JPH0773053B2 - Positive electrode for lithium secondary battery - Google Patents

Positive electrode for lithium secondary battery

Info

Publication number
JPH0773053B2
JPH0773053B2 JP63261791A JP26179188A JPH0773053B2 JP H0773053 B2 JPH0773053 B2 JP H0773053B2 JP 63261791 A JP63261791 A JP 63261791A JP 26179188 A JP26179188 A JP 26179188A JP H0773053 B2 JPH0773053 B2 JP H0773053B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
manganese
battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63261791A
Other languages
Japanese (ja)
Other versions
JPH02109260A (en
Inventor
▲吉▼徳 豊口
純一 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63261791A priority Critical patent/JPH0773053B2/en
Publication of JPH02109260A publication Critical patent/JPH02109260A/en
Publication of JPH0773053B2 publication Critical patent/JPH0773053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウムまたはリチウム合金を負極とするリ
チウム二次電池に関し、特に正極活物質の改良を意図す
るものである。
TECHNICAL FIELD The present invention relates to a lithium secondary battery using lithium or a lithium alloy as a negative electrode, and is particularly intended to improve a positive electrode active material.

従来の技術 リチウム二次電池の正極活物質として、クロム酸化物や
二酸化マンガンが知られている。クロム酸化物は公害の
点で課題があり、最近では、二酸化マンガンについての
研究が活発である。
2. Description of the Related Art Chromium oxide and manganese dioxide are known as positive electrode active materials for lithium secondary batteries. Chromium oxide has a problem in terms of pollution, and recently manganese dioxide has been actively researched.

二酸化マンガンを正極活物質としたリチウム二次電池で
は、充放電サイクルをくり返すと徐々に容量が低下する
問題があった。これは、二酸化マンガンの結晶性が徐々
に低下するためと考えられた。
The lithium secondary battery using manganese dioxide as the positive electrode active material has a problem that the capacity gradually decreases when the charge / discharge cycle is repeated. It was considered that this is because the crystallinity of manganese dioxide gradually decreased.

この課題を改良するために、マンガンとリチウムの複合
酸化物であるLiMn2O4が提案された(例えば特開昭63−1
14065号公報や、タックレーなどによる、マテリアル
リサーチ ブレティン第18巻1983年461頁から472頁記載
の論文)。このLiMn2O4の合成法として、Mn2O3とLi2CO3
を加熱する方法、または、電解二酸化マンガンや化学マ
ンガンとLiOHやLi2CO3などを加熱する方法が知られてい
る。しかし、合成法により、電池に適用した場合、その
サイクル特性は大きく異り、化学マンガン(MnO2)とLi
OHから合成したLiMn2O4が良好とされている。
In order to improve this problem, a composite oxide of manganese and lithium, LiMn 2 O 4, has been proposed (for example, JP-A-63-1).
14065 Publication, Tuckley, etc.
Research Bulletin Vol. 18, 1983, pp. 461-472). As a method for synthesizing this LiMn 2 O 4 , Mn 2 O 3 and Li 2 CO 3
There is known a method of heating the same, or a method of heating electrolytic manganese dioxide or chemical manganese and LiOH or Li 2 CO 3 . However, when it is applied to a battery by the synthetic method, its cycle characteristics are greatly different, and chemical manganese (MnO 2 ) and Li
LiMn 2 O 4 synthesized from OH is considered good.

発明が解決しようとする課題 しかしながら、これら二酸化マンガンとLiOHやLi2CO3
どから合成したLiMn2O4を活物質に用いても、リチウム
二次電池の容量やサイクル特性はまだ不十分であった。
However, even if LiMn 2 O 4 synthesized from these manganese dioxide and LiOH or Li 2 CO 3 is used as the active material, the capacity and cycle characteristics of the lithium secondary battery are still insufficient. It was

本発明は上記問題点に鑑み、正極活物質の充放電サイク
ル時の容量とくに体積当りの容量を増加させるととも
に、サイクル特性の向上を図ることを目的とするもので
ある。
In view of the above problems, it is an object of the present invention to increase the capacity of the positive electrode active material during charge / discharge cycles, especially the capacity per volume, and to improve the cycle characteristics.

