雰囲気を容易に得ること
ができ、酸素濃度を20ppm〜6000ppmと低下
させ、一定に制御することもできる。DISCLOSURE OF THE INVENTION The present inventors have conducted various studies to achieve the above-mentioned objects of the present invention, and carried out the invention described in JP-A-61-287107 proposed by the present applicant. The present invention has been accomplished by succeeding in developing a molding apparatus for raw material powder that enables the above-mentioned material, and by contriving a method for manufacturing a rare earth magnet to which the molding apparatus is applied and the apparatus therefor. That is, the raw material powder molding apparatus of the present invention is equipped with an upper mold or a lower mold, at least one of which is relatively movable, on a base having a communication hole, and the communication hole of the base and the airtight box are provided inside the base. It is an apparatus for forming raw material powder in which an airtight box is connected to the base in a series. With such a configuration, the molding part of the molding machine (the upper and lower mold contact surfaces of the molded body and the space between them) can be formed without surrounding the entire molding machine: FIG.
Since the molding part 29) is held in an airtight state inside the substrate and the airtight box, a desired atmosphere can be easily obtained, and the oxygen concentration can be lowered to 20 ppm to 6000 ppm and can be controlled to be constant. .
【0007】基体に気密ボックスを連接し、該基体の連
通孔部と該気密ボックスがその内部において一連となる
よう配置するにあたっては、気密フランジを介して気密
ボックスと基体を取り付けることができる。気密フラン
ジは気密ボックスと一体に成形され、一方基体は前後に
連通孔部を有する箱状に形成され、その前後側面部分に
気密ボックスの気密フランジが当接せしめられ、もって
気密ボックスが気密フランジを介して基体に接続される
ようにすることができる。気密ボックスは、開閉可能な
密閉扉が装備され、原料粉や成形体の搬送を行っても外
部の空気は気密な基体、気密ボックス内にほとんど流入
しない。また、気密ボックス内には、金型に原料粉を供
給する給粉装置や成形体についた粉末を落とす除粉装置
等を収納することができる。When the airtight box is connected to the base body and the communication hole portion of the base body and the airtight box are arranged in series inside the airtight box, the airtight box and the base body can be attached via the airtight flange. The airtight flange is formed integrally with the airtight box, while the base body is formed into a box shape having communication holes at the front and rear, and the airtight flange of the airtight box is brought into contact with the front and rear side surfaces of the base, so that the airtight box forms the airtight flange. It can be connected to the base body through. The airtight box is equipped with a sealable door that can be opened and closed, and even when the raw material powder and the molded body are conveyed, the outside air hardly flows into the airtight base body and the airtight box. Further, in the airtight box, a powder feeding device for supplying the raw material powder to the die, a powder removing device for dropping the powder attached to the molded body, and the like can be stored.
【0008】また本発明の希土類磁石の製造方法は、水
素粉砕処理工程と、粗粉砕処理工程と、微粉砕処理工程
と、成形工程と、焼結工程を有する希土類磁石の製造方
法において、前記粗粉砕処理工程と、微粉砕処理工程と
を不活性雰囲気下にて行うとともに、基体の連通孔部に
少なくとも一方が相対移動可能な上金型または下金型を
装備し、該基体に気密ボックスを連接してなり、該基体
の連通孔部と気密ボックスとがその内部において一連で
ある成形装置により成形工程を行い、前記各工程間の取
り回しを不活性雰囲気下で行うことを特徴とする。The method for producing a rare earth magnet according to the present invention is the method for producing a rare earth magnet having a hydrogen pulverization treatment step, a coarse pulverization treatment step, a fine pulverization treatment step, a molding step and a sintering step. The pulverization process and the fine pulverization process are performed in an inert atmosphere, and at least one of the communicating holes of the base is equipped with an upper mold or a lower mold capable of relatively moving, and the base is provided with an airtight box. It is characterized in that they are connected to each other, and the communicating hole portion of the base and the airtight box perform a molding process in the inside thereof by a series of molding devices, and the routing between the processes is carried out in an inert atmosphere.
【0009】本願において不活性雰囲気とは、N2、C
O2、Ar、He等の反応性の低いガスによって形成さ
れた雰囲気をいう。In the present application, the inert atmosphere means N 2 , C
An atmosphere formed by a gas having low reactivity such as O 2 , Ar, and He.
【0010】前記粗粉砕処理から成形までの各工程間の
粉末の取り回しは不活性ガス搬送とするのが望ましい。
本願において不活性ガス搬送とは、N2、CO2、Ar、
He等の反応性の低いガスの気流によって粉末を搬送す
ることをいう。It is desirable that the powder is handled during the steps from the coarse crushing process to the molding by inert gas transportation.
In the present application, the inert gas transfer means N 2 , CO 2 , Ar,
It means that the powder is conveyed by an air flow of a gas having low reactivity such as He.
【0011】加えて本発明の希土類磁石の製造装置は、
水素粉砕処理手段と、その水素粉砕処理手段に連続する
粗粉砕処理手段と、その粗粉砕手段に連続する微粉砕処
理手段と、その微粉砕処理手段に連続する成形手段と、
その成形手段に連続する焼結手段とを有してなる希土類
磁石の製造装置において、前記粗粉砕処理手段と、前記
微粉砕処理手段とが不活性雰囲気下に配置されるととも
に、前記各手段の間に不活性雰囲気下における取り回し
手段が設けられると共に、連通孔部を有する基体に少な
くとも一方が相対移動可能な上金型または下金型を装備
し、該基体に気密ボックスを連接し、該基体の連通孔部
と該気密ボックスがその内部において一連となる成形装
置であることを特徴とする。In addition, the apparatus for producing a rare earth magnet of the present invention is
Hydrogen pulverization processing means, coarse pulverization processing means continuous to the hydrogen pulverization processing means, fine pulverization processing means continuous to the coarse pulverization processing means, and molding means continuous to the fine pulverization processing means,
In a rare earth magnet manufacturing apparatus having a sintering means continuous to the forming means, the coarse pulverization processing means and the fine pulverization processing means are arranged under an inert atmosphere, and A handling means under an inert atmosphere is provided therebetween, and a base having a communication hole is equipped with an upper mold or a lower mold in which at least one is relatively movable, and the base is connected to an airtight box, The communication hole and the airtight box constitute a series of molding devices inside.
【0012】前記気密ボックス内はAr、N2等の不活
性ガス雰囲気とし、その酸素濃度は20ppm〜600
0ppmとするのがよい。6000ppmを越える場合
には、成形過程で被成形体が過剰な酸素を含有すること
となり、得られる希土類永久磁石の品質が不満足なもの
となる。一方酸素濃度を20ppm未満とすることは工
業的に極めて困難であり、かかる酸素濃度を実現するこ
とができたとしてもそのために要するコストに見合う現
実の利益は得られない。The inside of the airtight box is filled with an atmosphere of an inert gas such as Ar or N 2 , and the oxygen concentration is 20 ppm to 600 ppm.
It is good to set it to 0 ppm. If it exceeds 6000 ppm, the object to be molded contains excessive oxygen during the molding process, and the quality of the obtained rare earth permanent magnet becomes unsatisfactory. On the other hand, it is industrially extremely difficult to set the oxygen concentration to less than 20 ppm, and even if such an oxygen concentration can be realized, the actual profit commensurate with the cost required therefor cannot be obtained.
【0013】前記粗粉砕処理手段から成形手段までの各
工程間の粉末の取り回し手段は不活性ガス搬送とするの
が好ましく、また前記真空焼結手段は、前記成形手段に
連続する不活性雰囲気・真空置換室と、焼結室と、冷却
室とからなるようにすることによって、効率化が図られ
る。It is preferable that the powder handling means between each step from the coarse crushing processing means to the molding means is an inert gas carrier, and the vacuum sintering means is an inert atmosphere continuous with the molding means. Efficiency can be improved by including the vacuum displacement chamber, the sintering chamber, and the cooling chamber.
【0014】[0014]
【作用】したがって本発明の原料粉の成形装置によれ
ば、成形機の成形部が基体、気密ボックスに包囲されて
なるので、気密に保持する範囲が狭い。そのため、容易
に成形部を気密状態に保持でき、原料粉の成形を完全な
気密状態の下で行うことができる。また、気密に保持す
る範囲が狭いため、少量の不活性ガスで雰囲気を保持で
き、コストを低減することが可能となる。また本発明の
希土類磁石の製造方法及びその装置によれば、水素粉砕
処理工程以後から焼結以前までの工程が一貫して不活性
雰囲気下で行われ、かつ各工程間における取り回しが不
活性雰囲気下で行われるだけでなく、成形手段が気密ボ
ックス内に成形部を配置した成形装置とされるので、原
料粉の成形を完全な気密状態の下で行うことができ、水
素粉砕処理後焼結・冷却が終了するまでワークの大気接
触が完全に防止され、極めて酸素含有量が低く、磁気特
性の良好な希土類永久磁石を得ることができる。Therefore, according to the apparatus for molding raw material powder of the present invention, since the molding part of the molding machine is surrounded by the base and the airtight box, the range of airtight holding is narrow. Therefore, the molding part can be easily maintained in the airtight state, and the raw material powder can be molded under the completely airtight state. Further, since the range of airtight holding is narrow, the atmosphere can be held with a small amount of inert gas, and the cost can be reduced. Further, according to the method and apparatus for manufacturing a rare earth magnet of the present invention, the steps from the hydrogen pulverizing step to the step before sintering are consistently carried out under an inert atmosphere, and the routing between the steps is carried out under an inert atmosphere. In addition to the above, the forming means is a forming device in which the forming part is placed in an airtight box, so the raw material powder can be formed in a completely airtight state, and sintering is performed after hydrogen pulverization processing. -It is possible to obtain a rare earth permanent magnet having a very low oxygen content and good magnetic properties, in which atmospheric contact of the work is completely prevented until cooling is completed.
