JPH0773884A - Secondary battery - Google Patents
Secondary batteryInfo
- Publication number
- JPH0773884A JPH0773884A JP5252072A JP25207293A JPH0773884A JP H0773884 A JPH0773884 A JP H0773884A JP 5252072 A JP5252072 A JP 5252072A JP 25207293 A JP25207293 A JP 25207293A JP H0773884 A JPH0773884 A JP H0773884A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- battery
- positive electrode
- mno
- manganese dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、非水電解液二次電池
の性能改善に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the performance of a non-aqueous electrolyte secondary battery.
【0002】[0002]
【従来の技術】電子機器の小型化、軽量化が進められる
中、その電源として高エネルギー密度の二次電池の要望
がさらに強まっている。その要望に答えるべく、非水電
解液二次電池は高エネルギー密度電池としての可能性の
高さから、その実用化が試みられた。中でも、負極に金
属リチウムを使用し、正極にリチウム含有マンガン複合
酸化物を使用する非水電解液二次電池がかなり有望と思
われた。しかし金属リチウム負極が充放電の繰り返しに
よりパウダー化して著しくその性能が劣化したり、また
金属リチウムがデンドライトに析出し内部ショートを引
起したりするため、実用的なサイクル寿命に問題があ
り、今だ実用化は難しい。そこで最近、リチウム金属負
極に代えて、カーボンへのリチウムイオンの出入りを利
用するカーボン電極を負極とする非水電解液二次電池が
開発中である。この電池は本発明者等によってリチウム
イオン二次電池と名付けて、1990年(雑誌Prog
ress in Batteries & Solar
Cells,Vol.9、P.209)に初めて紹介
されたもので代表的には正極材料にLiCoO2を用
い、負極には炭素質材料が使用される。現在では電池業
界、学会でも次世代の二次電池“リチウムイオン二次電
池”と言われて注目を集めている。実際、200Wh/
l程のエネルギー密度を持つリチウムイオン二次電池は
既に少量実用され始めている。既存のニッケルカドミウ
ム電池のエネルギー密度は100〜150Wh/lであ
り、リチウムイオン二次電池のエネルギー密度は既存の
電池のそれをはるかに上回るものである。さらにリチウ
ムイオン二次電池の特長は高寿命の点にもある。カーボ
ン負極は、充電においては電極中のカーボンへリチウム
イオンがドープされ、放電ではそのカーボンからリチウ
ムイオンが脱ドープされるだけで、カーボン自身は充放
電に際して大きな結晶構造の変化を伴わないので、極め
て安定した充放電特性を示し、充放電に伴う特性劣化が
少なく、具体的には1000回以上の充放電の繰り返し
も可能である。しかし最大の欠点は既存の電池に比べ値
段的に非常に高いことである。正極材料にLiCoO2
を用い、負極に炭素質材料を使用した上述のリチウムイ
オン電池は高価なコバルトと特殊な炭素材料を使用する
ため原材料費が極めて高くなる。既存のニッケルカドミ
ウム電池はエネルギー密度においては100〜150W
h/lであるが、材料費は比較的安価である。そこでリ
チウムイオン電池も安価な材料(例えばLiMn
2O4)を正極活物質に使用して、且つエネルギー密度
も200Wh/l程度を達成できれば、既存のニッケル
カドミウム電池に代わり、広い用途にリチウムイオン二
次電池が使用されることになる。カーボン負極と組み合
わせて、リチウムイオン電池を構成できる正極材料はリ
チウムコバルト複合酸化物(LiCoO2)の他にはリ
チウムニッケル複合酸化物(LiNiO2)およびスピ
ネル型結晶構造のリチウムマンガン複合酸化物(LiM
n2O4)があり、安価な材料という点ではLiMn2
O4が魅力的である。しかしLiMn2O4を正極材料
として、LiCoO2と置き換えるだけでは、エネルギ
ー密度において170Wh/l程のものが達成されるに
過ぎない。これまではリチウムイオン二次電池のカーボ
ン負極に適した炭素質材料としては、種々の有機化合物
の熱分解、又は焼成炭化により得られる炭素材料であっ
て、その炭素材料の調整には熱履歴温度条件が重要と言
われ、あまり熱履歴温度が低いと炭化が充分でなく、少
なくとも800℃以上であると言われ、又熱履歴温度の
上限が更に重要で、2400℃以上の温度では結晶成長
が進み過ぎ、電池特性が著しく損なわれると言われてい
た。つまり、性能の良い炭素材料はある程度の乱造構造
を有した擬黒鉛材料であると考えられ、高結晶性の黒鉛
材料は黒鉛表面で電解液が分解し、リチウムイオンのイ
ンターカレーション反応は進みにくいと報告されてい
た。ところが極最近の研究成果は、適切な電解液を選べ
ば、むしろ2400℃以上で熱処理された、より黒鉛化
の進んだ炭素材料、もしくは黒鉛そのものを負極炭素材
料として用いる方が、より平坦で、高い放電電圧を持つ
リチウムイオン二次電池と成ることが判ってきた(公開
特平4−115457)。従って、その負極材料として
黒鉛質材料を使用すれば、正極材料として安価なLiM
n2O4を使用しても、エネルギー密度の点でも200
Wh/lを越えるリチウムイオン二次電池となる可能性
がある。しかし、炭素材料を負極に使用するリチウムイ
オン二次電池はサイクル特性が良好なはずにもかかかわ
らず、正極材料としてLiMn2O4を使用したリチウ
ムイオン二次電池のサイクル特性は、必ずしもよくない
ことが分かった。スピネル型リチウム含有マンガン複合
酸化物LiMn2O4の最も代表的な従来の合成方法で
は、マンガン化合物としては市販の二酸化マンガンを使
用し、これに炭酸リチウムや硝酸リチウムなどのリチウ
ム塩を混合し、600〜800℃で焼成して合成する。
二酸化マンガンは乾電池用の用途に大量に製造され、高
純度品として電解二酸化マンガン(EMD)や化学合成
二酸化マンガン(CMD)が安価な価格で市販されてい
るので、安価なLiMn2O4を作る上では、合成出発
材料として好都合な材料と言える。しかし従来の方法で
調整したLiMn2O4を使用したリチウムイオン二次
電池ではサイクル寿命が短く、充放電を50〜100サ
イクル程度行うと電池の容量はほぼ初期の容量の半分に
まで劣化してしまう。この劣化の原因は定かでないが、
LiCoO2を使用するリチウムイオン二次電池はサイ
クル特性に優れているわけで、原因は正極材料のLiM
n2O4に関係していることはほぼ明らかである。これ
までにもこのサイクル特性を改善するため、充放電サイ
クルに伴いLiMn2O4の結晶が崩壊するためではな
いかとの仮定の基に、結晶のの安定性を増す目的でMn
の一部をMn以外のいろいろな元素(例えばCo、C
r、Ni、Ta、Zn等)で置き換えたリチウム含有マ
ンガン複合酸化物が提案(公開特平4−141954)
されたが、実用的サイクル寿命(300〜500サイク
ル)迄には至っていない。2. Description of the Related Art As electronic devices are becoming smaller and lighter, there is a growing demand for high energy density secondary batteries as their power sources. In order to meet the demand, non-aqueous electrolyte secondary batteries have been attempted to be put into practical use because of their high potential as high energy density batteries. Above all, a non-aqueous electrolyte secondary battery using metallic lithium for the negative electrode and a lithium-containing manganese composite oxide for the positive electrode seemed to be quite promising. However, there is a problem in practical cycle life because the metallic lithium negative electrode becomes powdered by repeated charge and discharge and its performance is significantly deteriorated, and metallic lithium deposits on dendrites and causes an internal short circuit. Practical application is difficult. Therefore, in recent years, a non-aqueous electrolyte secondary battery has been under development, in which a carbon electrode that utilizes the inflow / outflow of lithium ions into / from carbon is used as the negative electrode instead of the lithium metal negative electrode. This battery was named by the present inventors as a lithium ion secondary battery, and was named in 1990 (Magazine Prog.