課題を解決するための手段 リチウムまたはリチウム合金を負極とし、リチウム塩を
溶解した非水電解質と、正極とからなるリチウム二次電
池において、正極活物質として、硝酸マンガンと、リチ
ウム塩を酸素存在下で加熱して得た生成物を用いること
を特徴としている。
Means for Solving the Problems In a lithium secondary battery including a lithium or lithium alloy as a negative electrode, a non-aqueous electrolyte in which a lithium salt is dissolved, and a positive electrode, manganese nitrate and a lithium salt in the presence of oxygen as a positive electrode active material. It is characterized by using the product obtained by heating at.

作用 従来のLiMn2O4の合成法は、全てマンガン酸化物と、リ
チウム塩との反応により行われて来た。したがって出発
原料となるマンガン酸化物の性質により、生成物の特性
も大きく変化した。例えば電解二酸化マンガンを用いる
と元のかさ密度が大きいため、生成物のかさ密度も大き
い。しかし、リチウム塩との反応性が悪いため、加熱温
度や時間を変えても放電容量、サイクル特性ともに欠点
があった。一方化学マンガンは、かさ密度は小さく、ま
た生成物のかさ密度も小さい。しかし、加熱時のリチウ
ム塩との反応性は良好であり、生成物を活物質とする
と、単位重量当りの容量は電解二酸化マンガンを原料に
用いた場合に比べ大である。単位体積当りに換算する
と、かさ密度が電解二酸化マンガンを原料にした方が大
きいので、化学マンガンを用いた時に比べて変わりはな
かった。
Action Conventional methods for synthesizing LiMn 2 O 4 have all been carried out by reacting manganese oxide with a lithium salt. Therefore, the properties of the product also changed significantly depending on the properties of the starting material manganese oxide. For example, when electrolytic manganese dioxide is used, the original bulk density is high, and therefore the bulk density of the product is also high. However, since the reactivity with the lithium salt is poor, there are drawbacks in both discharge capacity and cycle characteristics even when the heating temperature and time are changed. On the other hand, chemical manganese has a low bulk density, and the product has a low bulk density. However, the reactivity with a lithium salt at the time of heating is good, and when the product is an active material, the capacity per unit weight is larger than that when electrolytic manganese dioxide is used as a raw material. When converted per unit volume, the bulk density was larger when electrolytic manganese dioxide was used as the raw material, so there was no difference compared to when chemical manganese was used.

本発明は、固相反応を行うマンガン酸化物を原料とせず
に、室温で液体である硝酸マンガンを用いることを特徴
としている。つまり、リチウム塩を水に溶解し、これに
硝酸マンガンを加えると、均一な溶液状態となる。すな
わちこの状態ではマンガンイオンとリチウムイオンは均
一に溶解している。これを加熱して反応させることによ
り均一な、かつかさ密度の大きいLiMn2O4が生成すると
考えた。また従来の固相反応を用いるのではないので、
低温でも生成物を得られるという利点もある。LiMn2O4
は、従来のγ−二酸化マンガンと異りスピネル結晶構造
を持ち、充放電サイクルをくり返しても結晶状態はあま
り変化しないと考えられていた。したがって、結晶性の
低いLiMn2O4程格子中のリチウムイオンの拡散が容易に
なり電池特性が向上すると考えられている。従来の固相
反応を用いた合成法では、十分な反応を起こさせるのに
どうしても400℃以上の温度が必要となり、この高温の
ために生成物の結晶性が大きくなった。一方本発明で
は、固相反応を用いないため200℃の低温でも反応が進
行し、結晶性の低い、正極活物質に用いた時には、単位
重量当りの容量の大きい活物質となる。要約すると、本
発明の正極活物質は、かさ密度も大きく、かつ結晶性の
低いLiMn2O4となり、電池に用いた場合、単位体積当り
の容量の大きい、サイクル特性の良好な電池となる。
The present invention is characterized in that manganese nitrate that is liquid at room temperature is used without using manganese oxide that undergoes a solid-phase reaction as a raw material. That is, when a lithium salt is dissolved in water and manganese nitrate is added thereto, a uniform solution state is obtained. That is, in this state, manganese ions and lithium ions are uniformly dissolved. It was considered that by heating and reacting this, uniform and high bulk density LiMn 2 O 4 was produced. Also, because the conventional solid-phase reaction is not used,
There is also an advantage that the product can be obtained even at a low temperature. LiMn 2 O 4
It had a spinel crystal structure unlike conventional γ-manganese dioxide, and it was thought that the crystalline state did not change much even if the charge / discharge cycle was repeated. Therefore, it is considered that LiMn 2 O 4 having lower crystallinity facilitates diffusion of lithium ions in the lattice and improves battery characteristics. In the conventional synthesis method using a solid-phase reaction, a temperature of 400 ° C. or more is indispensable to cause a sufficient reaction, and the crystallinity of the product is increased due to this high temperature. On the other hand, in the present invention, since the solid phase reaction is not used, the reaction proceeds even at a low temperature of 200 ° C., and when it is used as a positive electrode active material having low crystallinity, it becomes an active material having a large capacity per unit weight. In summary, the positive electrode active material of the present invention is LiMn 2 O 4 having a large bulk density and low crystallinity, and when used in a battery, a battery having a large capacity per unit volume and good cycle characteristics.