【0015】[0015]
【実施例】以下に本発明の一実施例の原料粉の成形装置
について説明する。図1及び図2は本発明の原料粉の成
形装置の概念図であり、図3は本発明の原料粉の成形装
置の斜視図である。EXAMPLE A raw powder molding apparatus according to an example of the present invention will be described below. 1 and 2 are conceptual views of a raw material powder molding apparatus of the present invention, and FIG. 3 is a perspective view of the raw material powder molding apparatus of the present invention.
【0016】図に示されるように成形装置1は前工程で
ある粉砕・混合工程で得られた原料粉末が収納される原
料タンク2及び後工程である焼結を行う焼結炉3の間に
介在して配置され、基体に具備された成形機13の成形
部29が気密ボックス1aにより、気密に保持される。
かかる気密ボックス1a内はAr雰囲気とされて、原料
タンク2とは気密バルブ4により接続される。原料タン
ク2は原料粉が収納されるが、気密バルブ4上に直接取
り付けて用いることができ、原料粉が大気に触れること
はない。一方気密ボックス1aと焼結炉3とは不活性雰
囲気・真空置換室6を介して接続される。かかる不活性
雰囲気・真空置換室6と前記気密ボックス1aとの間に
は密閉扉7が配設されると共に不活性雰囲気・真空置換
室6と前記焼結炉3との間には密閉扉8が配設される。As shown in the figure, the molding apparatus 1 includes a raw material tank 2 in which the raw material powder obtained in the crushing / mixing step, which is a pre-process, is stored, and a sintering furnace 3, which is a post-process, for sintering. The molding part 29 of the molding machine 13 disposed on the base and provided on the base is airtightly held by the airtight box 1a.
The inside of the airtight box 1a is made to be an Ar atmosphere and is connected to the raw material tank 2 by an airtight valve 4. Although the raw material powder is stored in the raw material tank 2, it can be directly mounted on the airtight valve 4 and used, and the raw material powder does not come into contact with the atmosphere. On the other hand, the airtight box 1a and the sintering furnace 3 are connected via an inert atmosphere / vacuum displacement chamber 6. A sealing door 7 is provided between the inert atmosphere / vacuum displacement chamber 6 and the airtight box 1a, and a sealing door 8 is provided between the inert atmosphere / vacuum displacement chamber 6 and the sintering furnace 3. Is provided.
【0017】前記気密ボックス1a内の原料タンク2側
の前記気密バルブ4の下方位置には原料粉受けホッパー
9が配置され、かかる原料粉受けホッパー9により気密
バルブ4を介して原料タンク2から流下する原料が収受
される。この原料粉受けホッパー9には秤量器10が付
設され、その秤量器10に近接して秤量器10の排出口
側に給粉装置11が設けられる。この給粉装置11は給
粉台12上に配置され、かかる給粉台12が成形機13
の上下金型14、15間に延長して配置される。また給
粉装置11は搬送シリンダ16を備え、かかる搬送シリ
ンダ16により給粉装置11は前後動可能にされ、給粉
台12上を上下金型14、15間位置から秤量器10下
方位置にかけて往復動せしめられる。A raw material powder receiving hopper 9 is arranged in the airtight box 1a below the airtight valve 4 on the raw material tank 2 side, and the raw material powder receiving hopper 9 flows down from the raw material tank 2 via the airtight valve 4. The raw material to be received is received. A weighing device 10 is attached to the raw material powder receiving hopper 9, and a powder feeding device 11 is provided adjacent to the weighing device 10 on the discharge side of the weighing device 10. The powder feeding device 11 is arranged on a powder feeding table 12, and the powder feeding table 12 is mounted on the molding machine 13.
The upper and lower molds 14 and 15 are extended and arranged. Further, the powder feeding device 11 is provided with a transfer cylinder 16, and the powder feeding device 11 can be moved back and forth by the transfer cylinder 16 and reciprocates on the powder feeding table 12 from a position between the upper and lower molds 14 and 15 to a lower position of the weighing device 10. Can be moved.
【0018】図3に示されるように、前記成形機13の
上下金型14、15は基体1bに装備され、かかる基体
1bが前記気密ボックス1aに対して気密フランジ17
を介して取り付けられ、その結果気密ボックス1aと基
体1bとがその内部において一連であり、かつ外部に対
して気密な状態で接続される。すなわち前記気密フラン
ジ17は気密ボックス1aと一体に成形され、かかる気
密フランジ17にはその4辺に多数の止め孔171が設
けられる。一方前記基体1bは前後に連通孔部161を
有する箱状に形成され、その前後側面部分162に前記
気密ボックス1aの気密フランジ17を当接せしめると
共に、止め孔171にビスを螺合し、もって気密ボック
ス1aが気密フランジ17を介して基体1bに対し外部
に対して気密な状態で接続される。As shown in FIG. 3, the upper and lower molds 14 and 15 of the molding machine 13 are mounted on the base body 1b, and the base body 1b is attached to the airtight box 1a by an airtight flange 17.
, And as a result, the airtight box 1a and the base body 1b are connected in series inside and in an airtight state to the outside. That is, the airtight flange 17 is formed integrally with the airtight box 1a, and the airtight flange 17 is provided with a large number of stop holes 171 on its four sides. On the other hand, the base body 1b is formed in a box shape having a communication hole portion 161 in the front and rear, and the airtight flange 17 of the airtight box 1a is brought into contact with the front and rear side surface portions 162 thereof, and a screw is screwed into the stop hole 171 so that The airtight box 1a is connected to the base body 1b in an airtight state with respect to the outside via the airtight flange 17.
【0019】前記給粉台12の成形機13の上下金型1
4、15間に延長した端部はシュート18の一端部に接
続され、かかるシュート18の他端部は成形体19の搬
出帯20と連続し、かかる搬出帯20のシュート18側
端部下方には除粉装置21が配置される。かかる除粉装
置21は、搬出帯20上の成形体19の下方に配置され
る交番磁場を発生させる電磁石から構成され、それによ
り搬出帯20上の成形体が除粉される。さらに搬出帯2
0の上面には除粉装置21上方位置から焼結炉3方向に
向けて、ガイド22が配置され、かかるガイド22の焼
結炉3側端部には配給シリンダ23が設置される。かか
る配給シリンダ23及びガイド22により除粉後の成形
体19の整列装置が構成される。Upper and lower molds 1 of the molding machine 13 of the powder feeding table 12
The end extending between 4 and 15 is connected to one end of the chute 18, and the other end of the chute 18 is continuous with the carry-out zone 20 of the molded body 19 and is located below the end of the carry-out zone 20 on the chute 18 side. A powder removing device 21 is arranged. The dedusting device 21 is composed of an electromagnet that is arranged below the molded body 19 on the carry-out zone 20 and generates an alternating magnetic field, so that the molded body on the carry-out zone 20 is dedusted. Further carry-out zone 2
On the upper surface of 0, a guide 22 is arranged from above the powder removing device 21 toward the sintering furnace 3, and a distribution cylinder 23 is installed at the end of the guide 22 on the side of the sintering furnace 3. The distribution cylinder 23 and the guide 22 constitute an aligning device for the powder compacts 19.
【0020】前記気密ボックス1aの側部には大気・不
活性雰囲気置換室24が設けられ、かかる大気・不活性
雰囲気置換室24を介して焼結皿25の搬入路26が気
密ボックス1aの外部から内部に連続して延設される。
前記大気・不活性雰囲気置換室24と気密ボックス1a
との接続部分には密閉扉27が配置され、さらに前記大
気・不活性雰囲気置換室24と気密ボックス1aの外側
の搬入路26との接続部分には密閉扉28が配置され
る。また気密ボックス1a内の搬入路26は前記搬出帯
20と並走する様に気密ボックス1aと焼結炉3との間
に設けられた不活性雰囲気・真空置換室6に導かれ、か
かる不活性雰囲気・真空置換室6を介して焼結炉3内に
延長して配設される。An air / inert atmosphere replacement chamber 24 is provided on the side of the airtight box 1a, and a transfer path 26 for the sintering plate 25 is provided outside the airtight box 1a via the air / inert atmosphere replacement chamber 24. It is continuously extended from the inside.
Air / inert atmosphere replacement chamber 24 and airtight box 1a
A sealing door 27 is arranged at a connecting portion with and a sealing door 28 is arranged at a connecting portion between the atmosphere / inert atmosphere substitution chamber 24 and the carry-in passage 26 outside the airtight box 1a. Further, the carry-in passage 26 in the airtight box 1a is guided to an inert atmosphere / vacuum displacement chamber 6 provided between the airtight box 1a and the sintering furnace 3 so as to run in parallel with the carry-out zone 20, and the inert gas is introduced. It is extended in the sintering furnace 3 through the atmosphere / vacuum displacement chamber 6.