less in Batteries & Solar
Cells, Vol. 9, P.I. 209) for the first time, typically LiCoO 2 is used for the positive electrode material, and a carbonaceous material is used for the negative electrode. At present, the battery industry and academic societies are calling it the next-generation rechargeable battery "lithium-ion rechargeable battery" and are drawing attention. In fact, 200 Wh /
A small amount of lithium ion secondary batteries having an energy density of about 1 have already been put into practical use. The energy density of the existing nickel-cadmium battery is 100 to 150 Wh / l, and the energy density of the lithium ion secondary battery is much higher than that of the existing battery. Another feature of lithium-ion secondary batteries is their long life. The carbon negative electrode is extremely charged because lithium ions are doped into carbon in the electrode during charging, and lithium ions are undoped from the carbon during discharging, and the carbon itself does not undergo a large change in crystal structure during charge / discharge, which is extremely high. Stable charge / discharge characteristics are exhibited, the characteristic deterioration due to charge / discharge is small, and specifically, the charge / discharge can be repeated 1000 times or more. However, the biggest drawback is that it is very expensive compared to existing batteries. LiCoO 2 as the positive electrode material
In the above lithium ion battery using a carbonaceous material for the negative electrode, since expensive cobalt and a special carbon material are used, the raw material cost becomes extremely high. The existing nickel-cadmium battery has an energy density of 100-150W.
Although it is h / l, the material cost is relatively low. Therefore, lithium-ion batteries are also inexpensive materials (for example, LiMn
If 2 O 4 ) is used as a positive electrode active material and an energy density of about 200 Wh / l can be achieved, a lithium ion secondary battery will be used for a wide range of applications instead of the existing nickel cadmium battery. In addition to the lithium cobalt composite oxide (LiCoO 2 ), lithium nickel composite oxide (LiNiO 2 ) and spinel-type lithium manganese composite oxide (LiM) can be used as a positive electrode material that can be combined with a carbon negative electrode to form a lithium ion battery.
n 2 O 4 ) and LiMn 2 in terms of an inexpensive material.
O 4 is attractive. However, only by replacing LiMn 2 O 4 with LiCoO 2 as a positive electrode material, an energy density of about 170 Wh / l can be achieved. Until now, the carbonaceous material suitable for the carbon negative electrode of the lithium-ion secondary battery has been a carbon material obtained by thermal decomposition of various organic compounds or carbonization by firing, and the thermal history temperature is adjusted to adjust the carbon material. It is said that the conditions are important, carbonization is not sufficient if the heat history temperature is too low, and it is said that the temperature is at least 800 ° C or higher. Further, the upper limit of the heat history temperature is more important, and crystal growth occurs at a temperature of 2400 ° C or higher. It was said that the battery characteristics would be significantly impaired if it proceeded too much. In other words, a carbon material with good performance is considered to be a pseudo-graphite material having a certain degree of disordered structure, and in a highly crystalline graphite material, the electrolytic solution decomposes on the graphite surface, and the intercalation reaction of lithium ions is difficult to proceed. Was reported. However, the result of the most recent research is that if an appropriate electrolyte is selected, it is even flatter to use a more graphitized carbon material that has been heat treated at 2400 ° C or higher, or graphite itself as the negative electrode carbon material. It has been found that the lithium ion secondary battery has a high discharge voltage (Japanese Patent Publication No. 4-115457). Therefore, if a graphite material is used as the negative electrode material, inexpensive LiM can be used as the positive electrode material.
Even if n 2 O 4 is used, the energy density is 200
There is a possibility that the lithium ion secondary battery will exceed Wh / l. However, although the lithium-ion secondary battery using a carbon material for the negative electrode should have good cycle characteristics, the lithium-ion secondary battery using LiMn 2 O 4 as the positive electrode material does not always have good cycle characteristics. I found out. In the most typical conventional synthesis method of spinel-type lithium-containing manganese composite oxide LiMn 2 O 4 , commercially available manganese dioxide is used as a manganese compound, and a lithium salt such as lithium carbonate or lithium nitrate is mixed with the manganese dioxide. Synthesized by firing at 600 to 800 ° C.
Manganese dioxide is produced in large quantities for use in dry batteries, and electrolytic manganese dioxide (EMD) and chemically synthesized manganese dioxide (CMD) are commercially available at high prices as high-purity products, so inexpensive LiMn 2 O 4 is produced. Above, it can be said that it is a convenient material as a synthetic starting material. However, the lithium ion secondary battery using LiMn 2 O 4 prepared by the conventional method has a short cycle life, and the battery capacity deteriorates to almost half of the initial capacity after 50 to 100 cycles of charging and discharging. I will end up. The cause of this deterioration is not clear,
The lithium ion secondary battery using LiCoO 2 has excellent cycle characteristics, and the cause is LiM of the positive electrode material.