実施例 (実施例1) 硝酸リチウム0.1モルを水50ccに溶解し、これに硝酸マ
ンガン0.2モルを加えた。大気中で250℃に加熱して、生
成物を得た。これを本発明の活物質1とする。
Example (Example 1) 0.1 mol of lithium nitrate was dissolved in 50 cc of water, and 0.2 mol of manganese nitrate was added thereto. Heating to 250 ° C. in air gave the product. This is designated as the active material 1 of the present invention.

従来例の活物質として、化学マンガン(MnO2)0.2モル
にLiOHを0.1モル加え、よく粉末を混合し、470℃で加熱
してLiMn2O4を得た。また比較例の活物質として、電解
二酸化マンガン0.2モルとLiOHを0.1モル加え、470℃で
加熱してLiMn2O4を得た。
As the active material of the conventional example, 0.1 mol of LiOH was added to 0.2 mol of chemical manganese (MnO 2 ), and the powder was mixed well and heated at 470 ° C. to obtain LiMn 2 O 4 . Further, as an active material of Comparative Example, 0.2 mol of electrolytic manganese dioxide and 0.1 mol of LiOH were added and heated at 470 ° C. to obtain LiMn 2 O 4 .

各々の活物質10gに導電剤としてアセチレンブラック5
g、結着剤としてポリ四フッ化エチレン樹脂10gを加え、
よく混錬して正極合剤とした。
Acetylene black 5 as a conductive agent on 10 g of each active material
g, add 10 g of polytetrafluoroethylene resin as a binder,
It was well kneaded to obtain a positive electrode mixture.

これら正極合剤を用いて、第2図に示すような電池を構
成した。正極合剤を1トン/cm2で加圧成型して、直径1
7.5mm、高さ0.5mmになるようにした。単位体積当りの容
量を比較するためである。成型した正極1をケース2の
中に入れた。直結17.5mm高さ0.5mmに打ち抜いた金属リ
チウム3を封口板4に圧着し負極とした。正極とリチウ
ムの間にポリプロピレン製不織布をセパレータ5として
介在させた。非水電解質として、1モル/の過塩酸リ
チウムを溶解した体積非比1:1のプロピレンカーボネー
トとジメトキシエチンの混合溶液を用い、正極,負極に
注液した後、電池を封口材6で封口した。
A battery as shown in FIG. 2 was constructed using these positive electrode mixtures. The positive electrode mixture is pressure-molded at 1 ton / cm 2 and the diameter is 1
The height is 7.5 mm and the height is 0.5 mm. This is for comparing capacities per unit volume. The molded positive electrode 1 was put in a case 2. Directly connected, metal lithium 3 punched to a height of 17.5 mm and a height of 0.5 mm was pressure-bonded to the sealing plate 4 to obtain a negative electrode. A polypropylene non-woven fabric was interposed as a separator 5 between the positive electrode and lithium. As a non-aqueous electrolyte, a mixed solution of propylene carbonate and dimethoxyethyne with a volume ratio of 1: 1 in which 1 mol / liter of lithium perhydrochloride was dissolved was used, and after pouring the solution into the positive electrode and the negative electrode, the battery was sealed with a sealing material 6. .