【0021】したがって以上の実施例の原料粉の成形装
置によれば次のようにして原料粉の成形及び焼結炉への
搬出が行われる。予め気密ボックス1a内はArガス雰
囲気とされ、酸素濃度が20ppm〜6000ppmと
なるように調整される。その状態で先ず原料タンク2か
ら気密バルブ4を介して原料粉受けホッパー9に原料粉
が供給される。かかる原料粉は原料粉受けホッパー9に
収容されて、秤量器10により秤量されて所定量ずつ給
粉台12上に配置された給粉装置11に供給される。原
料粉が供給された給粉装置11は搬送シリンダ16によ
り成形機13の上下金型14、15間に搬送されて所定
の成形位置にセットされ、給粉装置11が所定位置にセ
ットされた状態で上下金型14、15が作動し、成形体
19が得られる。得られた成形体19は、給粉装置11
と搬送シリンダ16により押し出されてシュート18に
搬送される。Therefore, according to the raw material powder molding apparatus of the above-mentioned embodiment, the raw material powder is molded and carried out to the sintering furnace as follows. The inside of the airtight box 1a is set to an Ar gas atmosphere in advance, and the oxygen concentration is adjusted to be 20 ppm to 6000 ppm. In this state, first, the raw material powder is supplied from the raw material tank 2 to the raw material powder receiving hopper 9 through the airtight valve 4. The raw material powder is stored in the raw material powder receiving hopper 9, is weighed by the weighing device 10, and is supplied to the powder feeding device 11 arranged on the powder feeding table 12 by a predetermined amount. A state in which the powder feeding device 11 to which the raw material powder has been fed is transported between the upper and lower molds 14 and 15 of the molding machine 13 by the transport cylinder 16 and set at a predetermined molding position, and the powder feeding device 11 is set at a predetermined position. Then, the upper and lower molds 14 and 15 are actuated to obtain a molded body 19. The obtained compact 19 is used for the powder feeding device 11
Then, it is pushed out by the transfer cylinder 16 and transferred to the chute 18.
【0022】上下金型14、15間で原料粉を成形する
ことにより得られた成形体19はシュート18を介して
搬出帯20上に搬送され、除粉装置21により搬出帯2
0上で搬送される過程で除粉される。かかる成形体19
はガイド22に沿って移動して配給シリンダ23の近接
位置まで搬送される。配給シリンダ23の近接位置まで
搬送された成形体19は、搬出帯20と並走する焼結皿
25の搬入路26に向けて配給シリンダ23により押し
出され、焼結皿25上に移送される。The compact 19 obtained by molding the raw material powder between the upper and lower molds 14 and 15 is conveyed onto the unloading zone 20 via the chute 18 and is carried out by the powder removing device 21.
Powder is removed in the process of being conveyed on the surface of 0. Such molded body 19
Moves along the guide 22 and is conveyed to a position close to the distribution cylinder 23. The compact 19 conveyed to the position close to the distribution cylinder 23 is pushed out by the distribution cylinder 23 toward the carry-in path 26 of the sintering dish 25 that runs in parallel with the carry-out zone 20, and is transferred onto the sintering dish 25.
【0023】次いで焼結皿25上に移送された成形体1
9は焼結皿25と共に搬入路26上を焼結炉3に向けて
搬送される。その際気密ボックス1aから焼結炉3への
搬入に当たっては、不活性雰囲気・真空置換室6に配設
された密閉扉7、8は次のような手順で開閉される。先
ず不活性雰囲気・真空置換室6内が気密ボックス1a内
と同様な雰囲気とされた状態で、密閉扉7が開かれ、そ
の様に密閉扉7が開かれた状態で焼結皿25及び焼結皿
25上に載置された成形体19が不活性雰囲気・真空置
換室6内に搬入される。焼結皿25及び焼結皿25上に
載置された成形体19が不活性雰囲気・真空置換室6内
に搬入された後に密閉扉7が閉止され、不活性雰囲気・
真空置換室6内は焼結炉3内と同様な真空雰囲気に調整
される。その後不活性雰囲気・真空置換室6と前記焼結
炉3との間に配設された密閉扉8が開かれ、その状態で
不活性雰囲気・真空置換室6内に搬入されていた焼結皿
25及び焼結皿25上に載置された成形体19が焼結炉
3内に搬入され、焼結工程に供される。その後、不活性
雰囲気・真空置換室6と焼結炉3との間に配設された密
閉扉8が閉止され、不活性雰囲気・真空置換室6内は気
密ボックス1a内と同様な雰囲気となるように調整され
る。以上の過程を繰り返すことにより、気密ボックス1
aから不活性雰囲気・真空置換室6を介した焼結炉3へ
の成形体19の搬入が連続して行われる。Next, the molded body 1 transferred onto the sintering dish 25
9 is conveyed with the sintering tray 25 on the carry-in path 26 toward the sintering furnace 3. At that time, when carrying in from the airtight box 1a to the sintering furnace 3, the sealing doors 7 and 8 arranged in the inert atmosphere / vacuum displacement chamber 6 are opened and closed by the following procedure. First, the sealing door 7 is opened in a state where the inside of the inert atmosphere / vacuum substitution chamber 6 is set to the same atmosphere as the airtight box 1a, and the sintering tray 25 and baking are performed in such a state that the sealing door 7 is opened. The molded body 19 placed on the tray 25 is carried into the inert atmosphere / vacuum displacement chamber 6. After the sintering tray 25 and the molded body 19 placed on the sintering tray 25 have been carried into the inert atmosphere / vacuum displacement chamber 6, the closed door 7 is closed and the inert atmosphere
The inside of the vacuum substitution chamber 6 is adjusted to the same vacuum atmosphere as that in the sintering furnace 3. After that, the sealing door 8 arranged between the inert atmosphere / vacuum displacement chamber 6 and the sintering furnace 3 is opened, and the sintering dish carried into the inert atmosphere / vacuum displacement chamber 6 in that state. 25 and the molded body 19 placed on the sintering dish 25 are carried into the sintering furnace 3 and subjected to the sintering process. After that, the sealing door 8 arranged between the inert atmosphere / vacuum displacement chamber 6 and the sintering furnace 3 is closed, and the inside of the inert atmosphere / vacuum displacement chamber 6 becomes the same atmosphere as the airtight box 1a. Is adjusted. By repeating the above process, the airtight box 1
The compact 19 is continuously carried into the sintering furnace 3 from a through the inert atmosphere / vacuum displacement chamber 6.
【0024】一方搬入路26上の焼結皿25の気密ボッ
クス1a内への搬入は次の手順で行われる。先ず気密ボ
ックス1aの外側の搬入路26と大気・不活性雰囲気置
換室24との接続部分に配設された密閉扉28が開か
れ、大気・不活性雰囲気置換室24と気密ボックス1a
との間に配設された密閉扉27が閉止された状態で搬入
路26上の焼結皿25が大気・不活性雰囲気置換室24
内に搬入され、その後に密閉扉28が閉止される。その
状態で大気・不活性雰囲気置換室24内が気密ボックス
1a内と同様な雰囲気に調整され、その後密閉扉27が
開かれ焼結皿25が気密ボックス1a内に搬入される。
その後、大気・不活性雰囲気置換室24と気密ボックス
1aとの間に配設された密閉扉27が閉止され、気密ボ
ックス1aの外側の搬入路26と大気・不活性雰囲気置
換室24との接続部分に配設された密閉扉28が開かれ
た状態で搬入路26上の焼結皿25が大気・不活性雰囲
気置換室24内に搬入され、以上の過程を繰り返すこと
により、大気・不活性雰囲気置換室24を介した気密ボ
ックス1a内への焼結皿25の搬入が連続して行われ
る。On the other hand, the sintering tray 25 on the carry-in path 26 is carried into the airtight box 1a by the following procedure. First, the airtight box 1a is opened, and the airtight box 1a is opened, and the airtight box 1a is opened.
The sintering tray 25 on the carry-in passage 26 is replaced with the atmosphere / inert atmosphere replacement chamber 24 with the closed door 27 disposed between
It is carried in, and then the sealing door 28 is closed. In this state, the atmosphere / inert atmosphere replacement chamber 24 is adjusted to have the same atmosphere as the airtight box 1a, and then the sealing door 27 is opened and the sintering tray 25 is carried into the airtight box 1a.
After that, the sealing door 27 arranged between the atmosphere / inert atmosphere replacement chamber 24 and the airtight box 1a is closed, and the carry-in passage 26 outside the airtight box 1a is connected to the atmosphere / inert atmosphere replacement chamber 24. The sintering dish 25 on the carry-in path 26 is carried into the atmosphere / inert atmosphere replacement chamber 24 with the closed door 28 provided in the part opened, and the atmosphere / inert atmosphere is obtained by repeating the above process. The sintering tray 25 is continuously carried into the airtight box 1a through the atmosphere replacement chamber 24.