It is almost clear that it is related to n 2 O 4 . In order to improve the cycle characteristics, it has been assumed that LiMn 2 O 4 crystals may collapse during charge / discharge cycles, and therefore Mn was used for the purpose of increasing crystal stability.
A part of various elements other than Mn (eg Co, C
(R, Ni, Ta, Zn, etc.) has been proposed as a lithium-containing manganese composite oxide (Japanese Patent Publication No. 4-141954).
However, it has not reached the practical cycle life (300 to 500 cycles).
【0003】[0003]
【発明が解決しようとする課題】本発明はスピネル型結
晶構造のリチウム含有複合酸化物を主たる正極活物質材
料とし、炭素材料を負極活物質とする非水電解液二次電
池のサイクル特性の改善に関するもので、特にサイクル
特性の良好な正極材料となるリチウム含有マンガン複合
酸化物を提供しようとするものである。DISCLOSURE OF THE INVENTION The present invention improves the cycle characteristics of a non-aqueous electrolyte secondary battery in which a lithium-containing composite oxide having a spinel type crystal structure is mainly used as a positive electrode active material and a carbon material is used as a negative electrode active material. In particular, the present invention intends to provide a lithium-containing manganese composite oxide which is a positive electrode material having good cycle characteristics.
【0004】[0004]
【課題を解決するための手段】課題解決の手段は、リチ
ウム含有マンガン複合酸化物の合成出発材料として、純
度の高い二酸化マンガンを使用する。具体的にはMn含
有率(a)とMnO2含有率(b)との比(b/a)が
1.53以上である二酸化マンガンにリチウム化合物
(水酸化リチウム、酸化リチウム、リチウム塩等)を混
合し、500℃以上の温度で熱処理を施して合成する。As a means for solving the problem, manganese dioxide having a high purity is used as a starting material for synthesizing a lithium-containing manganese composite oxide. Specifically, a lithium compound (lithium hydroxide, lithium oxide, lithium salt, etc.) is added to manganese dioxide having a ratio (b / a) of Mn content (a) and MnO 2 content (b) of 1.53 or more. Are mixed and heat-treated at a temperature of 500 ° C. or higher to synthesize.
【0005】[0005]
【作用】従来の最も代表的なLiMn2O4の合成方法
はマンガン化合物として二酸化マンガンを使用し、これ
に炭酸リチウムを混合し、600〜800℃で焼成して
合成する。二酸化マンガンは乾電池用の用途に製造さ
れ、高純度品として電解二酸化マンガン(EMD)や化
学合成二酸化マンガン(CMD)が市販されている。し
かし、これらの高純度二酸化マンガンですらMn含有率
は60.3〜61.3%(理論値:63.19%)であ
り、Mn含有率(a)とMnO2含有率(b)の比(b
/a)は1.53(理論値:1.582)以下である。
ちなみに三井金属社製EMD(TAD−I、TSV等)
ではa=60.3%、b=92.2%で、b/a=1.
529であり、セデマ社製CMD(FARADISER
−M)ではa=61.3%、b=91.7%で、b/a
=1.496である。特にb/aが理論値に対して9
6.7%以下であることは、含有するMnのうち3.3
%はMnO2ではなく他の酸化状態(Mn2O3等)で
MnO2に混入していることを意味する。本発明者は、
特別にMnO2を合成し、種々のb/a値を持つMnO
2を準備し、これを出発物質として合成したLiMn2
O4を活物質としてリチウムイオン二次電池を作成し、
そのサイクル特性は、LiMn2O4合成の出発物質で
あるMnO2のb/a値によって大きく変わることを見
いだした。すなわちb/a≧1.53のMnO2より合
成したLiMn2O4を活物質とした電池は非常にサイ
クル特性が良好であることを見いだした。LiMn2O
4はスピネル構造を有する立方晶の結晶構造であり、こ
れを正極活物質とした電池では、充電により結晶からL
iイオンが抜き取られ、また放電によりLiが再び結晶
中に入る。充放電のサイクルを繰り返した後LiMn2
O4をx線回折で調べると結晶性が低下していくことが
知られている。本発明によるサイクル特性改善の理由は
定かでないが、より純度の高いMnO2より合成したL
iMn2O4は、より高純度のものとなり、不純物の存
在により生じる結晶の歪みがより少なく、結晶の安定性
が増し、充放電サイクル特性の大幅な改善が見られるも
のと考えられる。According to the most typical conventional method of synthesizing LiMn 2 O 4 , manganese dioxide is used as a manganese compound, lithium carbonate is mixed with this, and the mixture is calcined at 600 to 800 ° C. to synthesize. Manganese dioxide is manufactured for use in dry batteries, and electrolytic manganese dioxide (EMD) and chemically synthesized manganese dioxide (CMD) are commercially available as high-purity products. However, even with these high-purity manganese dioxides, the Mn content is 60.3 to 61.3% (theoretical value: 63.19%), and the ratio of the Mn content (a) to the MnO 2 content (b). (B
/ A) is 1.53 (theoretical value: 1.582) or less.
By the way, EMD manufactured by Mitsui Kinzoku Co., Ltd. (TAD-I, TSV, etc.)
Then, a = 60.3%, b = 92.2%, and b / a = 1.
529, and CMD (FARADISER) manufactured by Cedema
-M), a = 61.3%, b = 91.7%, and b / a
= 1.496. Especially b / a is 9 against the theoretical value
6.7% or less means that 3.3 out of Mn contained.
% Means that mixed in MnO 2 in other oxidation states rather than MnO 2 (Mn 2 O 3, etc.). The inventor
MnO 2 is specially synthesized to have various b / a values.
2 was prepared, and LiMn 2 synthesized using this as a starting material
A lithium ion secondary battery was prepared using O 4 as an active material,
It has been found that the cycle characteristics vary greatly depending on the b / a value of MnO 2 which is a starting material for LiMn 2 O 4 synthesis. That is, it was found that a battery using LiMn 2 O 4 synthesized from MnO 2 with b / a ≧ 1.53 had very good cycle characteristics. LiMn 2 O
No. 4 is a cubic crystal structure having a spinel structure. In a battery using this as a positive electrode active material, L
The i ions are extracted, and Li again enters the crystal due to discharge. After repeating the charge and discharge cycle, LiMn 2
It is known that when O 4 is examined by x-ray diffraction, the crystallinity decreases. Although the reason for the improvement of the cycle characteristics according to the present invention is not clear, L synthesized from MnO 2 having a higher purity is used.