この電池を2mAの定電流で電圧が2ボルトになるまで放
電し、2mAで電圧が3.8ボルトになるまで充電した。本発
明の活物質1を用いた電池をA、従来例の活物質を用い
た電池をB、比較例の活物質を用いた電池をCとする。
第1図には、第10サイクル目の各電池の放電曲線を示
す。本発明の電池Aの場合に容量が大きいことがわか
る。また第3図には、充放電サイクルをくり返した時の
放電容量をプロットしたサイクル特性を示す。本発明の
電池では、サイクルに伴う劣化が少い。
The battery was discharged at a constant current of 2 mA until the voltage reached 2 V, and charged at 2 mA until the voltage reached 3.8 V. A battery using the active material 1 of the present invention is designated as A, a battery using the conventional active material is designated as B, and a battery using the comparative active material is designated as C.
FIG. 1 shows the discharge curve of each battery in the 10th cycle. It can be seen that the battery A of the present invention has a large capacity. Further, FIG. 3 shows cycle characteristics in which the discharge capacity when the charge / discharge cycle is repeated is plotted. In the battery of the present invention, deterioration with cycle is small.

本発明の活物質1のX線回折を調べてみると、ブロード
なピークが大体LiMn2O4に相当する場所にあらわれる。
しかし、あまりにブロードであり正確なピーク位置の同
定が困難であり、明確にLiMn2O4と同定するのは困難と
思われた。しかし後述するように、高温で合成する程ピ
ークは、従来例や比較例のLiMn2O4に近いものとなるこ
とより、本発明の活物質1は、LiMn2O4に近いものであ
ると考えられる。
When the X-ray diffraction of the active material 1 of the present invention is examined, a broad peak appears in a place roughly corresponding to LiMn 2 O 4 .
However, it was too broad to identify the exact peak position, and it seemed difficult to clearly identify it as LiMn 2 O 4 . However, as will be described later, the peak is closer to LiMn 2 O 4 of the conventional example and the comparative example as it is synthesized at a higher temperature, so that the active material 1 of the present invention is closer to LiMn 2 O 4. Conceivable.

(実施例2) 硝酸リチウム0.1モルを水50ccに溶解し、これに硝酸マ
ンガン0.2モルを加えた。大気中で温度を変えて加熱し
て生成物を得た。生成物を実施例1と同様にして、電池
に構成し、同様の試験を行った。第4図は加熱温度と、
電池の第10サイクル目の放電容量をプロットしたもので
ある。これより、200℃から550℃の間で良好であること
がわかった。X線回折で生成物を調べると、高温、特
に、450℃以上の加熱を行った場合に従来例や比較例のL
iMn2O4に近いものとなった。しかし、放電容量として
は、本発明の生成物の方が大きい。理由として、同体積
に成型した正極の重量が、本発明の生成物を用いた場合
に大になっていることにより、本発明の生成物の方がか
さ密度が大になっていることが考えられる。
(Example 2) 0.1 mol of lithium nitrate was dissolved in 50 cc of water, and 0.2 mol of manganese nitrate was added thereto. The product was obtained by heating at different temperatures in the atmosphere. The product was made into a battery in the same manner as in Example 1 and the same test was conducted. Figure 4 shows the heating temperature,
It is a plot of the discharge capacity at the 10th cycle of the battery. From this, it was found that the temperature was good between 200 ° C and 550 ° C. When the product was examined by X-ray diffraction, it was found that when the product was heated at a high temperature, especially 450 ° C or higher, L
It is close to iMn 2 O 4 . However, the product of the present invention has a larger discharge capacity. The reason is that the weight of the positive electrode molded to the same volume is large when the product of the present invention is used, and it is considered that the product of the present invention has a higher bulk density. To be

曲線が300〜400℃付近で最大となるのは、低温では低い
結晶性ではあるがかさ密度も低く、高温ではかさ密度が
大になるが、結晶性も高くなるためと思う。
The curve reaches its maximum around 300-400 ° C, because it has low crystallinity at low temperature but low bulk density and high bulk density at high temperature, but it also has high crystallinity.

(実施例3) 各種リチウム塩をリチウムイオンが0.1モルによるよう
に秤量し、これを50ccの水に溶解し、さらに硝酸マンガ
ン0.2モルを加え、大気中で470℃で加熱した。各生成物
を実施例1と同様な方法で電池を構成し、試験を行っ
た。用いたリチウム塩により性態は異った。表に用いた
リチウム塩の種類と、第10サイクル目の放電容量を示
す。これにより、リチウム塩としては、硝酸リチウム>
硫酸リチウム>水酸化リチウム>炭酸リチウムの順であ
った。この理由は不明であるが、生成物のかさ密度が上
記の順であることより、リチウム塩の種類が生成物のか
さ密度に何らかの影響を及ぼしていると思われる。
(Example 3) Various lithium salts were weighed so that lithium ion was 0.1 mol, dissolved in 50 cc of water, 0.2 mol of manganese nitrate was further added, and the mixture was heated at 470 ° C in the atmosphere. A battery was constructed using each product in the same manner as in Example 1 and tested. The state was different depending on the lithium salt used. The types of lithium salts used and the discharge capacities at the 10th cycle are shown in the table. Thereby, as the lithium salt, lithium nitrate>
The order was lithium sulfate> lithium hydroxide> lithium carbonate. The reason for this is unknown, but it is considered that the type of the lithium salt has some influence on the bulk density of the product because the bulk densities of the products are in the above order.