【0025】したがって以上の実施例の原料粉の成形装
置によれば、成形機13への原料供給過程及びこれに続
く原料粉の成形過程及び成形後の成形体の焼結炉3への
搬出過程を通じて一貫して酸素濃度が20ppm〜60
00ppmとなる様に調整されたArガス雰囲気中でワ
ークが取り扱われ、取り扱われるワークの酸化は最小限
に抑えられる。Therefore, according to the raw material powder molding apparatus of the above embodiment, the raw material supply process to the molding machine 13, the subsequent raw material powder molding process, and the carrying process of the molded body to the sintering furnace 3 after molding. Oxygen concentration is consistently 20ppm to 60 throughout
The work is handled in an Ar gas atmosphere adjusted to be 00 ppm, and the oxidation of the work to be handled is suppressed to the minimum.
【0026】次に以上の本発明の原料粉の成形装置を適
用した本発明の希土類永久磁石の製造装置の一実施例に
つき説明する。図4は本発明の一実施例の希土類永久磁
石製造装置を示し、図上破線で区分されたA〜Fの6大
工程にわけてこれを説明する。Next, an embodiment of the apparatus for producing a rare earth permanent magnet of the present invention to which the above-mentioned apparatus for forming raw material powder is applied will be described. FIG. 4 shows a rare earth permanent magnet manufacturing apparatus according to an embodiment of the present invention, which will be described by dividing it into six major steps A to F divided by broken lines in the figure.
【0027】A 水素粉砕処理工程 原料インゴットを真空溶解し、さらに熱処理した希土類
永久磁石原料に対し、先ず図のAに示される水素粉砕処
理、すなわち水素を吸蔵させ崩壊させる処理が施され
る。なお、本実施例では溶解法によるインゴットを出発
原料としているが、直接還元拡散法(特開昭59-219404
号)による原料についても同様に適用できることはいう
までもない。A Hydrogen Grinding Process Step A raw material ingot is vacuum-melted and further heat-treated, and the rare earth permanent magnet raw material is first subjected to the hydrogen crushing process shown in FIG. In this example, the ingot produced by the melting method is used as the starting material, but the direct reduction diffusion method (Japanese Patent Laid-Open No. 59-219404) is used.
It is needless to say that the same can be applied to the raw materials according to No.).
【0028】水素粉砕処理はH2吸蔵セル31、脱H2セ
ル32、冷却セル33によって構成されたH2粉砕処理
手段30において行われる。H2吸蔵セル31ではイン
ゴットに水素を吸蔵させる。水素吸蔵は、500℃以下
の温度で減圧、常圧、または加圧下で行うことができ
る。水素吸蔵されたインゴットはH2脱ガスセル32に
搬送され、ここでH2を除去(脱H2)することによりイ
ンゴットが崩壊し、粉砕される。この脱H2処理は温度
500〜800℃、0.1〜100torrで行うこと
ができる。次に粉砕塊は、冷却セル33に搬送される。
冷却セル33は不活性雰囲気に保持されるが、冷却効率
を向上させるために加圧雰囲気とすることが望ましい。
また、不活性雰囲気形成のためには比重の重いArガス
を用いることが冷却セル33内の置換迅速化のために望
ましい。なお、冷却セル33内の温度は常温程度に保持
すれば良い。冷却された粉砕塊は不活性雰囲気に保持さ
れた取り回しセル34に搬送される。The hydrogen pulverization treatment is carried out in the H 2 pulverization treatment means 30 composed of the H 2 storage cell 31, the de-H 2 cell 32 and the cooling cell 33. In the H 2 storage cell 31, the ingot stores hydrogen. Hydrogen absorption can be performed at a temperature of 500 ° C. or lower under reduced pressure, normal pressure, or under pressure. The hydrogen-occluded ingot is conveyed to the H 2 degassing cell 32, where H 2 is removed (de-H 2 ) to collapse and crush the ingot. This H 2 removal treatment can be performed at a temperature of 500 to 800 ° C. and a temperature of 0.1 to 100 torr. Next, the crushed mass is conveyed to the cooling cell 33.
The cooling cell 33 is maintained in an inert atmosphere, but it is desirable to use a pressurized atmosphere in order to improve cooling efficiency.
Further, it is desirable to use Ar gas having a high specific gravity for forming the inert atmosphere in order to speed up the replacement in the cooling cell 33. The temperature in the cooling cell 33 may be kept at about room temperature. The cooled crushed mass is conveyed to the handling cell 34 which is maintained in an inert atmosphere.
【0029】B 粗粉砕工程 Aの水素粉砕処理工程で水素粉砕された粉砕塊を次の微
粉砕工程に供するに足る程度の粒径まで粗粉砕処理す
る。前記H2粉砕処理手段30内を取り回しセル34に
向けて搬送された粉砕塊は取り回しロボット41によっ
てロールクラッシャー40に配送され、ここで粗粉砕処
理が行われる。粗粉砕処理後の粉末は200〜700μ
m程度である。なお、粗粉砕はロールクラッシャーの
他、ブラウンミル、ジョークラッシャー等他の粉砕機で
あっても良い。B Coarse Pulverizing Step The pulverized mass pulverized with hydrogen in the hydrogen pulverizing step of A is coarsely pulverized to a particle size sufficient for use in the next fine pulverizing step. The crushed lumps that have been circulated in the H 2 crushing means 30 and conveyed toward the cell 34 are delivered to the roll crusher 40 by the trolling robot 41, and the coarse crushing processing is performed there. Powder after coarse crushing is 200-700μ
It is about m. The coarse crushing may be performed by using a crusher such as a brown mill or a jaw crusher other than the roll crusher.
【0030】以上の過程でH2粉砕処理手段30はその
全体が大気から遮断された構造を有し、かかるH2粉砕
処理手段30内のプロセスにおいて原料が大気に触れて
酸素を含有する機会はない。但し、H2粉砕処理手段3
0の取り回しセル34から取り回しロボット41によっ
てロールクラッシャー40に配送される過程で従来大気
との接触による酸素の含有が生じていた。そこで本発明
では図1に示されるように、H2粉砕処理手段30の取
り回しセル34から取り回しロボット41によってロー
ルクラッシャー40に原料を配送する過程を図上一点鎖
線で示されるArガスが充填された不活性雰囲気室42
で行う。この場合H2粉砕処理手段30の取り回しセル
34からロールクラッシャー40に原料を配送する取り
回しは、取り回しロボット41によって行い、特に人手
に依存する構成を取らないことから、図上一点鎖線で示
される不活性雰囲気室42内をArガス雰囲気とするこ
とは公知の手段で工業的に行うことができる。In the above process, the H 2 pulverization processing means 30 has a structure in which the whole is shielded from the atmosphere, and in the process in the H 2 pulverization processing means 30, there is no chance that the raw material comes into contact with the atmosphere and contains oxygen. Absent. However, H 2 pulverization processing means 3
In the process of being delivered from the handling cell 34 of 0 to the roll crusher 40 by the handling robot 41, conventionally, oxygen was contained due to contact with the atmosphere. Therefore, in the present invention, as shown in FIG. 1, the process of delivering the raw material from the handling cell 34 of the H 2 pulverization processing means 30 to the roll crusher 40 by the handling robot 41 is filled with Ar gas shown by the one-dot chain line in the figure. Inert atmosphere chamber 42
Done in. In this case, the handling of delivering the raw material from the handling cell 34 of the H 2 pulverization processing means 30 to the roll crusher 40 is performed by the handling robot 41, and since the configuration which does not particularly depend on manpower is not taken, it is indicated by a dashed line in the figure. The Ar gas atmosphere in the active atmosphere chamber 42 can be industrially performed by a known means.
【0031】C 微粉砕工程 Bの粗粉砕工程におけるロールクラッシャー40におい
て粗粉砕された原料粉末は搬送路43を介してN2ガス
によりサイクロン50に搬送されて微粉砕処理工程Cに
供される。サイクロン50において搬送ガスと粉末を分
離し、分離された粉末はホッパー51、供給装置52を
介して、ジェットミル53に搬送され、ジェットミル5
3において微粉砕された粉末は搬送路57a、風力分級
機54、搬送路58、サイクロン55、ホッパー56を
介して次工程に搬送路59を通じてN2ガスにより搬送
される。なお、この実施例では粉末を直接N2ガスで搬
送したが、粉末を容器に充填してその容器をN2ガス等
の不活性ガスで搬送するようにしてもよい。C Fine Grinding Step The raw material powder coarsely crushed by the roll crusher 40 in the coarse crushing step B is conveyed by the N 2 gas to the cyclone 50 through the conveying path 43, and is supplied to the fine crushing step C. The carrier gas and the powder are separated in the cyclone 50, and the separated powder is transferred to the jet mill 53 through the hopper 51 and the supply device 52, and the jet mill 5
The powder finely pulverized in No. 3 is conveyed by N 2 gas through the conveying path 57a, the wind classifier 54, the conveying path 58, the cyclone 55, and the hopper 56 to the next step through the conveying path 59. In this embodiment, the powder was directly conveyed by N 2 gas, but the powder may be filled in a container and the container may be conveyed by an inert gas such as N 2 gas.
【0032】以上の工程においてサイクロン50、ホッ
パー51、供給装置52、ジェットミル53、風力分級
機54、サイクロン55、ホッパー56はそれぞれN2
ガス雰囲気とされ、さらにその間に介在する搬送路57
a、58、59においてもN2ガスによる搬送が行われ
るので、その処理過程で原料粉末が大気に接触すること
はない。なお、ジェットミル53による粉砕後でも粒径
の大きい粉末が含まれることがあるので風力分級機54
により選別し、十分微粉砕されていない粉末は図上破線
で示される搬送路57bを介して再度ジェットミル53
に供給され再度粉砕される。In the above process, the cyclone 50, the hopper 51, the supply device 52, the jet mill 53, the wind classifier 54, the cyclone 55 and the hopper 56 are N 2 respectively.
A gas path is formed, and a transfer path 57 interposed therebetween is provided.
Also in a, 58, and 59, since the N 2 gas is used for transportation, the raw material powder does not come into contact with the atmosphere during the processing. Since the powder having a large particle size may be contained even after pulverization by the jet mill 53, the wind force classifier 54
The powder which has not been sufficiently pulverized by the jet mill 53 is re-sorted by the jet mill 53 through the conveying path 57b indicated by a broken line in the figure.
And is crushed again.
【0033】D 混合工程 Cの微粉砕工程で微粉砕された原料粉末は搬送路59を
通じてN2ガスによりDの混合工程に搬送される。混合
工程Dではサイクロン60から原料ホッパー61を介し
て混合機62に原料粉末が供給され、一方潤滑剤ホッパ
ー63を介して同じく混合機62に潤滑剤が供給され、
かかる混合機62において原料粉と潤滑剤が混合され
る。なお、この混合工程は次工程である成形工程におけ
る成形性を向上させるためのものであるが、粗粉砕工程
後に行ってもよいし、場合によっては行わなくてもよ
い。D Mixing Step The raw material powder pulverized in the pulverizing step of C is conveyed to the mixing step of D by N 2 gas through the conveying path 59. In the mixing step D, the raw material powder is supplied from the cyclone 60 to the mixer 62 via the raw material hopper 61, while the lubricant is also supplied to the mixer 62 via the lubricant hopper 63.
The raw material powder and the lubricant are mixed in the mixer 62. Although this mixing step is for improving the moldability in the molding step which is the next step, it may be carried out after the coarse crushing step or may not be carried out in some cases.
【0034】以上の過程においてサイクロン60、原料
ホッパー61、混合機62はそれぞれがN2ガス雰囲気
とされ、また潤滑材ホッパー63も潤滑材が充填された
状態で常時大気をN2ガスにより置換した状態とするの
で、この工程で原料粉末が大気と接触することは防止さ
れる。In the above process, the cyclone 60, the raw material hopper 61, and the mixer 62 are each set in the N 2 gas atmosphere, and the lubricant hopper 63 is also filled with the lubricant, and the atmosphere is constantly replaced by the N 2 gas. As a result, the raw material powder is prevented from coming into contact with the atmosphere in this step.
【0035】E 成形工程 成形工程には本発明の原料粉の成形装置1が適用され、
予め気密ボックス1a内はArガス雰囲気とされ、酸素
濃度が20ppm〜6000ppmとなるように調整さ
れる。Dの混合工程で潤滑材と混合された原料粉は搬送
路64を介して成形工程Eのサイクロン70にN2ガス
によって搬送される。サイクロン70において搬送N2
ガスと粉末を分離し、分離された粉末は気密バルブ4を
介して原料粉受けホッパー9に原料粉が供給される。か
かる原料粉は原料粉受けホッパー9に収容されて、秤量
器10により秤量されて所定量ずつ給粉台12上に配置
された給粉装置11に供給される。原料粉が供給された
給粉装置11は搬送シリンダ16により成形機13の上
下金型14、15間に搬送され、上下金型14、15間
で原料粉を成形することにより得られた成形体19はシ
ュート18を介して搬出帯20上に搬送され、除粉装置
21により搬出帯20上で搬送される過程で除粉され、
その後不活性雰囲気・真空置換室6、密閉扉7、8を介
して焼結炉3に向けて搬送される。E Molding Step The material powder molding apparatus 1 of the present invention is applied to the molding step,
The inside of the airtight box 1a is set to an Ar gas atmosphere in advance, and the oxygen concentration is adjusted to be 20 ppm to 6000 ppm. The raw material powder mixed with the lubricant in the mixing step D is conveyed to the cyclone 70 in the molding step E by N 2 gas through the conveying path 64. Transport N 2 in cyclone 70
The gas and the powder are separated, and the separated powder is supplied to the raw material powder receiving hopper 9 through the airtight valve 4. The raw material powder is stored in the raw material powder receiving hopper 9, is weighed by the weighing device 10, and is supplied to the powder feeding device 11 arranged on the powder feeding table 12 by a predetermined amount. The powder feeding device 11 to which the raw material powder is supplied is conveyed by the conveying cylinder 16 between the upper and lower molds 14 and 15 of the molding machine 13, and a molded body obtained by molding the raw material powder between the upper and lower molds 14 and 15. 19 is conveyed to the unloading zone 20 via the chute 18 and is dedusted in the process of being conveyed on the unloading zone 20 by the dedusting device 21.
Then, it is conveyed toward the sintering furnace 3 through the inert atmosphere / vacuum displacement chamber 6 and the closed doors 7 and 8.
【0036】F 焼結工程 Eの成形工程で成形された成形体は搬送路26上を焼結
工程Fに搬送される。この焼結工程Fは、前記気密ボッ
クス1aに不活性雰囲気・真空置換室6を介して連続す
る焼結炉3において行われ、かかる焼結炉3は準備室8
2、焼結室83、冷却室84より構成される連続3室焼
結炉とされる。F Sintering Step The compact formed in the forming step E is conveyed to the sintering step F on the conveying path 26. The sintering step F is performed in the sintering furnace 3 continuous to the airtight box 1a through an inert atmosphere / vacuum displacement chamber 6, and the sintering furnace 3 is provided in the preparation chamber 8
2, a continuous three-chamber sintering furnace composed of a sintering chamber 83 and a cooling chamber 84.
【0037】前記不活性雰囲気・真空置換室6は、成形
体19が搬送された初期状態では不活性雰囲気にあるが
搬送後には真空に置換される。不活性雰囲気・真空置換
室6が真空に置換後、成形体19は真空に維持された準
備室82に搬送される。その後成形体19は焼結室83
に搬送され、真空下で焼結される。以上において、準備
室82を設けることなく不活性雰囲気・真空置換室6か
ら直接焼結室83に成形体19を搬送することも勿論可
能である。しかし、真空に維持された準備室82内に成
形体19を停留させていれば、不活性雰囲気・真空置換
室6が不活性雰囲気の状態であっても焼結室83に成形
体19を搬送することができ、作業効率が向上する。す
なわち、準備室82がないと不活性雰囲気・真空置換室
6が不活性雰囲気の状態で成形体19を焼結室83に搬
送する焼結室83内の温度が下がるし、また真空状態が
解除され再度真空とする必要があるため作業効率を低下
させる。焼結室83において焼結が終了した焼結体は冷
却室84に搬送され冷却される。冷却室84は、当初真
空状態にあるが、焼結体搬入後Arガスが導入される。The inert atmosphere / vacuum replacement chamber 6 is in an inert atmosphere in the initial state when the molded body 19 is transferred, but is replaced with a vacuum after the transfer. After the inert atmosphere / vacuum replacement chamber 6 is replaced with a vacuum, the molded body 19 is transferred to the preparation chamber 82 maintained in a vacuum. Thereafter, the compact 19 is placed in the sintering chamber 83.
And then sintered under vacuum. In the above, it is of course possible to convey the compact 19 directly from the inert atmosphere / vacuum displacement chamber 6 to the sintering chamber 83 without providing the preparation chamber 82. However, if the compact 19 is retained in the preparatory chamber 82 that is maintained in a vacuum, the compact 19 is transferred to the sintering chamber 83 even if the inert atmosphere / vacuum displacement chamber 6 is in the inert atmosphere. The work efficiency can be improved. That is, without the preparation chamber 82, the temperature in the sintering chamber 83 that conveys the compact 19 to the sintering chamber 83 in the state of the inert atmosphere / vacuum substitution chamber 6 in the inert atmosphere is lowered, and the vacuum state is released. Therefore, it is necessary to evacuate again, which lowers work efficiency. The sintered body that has been sintered in the sintering chamber 83 is conveyed to the cooling chamber 84 and cooled. Although the cooling chamber 84 is initially in a vacuum state, Ar gas is introduced after carrying in the sintered body.
【0038】連続3室焼結炉3における成形体19、焼
結体は搬送路26に沿って搬送される。搬送路26は、
前記気密ボックス1aから前記連続3室焼結炉3を貫通
する搬送路26aと、前記連続3室焼結炉3を通過した
後再度前記気密ボックス1a中に循環されるまでの経路
として大気中に配置された搬送路26bとから構成され
る。搬送路26bと搬送路26aとは前記気密ボックス
1aの側部に配置された大気・不活性雰囲気置換室24
により接続される。The compact 19 and the sintered body in the continuous three-chamber sintering furnace 3 are conveyed along the conveying path 26. The transport path 26 is
A transfer path 26a penetrating the continuous three-chamber sintering furnace 3 from the airtight box 1a and a path to the atmosphere after passing through the continuous three-chamber sintering furnace 3 and then being circulated again in the airtight box 1a. The transport path 26b is arranged. The transfer path 26b and the transfer path 26a are provided with an atmosphere / inert atmosphere replacement chamber 24 arranged on the side of the airtight box 1a.
Connected by.
【0039】気密ボックス1aで搬送路26a上の焼結
皿25に載置された成形体19は、搬送路26aに沿っ
て前記不活性雰囲気・真空置換室6から前記冷却室84
まで順次搬送される。冷却室84から排出された焼結体
は搬送路26bに沿って搬送され所定位置で搬送路26
b外に移送される。さらに焼結体が取り除かれた焼結皿
25は搬送路26bを進み前記大気・不活性雰囲気置換
室24に搬入される。搬入後大気・不活性雰囲気置換室
24内は大気から不活性雰囲気に置換される。置換後に
焼結皿25は、搬送路26aに沿って前記気密ボックス
1aを進み、成形体19を載置して連続3室焼結炉3内
に入る。以上の様にして搬送路26による成形体・焼結
体の循環搬送が継続される。The molded body 19 placed on the sintering tray 25 on the transfer path 26a in the airtight box 1a has the inert atmosphere / vacuum replacement chamber 6 to the cooling chamber 84 along the transfer path 26a.
Are sequentially transported. The sintered body discharged from the cooling chamber 84 is conveyed along the conveying path 26b and is conveyed at a predetermined position to the conveying path 26b.
b Transferred outside. Further, the sintered dish 25 from which the sintered body has been removed advances along the transfer path 26b and is carried into the atmosphere / inert atmosphere replacing chamber 24. After loading, the atmosphere in the atmosphere / inert atmosphere replacement chamber 24 is replaced with the atmosphere by an inert atmosphere. After the replacement, the sintering tray 25 advances through the airtight box 1a along the conveying path 26a, mounts the compact 19 and enters the continuous three-chamber sintering furnace 3. As described above, the circulation / conveyance of the molded body / sintered body through the conveyance path 26 is continued.
【0040】したがって以上の実施例の希土類永久磁石
の製造装置によれば極めて酸素含有量の少ない希土類永
久磁石を効率的に製造することができる。なお、焼結は
N2ガスあるいはArガス雰囲気でも行うことができる
が、N2ガスでは焼結体を窒化させ磁気特性を低減させ
るおそれがあり、またArガスは高価であるため、真空
焼結とするのが望ましい。Therefore, according to the rare earth permanent magnet manufacturing apparatus of the above embodiment, it is possible to efficiently manufacture a rare earth permanent magnet having an extremely small oxygen content. Sintering can be performed in an N 2 gas or Ar gas atmosphere, but N 2 gas may nitride the sintered body and reduce magnetic properties, and since Ar gas is expensive, it is vacuum sintered. Is desirable.
【0041】本実施例の装置は、不活性雰囲気を形成す
るためのガスのリサイクルのために圧縮機86を設けて
いる。すなわち、サイクロン50,55,60,70か
ら回収管87を介して圧縮機86に回収されたガスは、
供給管88を介して再度供給される。The apparatus of this embodiment is provided with a compressor 86 for recycling gas for forming an inert atmosphere. That is, the gas recovered from the cyclone 50, 55, 60, 70 to the compressor 86 via the recovery pipe 87 is
It is supplied again via the supply pipe 88.
【0042】(実施例1)次に図1〜図3に示す本発明
の一実施例の原料粉の成形装置によって実際に原料粉の
成形を行い、得られた成形体について焼結を行い、焼結
体の含有酸素量を測定した。その結果を表1に示す。原
料粉の成形は、前記気密ボックス1a内の酸素濃度を種
々に設定して行った。Example 1 Next, the raw material powder was actually molded by the raw material powder molding apparatus of one embodiment of the present invention shown in FIGS. 1 to 3, and the obtained molded body was sintered, The oxygen content of the sintered body was measured. The results are shown in Table 1. The raw material powder was molded by setting various oxygen concentrations in the airtight box 1a.
【0043】[0043]
【表1】 [Table 1]
【0044】表1に示されるように気密ボックス1a内
の酸素濃度が高くなると得られる成形体を焼結した焼結
体の含有酸素量が増大することがわかる。As shown in Table 1, it can be seen that as the oxygen concentration in the airtight box 1a increases, the oxygen content of the sintered body obtained by sintering the obtained molded body increases.
【0045】次に図4に示す本発明の一実施例の希土類
磁石の製造装置によって実際に希土類磁石を製造した結
果について比較例と共に説明する。Next, the result of actually producing a rare earth magnet by the apparatus for producing a rare earth magnet according to the embodiment of the present invention shown in FIG. 4 will be described together with a comparative example.
【0046】(実施例2)重量%で30%Nd−1%D
y−1%B−1%Nb−1%Al−残Feの最終焼結体
を得るように秤量して不活性(Ar)ガス中で溶解し合
金インゴットを得た。係る合金インゴットを原料として
図4に示す製造装置を用いて永久磁石を製造した。なお
成形用原料粉末の平均粒径は3.1μmと設定し、成形
工程Eの成形機13における成形圧は1.0t/cm2と
し、17KOeの磁場中で成形を行った。またかかる成
形機13が収納された気密ボックス1a内はArガス雰
囲気とし、その酸素濃度は650ppmとした。また焼
結工程Fにおける真空雰囲気は10-4Torrとし、焼
結温度を1080℃として2hr焼結した後、1℃/m
inの冷却速度で冷却した。冷却後、再度加熱し、Ar
ガス雰囲気中で680℃×2hrの時効処理を行い、常
温に急冷後、10×10×10mmに加工し、磁気特性の
測定に供した。(Example 2) 30% Nd-1% D in% by weight
An alloy ingot was obtained by weighing so as to obtain a final sintered body of y-1% B-1% Nb-1% Al-remaining Fe and melting it in an inert (Ar) gas. Using the alloy ingot as a raw material, a permanent magnet was manufactured using the manufacturing apparatus shown in FIG. The average particle diameter of the raw material powder for molding was set to 3.1 μm, the molding pressure in the molding machine 13 in the molding step E was 1.0 t / cm 2, and molding was performed in a magnetic field of 17 KOe. Further, the inside of the airtight box 1a accommodating the molding machine 13 was an Ar gas atmosphere, and the oxygen concentration thereof was 650 ppm. In the sintering step F, the vacuum atmosphere was set to 10 −4 Torr, the sintering temperature was set to 1080 ° C., and the sintering was performed for 2 hours.
It was cooled at a cooling rate of in. After cooling, heat again, Ar
Aging treatment was performed at 680 ° C. for 2 hours in a gas atmosphere, followed by rapid cooling to room temperature, processing to 10 × 10 × 10 mm, and measurement of magnetic properties.
【0047】比較例 図4に示す粗粉砕工程Bと成形工程Eの雰囲気を大気と
し、さらにA〜Fの各工程間の原料の取り回しを大気中
で行ったこと以外は実施例2と同様にし、永久磁石を製
造し、実施例2と同様にして磁気特性を評価した。以上
の実施例2及び比較例の結果を表2に示す。Comparative Example The same as Example 2 except that the atmosphere of the coarse pulverization step B and the molding step E shown in FIG. 4 was the atmosphere, and the raw materials were laid out in the atmosphere between the steps A to F. A permanent magnet was manufactured, and the magnetic characteristics were evaluated in the same manner as in Example 2. Table 2 shows the results of Example 2 and Comparative Example described above.
【0048】[0048]
【表2】 [Table 2]
【0049】表2に示されるように、本発明の実施例に
より得られた永久磁石は比較例のものに比べ、極めて良
好な磁気特性を示す。なお以上の実施例は30%Nd−
1%Dy−1%B−1%Nb−2%Al−残Feの組成
を有する磁石について述べたが、Ndの一部をPr,C
e等の他の希土類元素で置換してもよく、またFeの一
部をCo,Niで置換することもできる。さらに、A
l,Ti,Cr,Ga等の元素を添加することもでき
る。As shown in Table 2, the permanent magnets obtained according to the examples of the present invention exhibit extremely good magnetic characteristics as compared with those of the comparative examples. In the above example, 30% Nd-
A magnet having a composition of 1% Dy-1% B-1% Nb-2% Al-remaining Fe was described, but a part of Nd was Pr, C.
Other rare earth elements such as e may be substituted, or part of Fe may be substituted with Co or Ni. Furthermore, A
Elements such as 1, Ti, Cr, and Ga can be added.
【0050】[0050]
【発明の効果】以上のように本発明の原料粉の成形装置
によれば、気密ボックスにより成形部が気密に保持され
るため、大量の不活性ガスを必要とせずに雰囲気中の酸
素量の低下を可能にする。本発明成形装置を用いること
により、NdーFeーB系永久磁石等の希土類永久磁石
原料粉末の成形過程における酸素の含有を徹底して低減
できると共に、希土類永久磁石の実用品質を向上するこ
とができる。As described above, according to the raw material powder molding apparatus of the present invention, since the molding portion is kept airtight by the airtight box, the amount of oxygen in the atmosphere can be controlled without requiring a large amount of inert gas. Allows a drop. By using the molding apparatus of the present invention, it is possible to thoroughly reduce the oxygen content in the molding process of the rare earth permanent magnet raw material powder such as Nd-Fe-B system permanent magnet and improve the practical quality of the rare earth permanent magnet. it can.
【0051】またかかる本発明の原料粉の成形装置を適
用した本発明の希土類磁石の製造方法によれば、粗粉砕
処理手段と、前記微粉砕処理手段とが不活性雰囲気下に
配置されるとともに、前記各手段の間に不活性雰囲気下
における取り回し手段が設けられると共に、成形手段が
気密ボックス内に成形機が配置されてなる成形装置であ
る製造装置により希土類磁石の製造を行うようにしたの
で、水素粉砕処理後の原料が焼結体となるまで大気に接
触することが完全に防止され、希土類永久磁石の酸素含
有量を徹底して低減できると共に、工業的な実施が可能
であるので、希土類永久磁石の実用品質を向上すること
ができるという優れた効果が奏される。Further, according to the method for producing a rare earth magnet of the present invention to which the raw material powder molding apparatus of the present invention is applied, the coarse pulverizing means and the fine pulverizing means are arranged in an inert atmosphere. In addition, since the routing means under an inert atmosphere is provided between the respective means, and the molding means is a molding machine in which the molding machine is arranged in the airtight box, the rare earth magnet is manufactured. Since the raw material after the hydrogen pulverization treatment is completely prevented from coming into contact with the atmosphere until it becomes a sintered body, the oxygen content of the rare earth permanent magnet can be thoroughly reduced, and industrial implementation is possible. The excellent effect that the practical quality of the rare earth permanent magnet can be improved is exhibited.
【図1】 本発明の一実施例の原料粉の成形装置の概略
側面図である。FIG. 1 is a schematic side view of a raw material powder molding apparatus according to an embodiment of the present invention.
【図2】 図1に示す実施例の原料粉の成形装置の概略
平面図である。FIG. 2 is a schematic plan view of a raw material powder molding apparatus of the embodiment shown in FIG.
【図3】 図1に示す実施例の原料粉の成形装置の斜視
図である。3 is a perspective view of a raw material powder molding apparatus of the embodiment shown in FIG. 1. FIG.
【図4】 本発明の希土類系永久磁石の製造装置の概略
図である。FIG. 4 is a schematic view of an apparatus for manufacturing a rare earth-based permanent magnet of the present invention.
1・・・成形装置、2・・・原料タンク、3・・・焼結
炉、1a・・・気密ボックス、1b・・・基体、6・・
・不活性雰囲気・真空置換室、13・・・成形機、1
4,15・・・金型、16・・・搬送シリンダ、161
・・・連通孔部、162・・・前後側面部分、17・・
・気密フランジ、24・・・大気・不活性雰囲気置換
室、26・・・搬送路、30・・・H2粉砕処理手段、
31・・・H2吸蔵セル、32・・・脱H2セル、33・
・・冷却セル、34・・・取り回しセル、40・・・ロ
ールクラッシャー、41・・・取り回しロボット、42
・・・不活性雰囲気室、50・・・サイクロン、51・
・・ホッパー、52・・・供給装置、53・・・ジェッ
トミル、54・・・風力分級機、55・・・サイクロ
ン、56・・・ホッパー、57・・・搬送路、58・・
・搬送路、59・・・搬送路、60・・・サイクロン、
61・・・原料ホッパー、62・・・混合機、63・・
・潤滑材ホッパー、64・・・搬送路、71・・・ホッ
パー、72・・・秤量器、73・・・成形機、74・・
・給粉機、75・・・金型、76・・・成形体取り出し
機、77・・・搬送装置、78・・・不活性雰囲気室、
82・・・準備室、83・・・焼結室、84・・・冷却
室、A・・・水素粉砕処理工程、B・・・粗粉砕工程、
C・・・微粉砕工程、D・・・混合工程、E・・・成形
工程、F・・・焼結工程。1 ... Molding device, 2 ... Raw material tank, 3 ... Sintering furnace, 1a ... Airtight box, 1b ... Base body, 6 ...
・ Inert atmosphere / vacuum replacement chamber, 13 ・ ・ ・ Molding machine, 1
4, 15 ... Mold, 16 ... Transfer cylinder, 161
... Communication holes, 162 ... Front and rear side parts, 17 ...
・ Airtight flange, 24 ... Atmosphere / inert atmosphere substitution chamber, 26 ... Conveyance path, 30 ... H 2 pulverization processing means,
31 ... H 2 storage cell, 32 ... de-H 2 cell, 33 ...
..Cooling cell, 34 ... Handling cell, 40 ... Roll crusher, 41 ... Handling robot, 42
・ ・ ・ Inert atmosphere room, 50 ・ ・ ・ Cyclone, 51 ・
..Hopper, 52 ... Feeding device, 53 ... Jet mill, 54 ... Wind power classifier, 55 ... Cyclone, 56 ... Hopper, 57 ... Conveyance path, 58 ...
・ Transport path, 59 ・ ・ ・ Transport path, 60 ・ ・ ・ Cyclone,
61 ... Raw material hopper, 62 ... Mixer, 63 ...
・ Lubricant hopper, 64 ... Transport path, 71 ... Hopper, 72 ... Weighing machine, 73 ... Molding machine, 74 ...
・ Powder feeder, 75 ... Mold, 76 ... Mold take-out machine, 77 ... Transport device, 78 ... Inert atmosphere chamber,
82 ... Preparation room, 83 ... Sintering room, 84 ... Cooling room, A ... Hydrogen crushing process, B ... Coarse crushing process,
C ... fine pulverization process, D ... mixing process, E ... molding process, F ... sintering process.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 公穂 埼玉県熊谷市三ヶ尻5200番地 日立金属株 式会社熊谷工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kimiho Uchida 5200 Mikkajiri, Kumagaya-shi, Saitama Hitachi Metals Co., Ltd. Kumagaya Plant
Claims (7)
が相対移動可能な上金型または下金型を装備し、該基体
の連通孔部と該気密ボックスがその内部において一連と
なるように該基体に気密ボックスを連接することを特徴
とする原料粉の成形装置。1. A base having a communication hole is equipped with an upper mold or a lower mold, at least one of which is relatively movable, so that the communication hole of the base and the airtight box form a series therein. An apparatus for forming raw material powder, characterized in that an airtight box is connected to a substrate.
素濃度が20ppm〜6000ppmである請求項1記
載の原料粉の成形装置。2. The apparatus for molding raw material powder according to claim 1, wherein the oxygen concentration inside the base and the airtight box is 20 ppm to 6000 ppm.
密フランジを介して取り付けられてなる請求項1または
2に記載の原料粉の成形装置。3. The apparatus for molding raw material powder according to claim 1, wherein the airtight box is attached to the base body via an airtight flange.
一体に成形され、一方前記基体は前後に連通孔部を有す
る箱状に形成され、その前後側面部分に前記気密ボック
スの気密フランジが当接せしめられ、もって気密ボック
スが気密フランジを介して基体に接続されてなる請求項
3記載の原料粉の成形装置。4. The airtight flange is formed integrally with the airtight box, while the base body is formed into a box shape having communication holes at the front and rear, and the airtight flange of the airtight box is brought into contact with the front and rear side portions thereof. The apparatus for molding raw material powder according to claim 3, wherein the airtight box is connected to the base body through an airtight flange.
と、微粉砕処理工程と、成形工程と、焼結工程を有する
希土類磁石の製造方法において、前記粗粉砕処理工程
と、微粉砕処理工程とを不活性雰囲気下にて行うととも
に、基体の連通孔部に少なくとも一方が相対移動可能な
上金型または下金型を装備し、該基体に気密ボックスを
連接してなり、該基体の連通孔部と気密ボックスとがそ
の内部において一連である成形装置により成形工程を行
い、前記各工程間の取り回しを不活性雰囲気下で行うこ
とを特徴とする希土類磁石の製造方法。5. A method for manufacturing a rare earth magnet, which comprises a hydrogen pulverization treatment step, a coarse pulverization treatment step, a fine pulverization treatment step, a molding step, and a sintering step, wherein the coarse pulverization treatment step and the fine pulverization treatment step are performed. In an inert atmosphere, the communication hole of the base body is equipped with an upper mold or a lower mold, at least one of which is relatively movable, and an airtight box is connected to the base body. A method of manufacturing a rare earth magnet, characterized in that a molding process is performed by a molding device having a series of holes and an airtight box, and the routing between the processes is performed in an inert atmosphere.
pm〜6000ppmとされる請求項5記載の希土類磁
石の製造方法。6. The oxygen concentration in the airtight box is 20 p.
The method for producing a rare earth magnet according to claim 5, wherein the content is pm to 6000 ppm.
手段に連続する粗粉砕処理手段と、その粗粉砕手段に連
続する微粉砕処理手段と、その微粉砕処理手段に連続す
る成形手段と、その成形手段に連続する焼結手段とを有
してなる希土類磁石の製造装置において、 前記粗粉砕処理手段と、前記微粉砕処理手段とが不活性
雰囲気下に配置されるとともに、前記各手段の間に不活
性雰囲気下における取り回し手段が設けられると共に、
連通孔部を有する基体に少なくとも一方が相対移動可能
な上金型または下金型を装備し、該基体に気密ボックス
を連接し、該基体の連通孔部と該気密ボックスがその内
部において一連となる成形装置であることを特徴とする
希土類磁石の製造装置。7. A hydrogen pulverization treatment means, a coarse pulverization treatment means continuous with the hydrogen pulverization treatment means, a fine pulverization treatment means continuous with the coarse pulverization treatment means, and a molding means continuous with the fine pulverization treatment means. In a rare earth magnet manufacturing apparatus comprising a sintering means continuous to the forming means, the coarse pulverization processing means and the fine pulverization processing means are arranged under an inert atmosphere, and In addition to being provided with a handling means under an inert atmosphere,
At least one of a base having a communication hole is equipped with an upper mold or a lower mold capable of moving relatively, and an airtight box is connected to the base, and the communication hole of the base and the airtight box are connected in series inside the base. The apparatus for manufacturing a rare earth magnet, which is a forming apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5167421A JPH06346102A (en) | 1993-06-14 | 1993-06-14 | Raw powder compactor and method for producing rare-earth magnet and device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5167421A JPH06346102A (en) | 1993-06-14 | 1993-06-14 | Raw powder compactor and method for producing rare-earth magnet and device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06346102A true JPH06346102A (en) | 1994-12-20 |
Family
ID=15849392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5167421A Pending JPH06346102A (en) | 1993-06-14 | 1993-06-14 | Raw powder compactor and method for producing rare-earth magnet and device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06346102A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100300509B1 (en) * | 1997-12-22 | 2001-11-22 | 다카하시 아키오 | Rare Earth Magnetic Powder Manufacturing Equipment |
US6511631B2 (en) | 2000-04-21 | 2003-01-28 | Sumitomo Special Metals Co., Ltd. | Powder compacting apparatus and method of producing a rare-earth magnet using the same |
JP2007266198A (en) * | 2006-03-28 | 2007-10-11 | Tdk Corp | Method and apparatus for manufacturing rare-earth magnet |
JP2012160545A (en) * | 2011-01-31 | 2012-08-23 | Hitachi Metals Ltd | Method for manufacturing hydrogen pulverized powder of raw material alloy for rare-earth magnet, and manufacturing apparatus therefor |
JP5163839B2 (en) * | 2011-01-31 | 2013-03-13 | 日立金属株式会社 | Method for producing RTB-based sintered magnet |
CN104308160A (en) * | 2014-10-28 | 2015-01-28 | 南京萨伯工业设计研究院有限公司 | Rare-earth alloy permanent magnet material preparation device and technique |
JP2015214745A (en) * | 2014-05-11 | 2015-12-03 | 沈陽中北通磁科技股▲ふん▼有限公司Shenyang Generalmagnetic Co.,Ltd. | Method and equipment for producing powder of neodymium-iron-boron rare-earth permanent magnetic alloy |
DE102015113976A1 (en) | 2014-08-25 | 2016-02-25 | Toyota Jidosha Kabushiki Kaisha | Method of making a rare earth magnet |
CN106735187A (en) * | 2016-12-09 | 2017-05-31 | 上海平野磁气有限公司 | For the servo-type feeding device of magnetic moulding press |
US10002695B2 (en) | 2014-10-03 | 2018-06-19 | Toyota Jidosha Kabushiki Kaisha | Method for manufacturing rare-earth magnets |
CN114378292A (en) * | 2020-10-20 | 2022-04-22 | 安泰科技股份有限公司 | Dynamic oxygen control method and device used in neodymium iron boron forming process |
-
1993
- 1993-06-14 JP JP5167421A patent/JPH06346102A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100300509B1 (en) * | 1997-12-22 | 2001-11-22 | 다카하시 아키오 | Rare Earth Magnetic Powder Manufacturing Equipment |
US6511631B2 (en) | 2000-04-21 | 2003-01-28 | Sumitomo Special Metals Co., Ltd. | Powder compacting apparatus and method of producing a rare-earth magnet using the same |
DE10119772B4 (en) * | 2000-04-21 | 2014-02-20 | Hitachi Metals, Ltd. | Powder press apparatus and method for producing a rare earth magnet using the same |
JP2007266198A (en) * | 2006-03-28 | 2007-10-11 | Tdk Corp | Method and apparatus for manufacturing rare-earth magnet |
KR101522805B1 (en) * | 2011-01-31 | 2015-05-26 | 히타치 긴조쿠 가부시키가이샤 | Method for producing r-t-b system sintered magnet |
JP2012160545A (en) * | 2011-01-31 | 2012-08-23 | Hitachi Metals Ltd | Method for manufacturing hydrogen pulverized powder of raw material alloy for rare-earth magnet, and manufacturing apparatus therefor |
JP5163839B2 (en) * | 2011-01-31 | 2013-03-13 | 日立金属株式会社 | Method for producing RTB-based sintered magnet |
JP2015214745A (en) * | 2014-05-11 | 2015-12-03 | 沈陽中北通磁科技股▲ふん▼有限公司Shenyang Generalmagnetic Co.,Ltd. | Method and equipment for producing powder of neodymium-iron-boron rare-earth permanent magnetic alloy |
JP2017172046A (en) * | 2014-05-11 | 2017-09-28 | 沈陽中北通磁科技股▲ふん▼有限公司Shenyang General Magnetic Co.,Ltd. | Methods and devices for powdering neodymium-iron-boron rare earth permanent magnetic alloys |
DE102015113976A1 (en) | 2014-08-25 | 2016-02-25 | Toyota Jidosha Kabushiki Kaisha | Method of making a rare earth magnet |
US10062504B2 (en) | 2014-08-25 | 2018-08-28 | Toyota Jidosha Kabushiki Kaisha | Manufacturing method of rare-earth magnet |
US10002695B2 (en) | 2014-10-03 | 2018-06-19 | Toyota Jidosha Kabushiki Kaisha | Method for manufacturing rare-earth magnets |
CN104308160A (en) * | 2014-10-28 | 2015-01-28 | 南京萨伯工业设计研究院有限公司 | Rare-earth alloy permanent magnet material preparation device and technique |
CN106735187A (en) * | 2016-12-09 | 2017-05-31 | 上海平野磁气有限公司 | For the servo-type feeding device of magnetic moulding press |
CN106735187B (en) * | 2016-12-09 | 2018-08-24 | 上海平野磁气有限公司 | Servo-type feeding device for magnetic powder moulding press |
CN114378292A (en) * | 2020-10-20 | 2022-04-22 | 安泰科技股份有限公司 | Dynamic oxygen control method and device used in neodymium iron boron forming process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2944403B1 (en) | Methods for powdering ndfeb rare earth permanent magnetic alloy | |
EP3011573B1 (en) | Magnet recycling to create nd-fe-b magnets with improved or restored magnetic performance | |
EP3180146B1 (en) | Grain boundary engineering | |
US6403024B1 (en) | Hydrogen pulverizer for rare-earth alloy magnetic material powder using the pulverizer, and method for producing magnet using the pulverizer | |
EP2671958A1 (en) | Method for producing r-t-b system sintered magnet | |
JPH06346102A (en) | Raw powder compactor and method for producing rare-earth magnet and device therefor | |
JP4640585B2 (en) | Rare earth magnet manufacturing method | |
EP2555211B1 (en) | Method for recycling slurry, method for manufacturing rare-earth based sintered magnet, and apparatus for recycling slurry | |
JPS59208001A (en) | Powder sintering method | |
JPH06108104A (en) | Production of rare earth magnet and its device | |
JP3174448B2 (en) | Method for producing Fe-BR-based magnet material | |
CN1191903C (en) | Apparatus for subjecting rare earth alloy to hydrogenation process and method for producing rare earth sintered magnet using this apparatus | |
JPH0774042A (en) | Manufacture of rare-earth magnet and molding apparatus used for it | |
US6174345B1 (en) | Method and an equipment for producing rapid condensation hydrogen storage alloy powder | |
CN1228792C (en) | Method for mfg. rare earth sintered magnet | |
JP4212047B2 (en) | Rare earth alloy powder manufacturing method and manufacturing apparatus | |
JP4304917B2 (en) | Hydrogen grinding method and method for producing rare earth magnetic material powder | |
JP2007059619A (en) | Removal method of lubricant | |
JPH0869908A (en) | Manufacture of rare-earth permanent magnet | |
CN109192486A (en) | A kind of recycling and reusing method of sintering and molding neodymium iron boron molding die cleaning materials | |
KR102688817B1 (en) | Manufacturing method of rare earth sintered magnet | |
RU2785217C1 (en) | Method for obtaining an anisotropic permanent magnet powder blank based on sm-co type alloys | |
US20240112854A1 (en) | Method for recycling rare earth element-containing powder, and method for producing rare earth sintered magnet | |
KR20240119450A (en) | Manufacturing method of rare earth sintered magnet | |
JP2023141535A (en) | Compact conveyance system and manufacturing method for rare-earth sinter magnet |