It is considered that iMn 2 O 4 has a higher purity, has less crystal distortion caused by the presence of impurities, has increased crystal stability, and is significantly improved in charge / discharge cycle characteristics.
【0006】[0006]
【実施例】以下、実施例により本発明をさらに詳しく説
明する。まず正極活物質LiMn2O4を合成するため
の出発物質として(A)〜(G)のMnO2試料を次の
ようにして用意した。The present invention will be described in more detail with reference to the following examples. First, as starting materials for synthesizing the positive electrode active material LiMn 2 O 4 , MnO 2 samples (A) to (G) were prepared as follows.
【0007】MnCO3の合成 3モル/lの同一濃度のMnSO4と(NH4)2CO
3を反応容器中に150cc/hの滴下速度でパラレル
チャージし、反応温度を5℃以下に保って、6時間反応
させ平均粒径0.008mmのMnCO3(X)を合成
した。平均粒径0.008mmの小粒径MnCO3の合
成では、上記反応温度を5℃以下に保つことが最大のポ
イントであり、小粒径MnCO3はつぎに酸化工程で効
率よく酸化され、高純度なMnO2の合成に適してい
る。Synthesis of MnCO 3 MnSO 4 and (NH 4 ) 2 CO at the same concentration of 3 mol / l
3 was charged in a reaction vessel in parallel at a dropping rate of 150 cc / h, kept at a reaction temperature of 5 ° C. or lower, and reacted for 6 hours to synthesize MnCO 3 (X) having an average particle diameter of 0.008 mm. In the synthesis of small particle size MnCO 3 having an average particle size of 0.008 mm, the most important point is to keep the reaction temperature at 5 ° C. or lower, and the small particle size MnCO 3 is efficiently oxidized in the oxidation step to obtain high purity. Suitable for the synthesis of various MnO 2 .
【0008】高純度MnO2の合成 (1)窒素ガスを吹き込みながらNaOH溶液中に上記
MnCO3(X)を添加し、温度40℃で2時間反応さ
せてMn(OH)2とし、吹き込みガスをN2から空気
に代えて2時間保持し、反応物をろ過乾燥させる。乾燥
物300gと蒸留水3リットルを再び反応容器に入れ、
空気を300リットル/h、Cl2ガスを60リットル
/hの流量で導入し50℃で5h撹拌した後、ろ過乾燥
し、その300gに対し3モル/lのHNO3900c
cを添加し、90℃で1h撹拌した後、ろ過、水洗乾燥
してMnO2試料(A)を得た。 (2)さらにMnO2試料(A)300gとMn(NO
3)2180gを0.5モル/lのHNO3溶液に添加
し、80℃に保って、撹拌下でNaClO3の72gを
15分間で添加し、添加後、80℃で3時間反応させ、
ろ過、水洗乾燥してMnO2試料(B)を得た。 (3)前記MnCO3(X)を600℃で20時間加熱
を行いMn2O3とし、Mn2O3の1g当たり0.6
ccの割合で13N−HNO3を添加し、280℃で熱
分解する操作を3回繰り返し、0.001mm程度の極
めて微細な粒子のβ型MnO2試料(C)を得た。Synthesis of high-purity MnO 2 (1) The above MnCO 3 (X) was added to a NaOH solution while blowing nitrogen gas, reacted at a temperature of 40 ° C. for 2 hours to obtain Mn (OH) 2 , and the blowing gas was changed. The N 2 is replaced with air and maintained for 2 hours, and the reaction product is filtered and dried. 300 g of dried matter and 3 liters of distilled water were put into the reaction vessel again,
Air was introduced at a flow rate of 300 liters / h, Cl 2 gas was introduced at a flow rate of 60 liters / h, and the mixture was stirred at 50 ° C. for 5 hours, filtered and dried, and 3 mol / l of HNO 3 900c was added to 300 g thereof.
c was added, and the mixture was stirred at 90 ° C. for 1 h, filtered, washed with water and dried to obtain a MnO 2 sample (A). (2) Furthermore, 300 g of MnO 2 sample (A) and Mn (NO
3 ) 2 180 g was added to a 0.5 mol / l HNO 3 solution and kept at 80 ° C., 72 g of NaClO 3 was added under stirring for 15 minutes, and after addition, reacted at 80 ° C. for 3 hours,
It was filtered, washed with water and dried to obtain a MnO 2 sample (B). (3) The MnCO 3 (X) was heated at 600 ° C. for 20 hours to be Mn 2 O 3, and 0.6 g per 1 g of Mn 2 O 3
The operation of adding 13N-HNO 3 in a proportion of cc and thermally decomposing at 280 ° C. was repeated 3 times to obtain a β-type MnO 2 sample (C) having extremely fine particles of about 0.001 mm.
【0009】市販二酸化マンガンの高純度化 三井金属(株)製EMD(TAD−I)を525℃で2
時間熱処理をし、熱処理物を磁製容器に納め、熱処理物
1g当たり0.8ccの割合で13N−HNO3を加え
て電気炉中に入れ280℃まで昇温し、この温度に2時
間保持して熱処理を施し、高純度のβ−MnO2試料
(D)を得た。以上の(A)〜(D)のMnO2はJI
Sの分析方法に基づいてMn含有率(a)とMnO2含
有率(b)を測定し、各MnO2試料についてb/a値
を求めた。結果は表1の通りである。本実施例のため用
意した(A)〜(D)のMnO2は何れもb/a値が
1.535以上で高純度のものである。 High Purification of Commercial Manganese Dioxide MMD (TAD-I) manufactured by Mitsui Kinzoku Co., Ltd.
After heat treatment for an hour, the heat-treated product is placed in a porcelain container, 13N-HNO 3 is added at a rate of 0.8 cc per 1 g of the heat-treated product, and the mixture is placed in an electric furnace and heated to 280 ° C. Then, heat treatment was performed to obtain a high-purity β-MnO 2 sample (D). The above MnO 2 of (A) to (D) is JI.
The Mn content (a) and the MnO 2 content (b) were measured based on the S analysis method, and the b / a value was obtained for each MnO 2 sample. The results are shown in Table 1. The MnO 2 of (A) to (D) prepared for this example are all highly pure with a b / a value of 1.535 or more.
【0010】LiMn2O4の合成 以上の各二酸化マンガン(MnO2)はそれれぞれ炭酸
リチウム(Li2CO3)と1モル:0.25モルの比
でよく混合し、これを空気中750℃で48時間熱処理
(但し予備実験の結果熱処理温度が500℃以下では充
分な電池容量が得られないことを確認した)をして、M
nO2試料(A)を出発材料としてLiMn2O
4(A)を、同様にMnO2試料(B)、(C)、
(D)を出発材料としてLiMn2O4(B)、
(C)、(D)をそれぞれ調整した。Synthesis of LiMn 2 O 4 Each of the above manganese dioxide (MnO 2 ) was well mixed with lithium carbonate (Li 2 CO 3 ) at a ratio of 1 mol: 0.25 mol, and this was mixed in air. After heat treatment at 750 ° C. for 48 hours (However, as a result of preliminary experiments, it was confirmed that sufficient battery capacity could not be obtained at a heat treatment temperature of 500 ° C. or less), and M
Starting from the nO 2 sample (A), LiMn 2 O
4 (A) in the same manner as MnO 2 samples (B), (C),
Starting from (D), LiMn 2 O 4 (B),
(C) and (D) were adjusted respectively.
【0011】図3を参照しながら本発明の具体的な電池
について説明する。本発明を実施するための発電要素で
ある電池素子は次のようにして用意した。まず2800
℃で熱処理を施したメソカーボンマイクロビーズ(BE
T比表積=0.8m2/g、d002=3.37Å)の
90重量部に結着剤としてポリフッ化ビニリデン(PV
DF)10重量部を加え、溶剤であるN−メチル−2−
ピロリドンと湿式混合してスラリー(ペースト状)にし
た。そしてこのスラリーを集電体となる厚さ0.01m
mの銅箔の両面に均一に塗布し、乾燥後ローラープレス
機で加圧成型して帯状の負極(1)を作成した。前述の
ようにして調整したLiMn2O4(A)〜(D)はそ
れぞれ88重量部に導電剤としてアセチレンブラック3
重量部とグラファイト4重量部を、結合剤としてポリフ
ッ化ビニリデン5重量部を混合し、溶剤であるN−メチ
ル−2−ピロリドンと湿式混合してペーストにする。次
にこのペーストを正極集電体となる厚さ0.02mmの
アルミニウム箔の両面に均一に塗布し、乾燥後ローラー
プレス機で加圧成型して帯状の正極(2)を作成する。
続いて負極(1)と正極(2)をその間に多孔質ポリプ
ロピレン製セパレータ(3)を挟んでロール状に巻き上
げて、平均外径15.7mmの巻回体で電池素子を作成
する。次にニッケルメッキを施した鉄製の電池缶(4)
の底部に絶縁板(5)を設置し、上記電池素子を収納す
る。電池素子より取り出した負極リード(6)を上記電
池缶の底に溶接し、電池缶の中に電解液としてエチレン
カーボネイト(EC)とジエチルカーボネート(DE
C)の混合溶媒に過塩素酸リチウムを1モル/リットル
の割合で溶解したものを注入する。その後、電池素子の
上部にも絶縁板(5)を設置し、ガスケット(7)を嵌
め、防爆弁(8)を図3に示すように電池内部に設置す
る。電池素子より取り出した正極リード(9)はこの防
爆弁に電解液を注入する前に溶接しておく。防爆弁の上
には正極外部端子となる閉塞蓋体(10)を重ね、電池
缶の縁をかしめて、図3に示す電池構造で外径16.5
mm、高さ65mmの電池(A)〜(D)を作成した。
電池(A)は正極活物質としてLiMn2O4(A)を
使用した電池であり、電池(B)、(C)および(D)
もそれぞれLiMn2O4(B)、(C)、(D)を正
極活物質として作成した電池である。A specific battery of the present invention will be described with reference to FIG. A battery element which is a power generation element for carrying out the present invention was prepared as follows. First 2800
Mesocarbon microbeads (BE
90 parts by weight of T ratio surface area = 0.8 m 2 / g, d 002 = 3.37 Å), and polyvinylidene fluoride (PV
DF) 10 parts by weight is added, and the solvent is N-methyl-2-
Wet-mix with pyrrolidone to form a slurry (paste form). Then, this slurry has a thickness of 0.01 m as a collector.
m was uniformly applied to both sides of the copper foil, dried, and then pressure-molded with a roller press to form a strip-shaped negative electrode (1). LiMn 2 O 4 (A) to (D) prepared as described above were each added with acetylene black 3 as a conductive agent in 88 parts by weight.
Part by weight and 4 parts by weight of graphite are mixed with 5 parts by weight of polyvinylidene fluoride as a binder and wet mixed with a solvent N-methyl-2-pyrrolidone to form a paste. Next, this paste is uniformly applied to both sides of a 0.02 mm-thick aluminum foil which will be a positive electrode current collector, and after being dried and pressure-molded by a roller press machine, a strip-shaped positive electrode (2) is prepared.
Subsequently, the negative electrode (1) and the positive electrode (2) are wound into a roll with a porous polypropylene separator (3) sandwiched between them to form a battery element with a wound body having an average outer diameter of 15.7 mm. Next, a nickel-plated iron battery can (4)
An insulating plate (5) is installed on the bottom of the battery to accommodate the battery element. The negative electrode lead (6) taken out from the battery element was welded to the bottom of the battery can, and ethylene carbonate (EC) and diethyl carbonate (DE) were used as electrolyte in the battery can.
Lithium perchlorate dissolved in the mixed solvent of C) at a rate of 1 mol / liter is injected. Then, the insulating plate (5) is installed also on the upper part of the battery element, the gasket (7) is fitted, and the explosion-proof valve (8) is installed inside the battery as shown in FIG. The positive electrode lead (9) taken out from the battery element is welded before injecting the electrolytic solution into this explosion-proof valve. A closure lid (10) serving as a positive electrode external terminal is placed on the explosion-proof valve, the edge of the battery can is caulked, and the battery structure shown in FIG. 3 has an outer diameter of 16.5.
Batteries (A) to (D) having a size of 65 mm and a height of 65 mm were prepared.
Battery (A) is a battery using LiMn 2 O 4 (A) as a positive electrode active material, and batteries (B), (C) and (D) are used.
Are batteries in which LiMn 2 O 4 (B), (C), and (D) are used as positive electrode active materials, respectively.
【0012】[0012]
【比較例】実施例で行ったMnO2の合成方法は一般的
なものでなく、高純度なMnO2を得るための数少ない
方法である。通常の方法では、現在市販の二酸化マンガ
ンと同レベルのb/a値を持つMnO2が合成される。
本比較例では市販の二酸化マンガンと同レベルのb/a
を持つMnO2を合成し、これを出発材料としたLiM
n2O4を正極とする電池を作成し、実施例における電
池と比較した。また市販の電解二酸化マンガン、化学合
成二酸化マンガンをそれぞれ出発材料としたLiMn2
O4を正極とする電池も作成し、実施例における電池と
比較した。Comparative Example The method of synthesizing MnO 2 carried out in the examples is not a general one, and is a few method for obtaining high-purity MnO 2 . In the usual method, MnO 2 having the same level of b / a value as that of currently commercially available manganese dioxide is synthesized.
In this comparative example, the same level of b / a as that of commercially available manganese dioxide was used.
Of MnO 2 having
A battery having n 2 O 4 as a positive electrode was prepared and compared with the battery in the example. Also, commercially available electrolytic manganese dioxide and chemically synthesized manganese dioxide were used as starting materials for LiMn 2
A battery having O 4 as a positive electrode was also prepared and compared with the battery in the example.
【0013】MnCO3の合成 (1)3モル/lの同一濃度のMnSO4と(NH4)
2CO3を反応容器中に150cc/hの滴下速度でパ
ラレルチャージし、反応温度を約20℃に保って、6時
間反応させ平均粒径0.040mmのMnCO3(Y)
を合成した。Synthesis of MnCO 3 (1) MnSO 4 and (NH 4 ) at the same concentration of 3 mol / l
2 CO 3 was charged in the reaction vessel in parallel at a dropping rate of 150 cc / h, the reaction temperature was maintained at about 20 ° C., and the reaction was allowed to proceed for 6 hours. MnCO 3 (Y) having an average particle size of 0.040 mm
Was synthesized.
【0014】MnO2の合成 (1)窒素ガスを吹き込みながらNaOH溶液中に上記
MnCO3(Y)を添加し、温度40℃で2時間反応さ
せてMn(OH)2とし、吹き込みガスをN2から空気
に代えて2時間保持し、反応物をろ過乾燥させる。乾燥
物300gと蒸留水3リットルを再び反応容器に入れ、
空気を300リットル/h、Cl2ガスを60リットル
/hの流量で導入し50℃で5h撹拌した後、ろ過乾燥
し、その300gに対し3モル/lのHNO3900c
cを添加し、90℃で1h撹拌した後、ろ過、水洗乾燥
してMnO2試料(E)を得た。 (2)さらにMnO2試料(E)300gとMn(NO
3)2180gを0.5モル/lのHNO3溶液に添加
し、80℃に保って、撹拌下でNaClO3の72gを
15分間で添加し、添加後、80℃で3時間反応させ、
ろ過、水洗乾燥してMnO2試料(F)を得た。Synthesis of MnO 2 (1) The above MnCO 3 (Y) was added to the NaOH solution while blowing nitrogen gas, reacted at a temperature of 40 ° C. for 2 hours to make Mn (OH) 2 , and the blowing gas was N 2 The mixture is replaced with air for 2 hours, and the reaction product is filtered and dried. 300 g of dried matter and 3 liters of distilled water were put into the reaction vessel again,
Air was introduced at a flow rate of 300 liters / h, Cl 2 gas was introduced at a flow rate of 60 liters / h, and the mixture was stirred at 50 ° C. for 5 hours, filtered and dried, and 3 mol / l of HNO 3 900c was added to 300 g thereof.
c was added, and the mixture was stirred at 90 ° C. for 1 h, filtered, washed with water and dried to obtain a MnO 2 sample (E). (2) Furthermore, 300 g of MnO 2 sample (E) and Mn (NO
3 ) 2 180 g was added to a 0.5 mol / l HNO 3 solution and kept at 80 ° C., 72 g of NaClO 3 was added under stirring for 15 minutes, and after addition, reacted at 80 ° C. for 3 hours,
It was filtered, washed with water and dried to obtain a MnO 2 sample (F).
【0015】市販の乾電池用二酸化マンガン 三井金属製EMD(TAD−I)(G)及びセデマ社製
CMD(ファラダイザーM)(H)を準備した。実施例
の場合と同じように(E)〜(H)のMnO2もJIS
の分析方法に基づいてMn含有率(a)とMnO2含有
率(b)を測定し、各MnO2試料についてb/a値を
求めた。結果は表2の通りである。 Commercially available manganese dioxide for dry batteries MMD (TAD-I) (G) manufactured by Mitsui Kinzoku and CMD (Faradizer M) (H) manufactured by Cedema were prepared. As in the case of the embodiment, MnO 2 of (E) to (H) is also JIS
The Mn content rate (a) and the MnO 2 content rate (b) were measured on the basis of the analysis method described in 1 above, and the b / a value was obtained for each MnO 2 sample. The results are shown in Table 2.
【0016】LiMn2O4の合成 実施例の場合と同様に、以上の各二酸化マンガン(Mn
O2)もそれぞれ炭酸リチウム(Li2CO3)と1モ
ル:0.25モルの比でよく混合し、これを気中750
℃で48時間熱処理をして、MnO2試料(A)を出発
材として(LiMn2O4(E)を、同様にMnO2試
料(F)、(G)、(H)を出発材料としてLiMn2
O4(F)、(G)、(H)をそれぞれ調整した。Synthesis of LiMn 2 O 4 As in the case of the example, the above manganese dioxide (Mn 2
O 2 ) was also well mixed with lithium carbonate (Li 2 CO 3 ) at a ratio of 1 mol: 0.25 mol, and this was mixed in air for 750
After heat treatment at 48 ° C. for 48 hours, the MnO 2 sample (A) was used as a starting material for (LiMn 2 O 4 (E), and similarly MnO 2 samples (F), (G), and (H) were used as starting materials. Two
O 4 (F), (G) and (H) were adjusted respectively.
【0017】調整したLiMn2O4(E)〜(H)を
活物質として、実施例と全く同じようにして帯状の正極
(2b)を作成する。実施例で作成したものと同じ負極
(1)と正極(2b)をその間に多孔質ポリプロピレン
製セパレータ(3)を挟んでロール状に巻き上げて、平
均外径15.7mmの巻回体で電池素子を作成し、実施
例と同じにして図3に示す電池構造で外径16.5m
m、高さ65mmの電池(E)〜(H)を作成した。電
池(E)は正極活物質としてLiMn2O4(E)を使
用した電池であり、電池(F)、(G)、(H)もそれ
ぞれLiMn2O4(F)、(G)、(H)を正極活物
質として作成した電池である。Using the adjusted LiMn 2 O 4 (E) to (H) as active materials, a strip-shaped positive electrode (2b) is prepared in exactly the same manner as in the examples. The same negative electrode (1) and positive electrode (2b) as those produced in the examples were wound into a roll with a porous polypropylene separator (3) sandwiched therebetween, and a wound body having an average outer diameter of 15.7 mm was used as a battery element. And the outer diameter of 16.5 m in the same battery structure as shown in FIG.
Batteries (E) to (H) having m and a height of 65 mm were prepared. The battery (E) is a battery using LiMn 2 O 4 (E) as a positive electrode active material, and the batteries (F), (G), (H) are also LiMn 2 O 4 (F), (G), ( H) is a positive electrode active material.
【0018】テスト結果 こうして実施例及び比較例において作成した電池(A)
〜(H)は、いずれも電池内部の安定化を目的に12時
間のエージング期間を経過させた後、充電電圧を4.2
Vに設定し、いずれも8時間の充電を行い、放電は全て
の電池について800mAの定電流放電にて終止電圧
3.0Vまで行って、充放電サイクルテストを行った。
その結果、10サイクル時点の放電容量は実施例による
電池も比較例による電池も何れの電池も約910mAh
が得られ、エネルギー密度では約240Wh/lであ
る。この値は既存のニッケルカドミウム電池のそれの
1.5倍以上であるし、現在実用化されているコバルト
を使用したリチウムイオン二次電池に対してさえ15%
ほど優っている。しかし、図1に示すように、比較例に
よる電池(E)、(F)、(G)、(H)は充放電のサ
イクルに伴って容量がかなり劣化していく。各電池は使
用した正極活物質のみが異なるわけであり、正極活物質
(LiMn2O4)がサイクルに伴う容量の劣化に大き
く関係していることになる。何れのLiMn2O4もそ
の出発材料のMnO2が異なるだけで、同じ方法で合成
されたものである,したがってLiMn2O4の正極活
物質としての善し悪し出発材料のMnO2に大きく左右
されていることになる。そこで、正極材料の出発原料で
ある各MnO2中のMn含有率(a)とMnO2含有率
(b)の比(b/a)と各電池のサイクル寿命(ここで
は容量が初期容量の50%に達するサイクル数を寿命と
した)との関係を調べてみると、図2に示すように、特
にb/a≧1.53のMnO2を出発原料として合成し
たLiMn2O4を活物質とした本実施例の電池(A、
B、C、D)は非常にサイクル特性が良好となる。例え
ば電池(D)ではエネルギー密度も240Wh/l以上
を示し、サイクル寿命(但し初期容量の50%になるま
でのサイクル数)も400サイクルを越え、充分実用に
供することが出来るリチウムイオン二次電池と言える。
本発明によるサイクル特性改善の理由は定かでないが、
より純度の高いMnO2より合成したLiMn2O4は
より高純度のものとなり、不純物の存在によって生じる
結晶の歪みが、より少なく、結晶の安定性が増し、充放
電サイクル特性の大幅な改善が見られるものと考えられ
る。本発明は単純にLiMn2O4の合成にのみ限定さ
れるものではなく、LiMn2O4のMnの一部をMn
以外の元素で置き換えたスピネル型結晶構造のリチウム
含有マンガン複合酸化物を合成する上でも、当然適用可
能である。また本実施例ではリチウム化合物としてLi
2CO3を使用してLiMn2O4を合成したが、本発
明はこれに限定されるものではなく、他のリチウム塩や
水酸化リチウム、酸化リチウム等の種々のリチウム化合
物が当然使用可能である。Test Results Batteries (A) thus prepared in Examples and Comparative Examples
(H) indicates that the charging voltage is 4.2 after the aging period of 12 hours has passed for the purpose of stabilizing the inside of the battery.
The battery was set to V, charged for 8 hours in each case, and discharged for all batteries by a constant current discharge of 800 mA to a final voltage of 3.0 V to perform a charge / discharge cycle test.
As a result, the discharge capacity at the time of 10 cycles was about 910 mAh for both the battery according to the example and the battery according to the comparative example.
Is obtained, and the energy density is about 240 Wh / l. This value is more than 1.5 times that of the existing nickel-cadmium battery, and even 15% for the lithium-ion secondary battery using cobalt currently in practical use.
It is superior. However, as shown in FIG. 1, the batteries (E), (F), (G), and (H) according to the comparative examples have considerably deteriorated capacities with the charge / discharge cycles. Each battery is different only in the positive electrode active material used, and the positive electrode active material (LiMn 2 O 4 ) is greatly related to the deterioration of the capacity with the cycle. All of the LiMn 2 O 4 differ in the MnO 2 of the starting material, and are synthesized by the same method. Therefore, the LiMn 2 O 4 is greatly influenced by the MnO 2 of the starting material, which is good or bad as a positive electrode active material. Will be there. Therefore, the ratio (b / a) of the Mn content rate (a) and the MnO 2 content rate (b) in each MnO 2 that is the starting material of the positive electrode material and the cycle life of each battery (here, the capacity is 50% of the initial capacity). %, The lifespan is defined as the number of cycles to reach 100%, and as shown in FIG. 2, LiMn 2 O 4 synthesized from MnO 2 with b / a ≧ 1.53 as a starting material is used as an active material. The battery (A,
B, C and D) have very good cycle characteristics. For example, the energy density of the battery (D) is 240 Wh / l or more, and the cycle life (however, the number of cycles until reaching 50% of the initial capacity) exceeds 400 cycles, which is a lithium-ion secondary battery that can be sufficiently put into practical use. Can be said.
Although the reason for the improvement in cycle characteristics according to the present invention is not clear,
LiMn 2 O 4 synthesized from higher-purity MnO 2 has higher purity, has less crystal distortion caused by the presence of impurities, increases crystal stability, and significantly improves charge-discharge cycle characteristics. It is considered to be seen. The present invention is not limited to the synthesis of LiMn 2 O 4 simply, and a part of Mn of LiMn 2 O 4 may be Mn.
It is naturally applicable to the synthesis of a lithium-containing manganese composite oxide having a spinel type crystal structure which is replaced with an element other than. In addition, in this embodiment, Li was used as the lithium compound.
LiMn 2 O 4 was synthesized using 2 CO 3 , but the present invention is not limited to this, and other lithium salts and various lithium compounds such as lithium hydroxide and lithium oxide can of course be used. is there.
【0019】[0019]
【発明の効果】リチウム含有マンガン複合酸化物を正極
活物質とするリチウムイオン二次電池はそのサイクル寿
命が短いことが最大の問題点であったが、Mn含有率
(a)とMnO2含有率(b)との比(b/a)が1.
53以上である二酸化マンガンとリチウム化合物(水酸
化リチウム、酸化リチウム、リチウム塩等)を混合し、
500℃で熱処理をして合成したスピネル型結晶構造の
リチウム含有マンガン複合酸化物を正極活物質としたリ
チウムイオン二次電池ではサイクル特性が大きく改善さ
れる。その結果、既存の二次電池を充分に上回るエネル
ギー密度のリチウムイオン二次電池が安価な材料費で出
来、広範囲な用途に高寿命、高容量の二次電池を提供で
きるようになり、その工業的価値は大である。The lithium ion secondary battery using the lithium-containing manganese composite oxide as the positive electrode active material had the shortcoming that the cycle life thereof was short, but the Mn content (a) and the MnO 2 content were the main problems. The ratio (b / a) to (b) is 1.
Manganese dioxide of 53 or more and a lithium compound (lithium hydroxide, lithium oxide, lithium salt, etc.) are mixed,
In a lithium ion secondary battery using a lithium-containing manganese composite oxide of spinel type crystal structure synthesized by heat treatment at 500 ° C. as a positive electrode active material, cycle characteristics are significantly improved. As a result, a lithium ion secondary battery with an energy density sufficiently higher than that of existing secondary batteries can be made at a low material cost, and a long-life, high-capacity secondary battery can be provided for a wide range of applications. The target value is great.
【図1】試作電池のサイクル特性図[Fig. 1] Cycle characteristic diagram of prototype battery
【図2】サイクル寿命とMnO2/Mnの関係図FIG. 2 Relationship between cycle life and MnO2 / Mn
【図3】実施例及び比較例における電池の構造を示した
模式的断面図FIG. 3 is a schematic cross-sectional view showing the structures of batteries in Examples and Comparative Examples.
1は負極、2は正極、3はセパレータ、4は電池缶、5
は絶縁板、6は負極リード、7はガスケット、8は防爆
弁、9は負極リード、10は閉塞蓋体である。1 is a negative electrode, 2 is a positive electrode, 3 is a separator, 4 is a battery can, 5
Is an insulating plate, 6 is a negative electrode lead, 7 is a gasket, 8 is an explosion-proof valve, 9 is a negative electrode lead, and 10 is a closing lid.
Claims (2)
との比(b/a)が1.53以上である二酸化マンガン
にリチウム化合物(Li2CO3、LiNO3、LiO
H等)を混合し、500℃以上の温度で熱処理を施して
合成したことを特徴とするスピネル型結晶構造のリチウ
ム含有マンガン複合酸化物。1. A Mn content (a) and a MnO 2 content (b).
With manganese dioxide having a ratio (b / a) of 1.53 or more to lithium compounds (Li 2 CO 3 , LiNO 3 , LiO
H) and the like and mixed by heat treatment at a temperature of 500 ° C. or more to synthesize a lithium-containing manganese composite oxide having a spinel type crystal structure.
ウム含有マンガン複合酸化物を正極活物質としたことを
特徴とする非水電解液二次電池。2. A non-aqueous electrolyte secondary battery, wherein the lithium-containing manganese composite oxide having the spinel type crystal structure according to claim 1 is used as a positive electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5252072A JPH0773884A (en) | 1993-08-31 | 1993-08-31 | Secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5252072A JPH0773884A (en) | 1993-08-31 | 1993-08-31 | Secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0773884A true JPH0773884A (en) | 1995-03-17 |
Family
ID=17232165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5252072A Pending JPH0773884A (en) | 1993-08-31 | 1993-08-31 | Secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0773884A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100323280B1 (en) * | 1996-06-27 | 2002-07-02 | 혼조 이치로 | Process for producing lithium manganese oxide with spinel structure |
-
1993
- 1993-08-31 JP JP5252072A patent/JPH0773884A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100323280B1 (en) * | 1996-06-27 | 2002-07-02 | 혼조 이치로 | Process for producing lithium manganese oxide with spinel structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4016429B2 (en) | Non-aqueous electrolyte secondary battery | |
US6159636A (en) | Mixtures of lithium manganese oxide spinel as cathode active material | |
US7655358B2 (en) | Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same | |
US5773168A (en) | Nonaqueous electrolyte secondary battery and method for manufacturing the same | |
KR20120099375A (en) | Metal oxide coated positive electrode materials for lithium-based batteries | |
JPH09330720A (en) | Lithium battery | |
EP3974391A1 (en) | Cathode active material for lithium secondary battery and method of manufacturing the same | |
US6071649A (en) | Method for making a coated electrode material for an electrochemical cell | |
JP2967051B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
JP2000077072A (en) | Nonaqueous electrolyte secondary battery | |
JP3929548B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
US6274278B1 (en) | Gallium doped lithium manganese oxide spinels (LiGaxMn2−xO4) as cathode material for lithium or lithium-ion rechargeable batteries with improved cycling performance | |
JPH1160243A (en) | Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate | |
JP2000348722A (en) | Nonaqueous electrolyte battery | |
JP3219352B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH07288124A (en) | Nonaqueous electrolyte secondary battery | |
JP3289256B2 (en) | Method for producing positive electrode active material for lithium battery | |
JPH10302766A (en) | Lithium ion secondary battery | |
JP2979826B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
JP4165717B2 (en) | Lithium secondary battery and manufacturing method thereof | |
JPH04328258A (en) | Nonaqueous electrolyte secondary battery | |
JPH10302795A (en) | Non-aqueous electrolytic secondary battery | |
JPH0822826A (en) | Synthesizing method for positive active material of nonaqueous secondary battery | |
JPH0773884A (en) | Secondary battery | |
JP4244427B2 (en) | Non-aqueous electrolyte battery |