(実施例4) 硝酸リチウムのモル数を変え、これを水に溶解し、硝酸
マンガン0.2モルを加えた。大気中で300℃で加熱して生
成物を得た。実施例1と同様の電池を構成し、同じ試験
を行った。硝酸マンガン中のマンガンのモル数と硝酸リ
チウム中のリチウムのモル数の比率をx:1で表して、各
電池の第10サイクル目の放電容量を第5図にプロットし
た。この曲線よりx=2つまりLiMn2O4に相当する組成
比で最大とならず、むしろ1.5付近で最大となる。x線
回折ピークはブロードで明確なピーク位置は求めにく
い。LiMn2O4は、明確な組成比を持った化合物でなく
て、不定比の化合物も作りうるのではないかと思う。
Example 4 The number of moles of lithium nitrate was changed, this was dissolved in water, and 0.2 mole of manganese nitrate was added. The product was obtained by heating at 300 ° C. in air. The same battery as in Example 1 was constructed and the same test was conducted. The ratio of the number of moles of manganese in manganese nitrate and the number of moles of lithium in lithium nitrate was represented by x: 1, and the discharge capacity at the 10th cycle of each battery was plotted in FIG. From this curve, x = 2, that is, the composition ratio corresponding to LiMn 2 O 4 does not reach the maximum, but rather becomes maximum at around 1.5. The x-ray diffraction peak is broad and it is difficult to find a clear peak position. I think that LiMn 2 O 4 may be a compound with a non-stoichiometric ratio as well as a compound with a clear composition ratio.

以上の実施例では、全て大気中で加熱する方法で活物質
を合成した。これは、原料の硝酸マンガン中のマンガン
は2価の状態であるのに対し、生成物中のマンガンは、
3価,4価の混合状態になっているためであり、反応に
は、大気中の酸素も関与している。実施例で示した加熱
を窒素雰囲気下で行うと、生成物を充放電しても、その
容量は小さかった。
In all of the above examples, the active material was synthesized by the method of heating in the atmosphere. This is because manganese in the raw material manganese nitrate is in a divalent state, whereas manganese in the product is
This is because it is in a mixed state of trivalent and tetravalent, and atmospheric oxygen is also involved in the reaction. When the heating shown in the examples was performed in a nitrogen atmosphere, the capacity was small even when the product was charged and discharged.

また、用いた非水電解質は、LiClO4以外に、LiPF6やLiA
sF6などを溶解した有機電解液に限定したものではな
く、LiCF3SO3を溶解したポリエチレンオキサイドのよう
なポリマー電解質を用いた場合にも、本発明の活物質は
有効であった。
In addition to LiClO 4 , the non-aqueous electrolyte used was LiPF 6 or LiA.
The active material of the present invention is also effective when a polymer electrolyte such as polyethylene oxide in which LiCF 3 SO 3 is dissolved is not limited to the organic electrolyte in which sF 6 and the like are dissolved.

発明の効果 上述の説明から明らかなように、本発明のリチウム塩と
硝酸マンガンを酵素存在下で加熱して合成した生成物を
正極活物質とすることにより、体積当り容量の大きい、
かつ、サイクル特性の良好なリチウム二次電池を構成で
きることになり、産業上の意義は大きい。
EFFECTS OF THE INVENTION As is apparent from the above description, the lithium salt and the manganese nitrate of the present invention are heated in the presence of an enzyme to synthesize a product as a positive electrode active material, so that the capacity per volume is large,
In addition, a lithium secondary battery having excellent cycle characteristics can be constructed, which is of great industrial significance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のリチウム二次電池の第10サ
イクル目の放電曲線、第2図は同リチウム二次電池の縦
断面図、第3図は同リチウム二次電池のサイクル特性
図、第4図は合成時の加熱温度と生成物を電池にした時
の電池の放電容量の関係図、第5図はマンガンとリチウ
ムのモル数の比を:1で表した時の比率と、生成物を電
池にした時の放電容量の関係図である。
FIG. 1 is a discharge curve of a lithium secondary battery according to an embodiment of the present invention at the 10th cycle, FIG. 2 is a longitudinal sectional view of the lithium secondary battery, and FIG. 3 is cycle characteristics of the lithium secondary battery. Fig. 4 shows the relationship between the heating temperature during synthesis and the discharge capacity of the battery when the product was used as a battery. Fig. 5 shows the ratio when the molar ratio of manganese to lithium was expressed as: 1. FIG. 3 is a relational diagram of discharge capacity when a product is used as a battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極と負極と電解質とからなるリチウム二
次電池において、正極活物質としてマンガン元素:リチ
ウム元素のモル比が1.2:1から2.2:1である硝酸マンガン
とリチウム塩を、酸素存在下で加熱して得た生成物を用
いることを特徴とするリチウム二次電池用正極。
1. In a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte, manganese nitrate and a lithium salt having a molar ratio of manganese element: lithium element of 1.2: 1 to 2.2: 1 are used as a positive electrode active material in the presence of oxygen. A positive electrode for a lithium secondary battery, characterized by using a product obtained by heating below.
JP63261791A 1988-10-18 1988-10-18 Positive electrode for lithium secondary battery Expired - Fee Related JPH0773053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63261791A JPH0773053B2 (en) 1988-10-18 1988-10-18 Positive electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63261791A JPH0773053B2 (en) 1988-10-18 1988-10-18 Positive electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH02109260A JPH02109260A (en) 1990-04-20
JPH0773053B2 true JPH0773053B2 (en) 1995-08-02

Family

ID=17366762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63261791A Expired - Fee Related JPH0773053B2 (en) 1988-10-18 1988-10-18 Positive electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0773053B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508391A (en) 1996-12-30 2001-06-26 リーデル−デ ハーエン アクチェンゲゼルシャフト Preparation method of lithium manganese oxide
KR100420044B1 (en) * 1996-12-30 2004-05-22 삼성에스디아이 주식회사 LiMn2O4 POWDER CONTAINING CONDUCTIVE AGENT
JP6178554B2 (en) 2012-09-03 2017-08-09 日本ケミコン株式会社 Method for producing composite material of metal oxide and conductive carbon
KR102110777B1 (en) 2012-09-03 2020-05-14 닛뽄 케미콘 가부시끼가이샤 Electrode material for lithium ion secondary batteries, method for producing electrode material for lithium ion secondary batteries, and lithium ion secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029722A (en) * 1988-06-29 1990-01-12 Mitsui Mining & Smelting Co Ltd Production of manganese oxide powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029722A (en) * 1988-06-29 1990-01-12 Mitsui Mining & Smelting Co Ltd Production of manganese oxide powder

Also Published As

Publication number Publication date
JPH02109260A (en) 1990-04-20

Similar Documents

Publication Publication Date Title
US6159636A (en) Mixtures of lithium manganese oxide spinel as cathode active material
US6270924B1 (en) Lithium secondary battery
US5955219A (en) Lithium nickel copper composite oxide and its production process and use
JPH0732017B2 (en) Non-aqueous electrolyte secondary battery
JPH08213052A (en) Nonaqueous electrolyte secondary battery
AU1685099A (en) Lithium manganate, method of producing the same, and lithium cell produced by the method
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4496150B2 (en) Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US5928622A (en) Method for preparing high capacity LiMn2 O4 secondary battery cathode compounds
JP3707744B2 (en) Method for producing lithium composite oxide
JPH10134811A (en) Manufacture of positive electrode material for lithium cell
JPH0773053B2 (en) Positive electrode for lithium secondary battery
JP2512241B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JPH10302766A (en) Lithium ion secondary battery
JP3908829B2 (en) Positive electrode active material and non-aqueous secondary battery using the same
JP2517176B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP3188108B2 (en) Non-aqueous electrolyte secondary battery
JPH09110431A (en) Production of lithium-manganese oxide based on limno2
JP3282495B2 (en) Non-aqueous electrolyte secondary battery
JPS63114065A (en) Organic electrolyte secondary battery
JPH07320741A (en) Preparation of high-voltage cathodic material for lithium secondary battery
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery
JP3528615B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2001180940A (en) Method of manufacturing spinel type lithium manganate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees