JP2001180940A - Method of manufacturing spinel type lithium manganate - Google Patents

Method of manufacturing spinel type lithium manganate

Info

Publication number
JP2001180940A
JP2001180940A JP2000003206A JP2000003206A JP2001180940A JP 2001180940 A JP2001180940 A JP 2001180940A JP 2000003206 A JP2000003206 A JP 2000003206A JP 2000003206 A JP2000003206 A JP 2000003206A JP 2001180940 A JP2001180940 A JP 2001180940A
Authority
JP
Japan
Prior art keywords
spinel
lithium manganate
type lithium
mol
manganate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000003206A
Other languages
Japanese (ja)
Inventor
Takeshi O
毅 王
Moriji Nishiuchi
盛二 西内
Toshihiro Kuroki
俊宏 黒木
Seiichi Takigawa
誠一 滝川
Nakamichi Yamazaki
仲道 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2000003206A priority Critical patent/JP2001180940A/en
Publication of JP2001180940A publication Critical patent/JP2001180940A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To synthesize a spinel type lithium manganate for a lithium secondary cell at a low cost. SOLUTION: Li1+XMn2O4 is hydrothermal-synthesized from γ-MnOOH, LiOH and H2O2 in autoclave at 180 to 230 deg.C during 6 to 36 hours.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】本発明は、リチウム二次電池の正極
活物質等に適したスピネル型マンガン酸リチウムの製造
方法に関し、より詳しくは、リチウム、リチウム合金ま
たは炭素材を負極活物質とするリチウム二次電池の正極
活物質に用いられるスピネル型マンガン酸リチウムの製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a spinel type lithium manganate suitable for a positive electrode active material of a lithium secondary battery, and more particularly, to a method for producing lithium, a lithium alloy or a carbon material using a negative electrode as a negative electrode active material. The present invention relates to a method for producing spinel-type lithium manganate used as a positive electrode active material of a secondary battery.

【0002】[0002]

【従来技術】スピネル型マンガン酸リチウムの主な製造
方法としては、炭酸リチウムとマンガン酸化物とを所定
のモル比となるよう混合した後、加熱処理してリチウム
塩を分解させ、さらに高温で加熱処理する方法(固相
法)が一般的である。その他には、ゾルーゲル法と、噴
霧熱分解法などが知られている。
2. Description of the Related Art As a main method for producing spinel-type lithium manganate, lithium carbonate and manganese oxide are mixed at a predetermined molar ratio, and then heat-treated to decompose a lithium salt, followed by heating at a high temperature. A treatment method (solid-phase method) is generally used. In addition, a sol-gel method and a spray pyrolysis method are known.

【0003】しかしながら、従来から行われている固相
法では組成の均一性に限界があり、また噴霧熱分解法や
他の液相法では組成の均一性には問題ないもののコスト
面に問題があり、さらに得られるスピネル型マンガン酸
リチウムを正極活物質として用いた場合、放電容量が低
くサイクル特性もあまりよくないという問題がある。
[0003] However, the conventional solid phase method has a limit in the uniformity of the composition, and the spray pyrolysis method and other liquid phase methods have no problem in the uniformity of the composition, but have a problem in cost. In addition, when the obtained spinel-type lithium manganate is used as a positive electrode active material, there is a problem that the discharge capacity is low and the cycle characteristics are not so good.

【0004】[0004]

【発明が解決しようとする課題】本発明は、スピネル型
マンガン酸リチウムを正極活物質とするリチウム二次電
池の放電容量の増大を可能とする、スピネル型マンガン
酸リチウムの製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a spinel-type lithium manganate capable of increasing the discharge capacity of a lithium secondary battery using the spinel-type lithium manganate as a positive electrode active material. With the goal.

【0005】[0005]

【発明の構成】本発明では、マンガン化合物と水酸化リ
チウムとを出発原料とし、酸化剤の存在下で水熱反応を
行うことにより、スピネル型マンガン酸リチウム(Li
1+xMn,但しx=0.0〜0.2)を合成す
る。
In the present invention, a spinel-type lithium manganate (Li) is prepared by starting a manganese compound and lithium hydroxide as a starting material and conducting a hydrothermal reaction in the presence of an oxidizing agent.
1 + x Mn 2 O 4 , where x = 0.0 to 0.2) is synthesized.

【0006】好ましくは、スピネル型マンガン酸リチウ
ムがリチウム2次電池の電極用で、前記マンガン化合物
が水熱反応に対して不溶な+2〜+3価のマンガン化合
物、特に+3価のマンガン化合物である。水熱反応に不
溶な+2〜+3価のマンガン化合物には、γ等のオキシ
水酸化マンガンや,32酸化マンガン,MnO,あるい
は+2〜+3価のマンガンの水酸化物,マンガンの不溶
性塩等がある。好ましくは、前記酸化剤が酸素,オゾ
ン,過酸化水素から選ばれる少なくとも一種とし、水熱
反応時の添加形態としては空気中の酸素なども上記に含
まれる。酸化剤は特に好ましくは過酸化水素とし、過酸
化水素水などの形態で添加する。水熱反応温度は好まし
くは180〜250℃とし、反応時間は好ましくは6〜
36時間とする。
Preferably, the spinel type lithium manganate is used for an electrode of a lithium secondary battery, and the manganese compound is a +2 to +3 manganese compound, particularly a +3 manganese compound, which is insoluble in a hydrothermal reaction. The +2 to +3 manganese compounds insoluble in the hydrothermal reaction include manganese oxyhydroxide such as γ, manganese oxide 32, MnO, hydroxides of +2 to +3 manganese, and insoluble salts of manganese. . Preferably, the oxidizing agent is at least one selected from oxygen, ozone, and hydrogen peroxide, and the addition form at the time of the hydrothermal reaction includes oxygen in the air and the like. The oxidizing agent is particularly preferably hydrogen peroxide, and is added in the form of aqueous hydrogen peroxide. The hydrothermal reaction temperature is preferably from 180 to 250 ° C, and the reaction time is preferably from 6 to
36 hours.

【0007】[0007]

【発明の作用】本発明では、酸化剤の存在下での水熱反
応により、マンガン化合物粒子内にリチウムイオンが速
やかにかつ直接に挿入され、このため直接的にスピネル
型マンガン酸リチウムが合成され、かつ均一な組成をも
つ結晶性の良いスピネル型マンガン酸リチウムが得られ
るためと考えられる。
According to the present invention, lithium ions are quickly and directly inserted into manganese compound particles by a hydrothermal reaction in the presence of an oxidizing agent, and thus spinel-type lithium manganate is directly synthesized. It is considered that a spinel-type lithium manganate having a uniform composition and good crystallinity can be obtained.

【0008】そして、組成が均一で結晶性のよいスピネ
ル型マンガン酸リチウムは、リチウム二次電池の正極活
物質として用いた場合に、充放電の際にリチウムをイン
ターカレートおよびデインターカレートし易く、放電容
量およびサイクル特性が改善される。さらに低温でリチ
ウム二次電池用マンガン酸リチウム正極材料を合成でき
るので、大型リチウム二次電池を低コスト化できる。
The spinel-type lithium manganate having a uniform composition and good crystallinity, when used as a positive electrode active material of a lithium secondary battery, intercalates and deintercalates lithium during charge and discharge. Easily, the discharge capacity and cycle characteristics are improved. Furthermore, since a lithium manganate positive electrode material for a lithium secondary battery can be synthesized at a low temperature, the cost of a large lithium secondary battery can be reduced.

【0009】[0009]

【発明の効果】この発明では、マンガン化合物と水酸化
リチウムとを酸化剤の存在下で高圧反応容器(オートク
レーブ)で水熱反応させるので、直接的にスピネル型マ
ンガン酸リチウムを合成できる。得られるスピネル型マ
ンガン酸リチウムは、組成が均一で結晶性が良い。
According to the present invention, a manganese compound and lithium hydroxide are hydrothermally reacted in a high-pressure reactor (autoclave) in the presence of an oxidizing agent, so that spinel-type lithium manganate can be directly synthesized. The spinel-type lithium manganate obtained has a uniform composition and good crystallinity.

【0010】また、本発明の製造方法で得られるマンガ
ン酸リチウムをリチウム二次電池の正極活物質として用
いると、放電容量が大きく、かつサイクル特性にも優れ
たリチウム二次電池が得られる。また低温で直接的にス
ピネル型マンガン酸リチウムを合成できるので、EV
(電気自動車)或いはHEV(ハイブリッド電気自動
車)等に用いる大型リチウム二次電池の低コスト化に有
用である。
When the lithium manganate obtained by the production method of the present invention is used as a positive electrode active material for a lithium secondary battery, a lithium secondary battery having a large discharge capacity and excellent cycle characteristics can be obtained. Also, since spinel-type lithium manganate can be directly synthesized at low temperature, EV
(Electric Vehicle) or HEV (Hybrid Electric Vehicle) is useful for reducing the cost of a large lithium secondary battery.

【0011】[0011]

【実施例】以下に実施例に基づき、本発明を具体的に説
明する。
The present invention will be specifically described below based on examples.

【0012】[0012]

【実施例1】50mLのテフロン容器に30mLの蒸留
水を加え、次いでγ−オキシ水酸化マンガン(γ−Mn
OOH)と水酸化リチウム(LiOH・HO)を2.
0:1.3モルの割合で加えて良く混合した。その後、
酸化剤の過酸化水素(過酸化水素水で添加)を1.0モ
ルの割合で加えて、オートクレーブに入れた。そして、
220℃、12時間の水熱条件で反応させて、スピネル
型マンガン酸リチウムを合成した。なお以下の実施例2
〜7でも同様にして水熱合成を行ったので、調製条件の
細部や試料名の詳細等は省略して示す。
Example 1 30 mL of distilled water was added to a 50 mL Teflon container, and then γ-manganese oxyhydroxide (γ-Mn
OOH) and lithium hydroxide (LiOH.H 2 O) for 2.
0: 1.3 moles were added and mixed well. afterwards,
The oxidizing agent, hydrogen peroxide (added with aqueous hydrogen peroxide) was added at a ratio of 1.0 mol, and the mixture was placed in an autoclave. And
The reaction was performed under hydrothermal conditions at 220 ° C. for 12 hours to synthesize spinel-type lithium manganate. Example 2 below
Since hydrothermal synthesis was performed in the same manner as in Nos. To 7, details of preparation conditions, details of sample names, and the like are omitted.

【0013】得られたスピネル型マンガン酸リチウム
の、XRDによる構造解析の結果を図1に示す。図1か
ら、単相のスピネル型マンガン酸リチウムが得られたこ
とが判明した。またICPによる測定の結果、Li:M
n=1.04:2.00であることが分かった。
FIG. 1 shows the results of a structure analysis of the obtained spinel-type lithium manganate by XRD. From FIG. 1, it was found that a single-phase spinel-type lithium manganate was obtained. As a result of measurement by ICP, Li: M
It was found that n = 1.04: 2.00.

【0014】得られたスピネル型マンガン酸リチウム
を、導電剤であるアセチレンブラック、および粘着剤で
あるテフロンと、重量比で65:25:10の配合で混
合し、正極合剤を調整した。対極を金属リチウムとし、
電解液を1M(mol/l)のLiClOを含むPC+D
EM(1:1混合溶液)として試験電池を作製し、充放
電の電流密度を0.2mA/cmとし、周囲温度25
℃、充放電の電圧範囲を3.0〜4.3Vとして、繰り返
しの充放電に伴う容量の変化を調べた。
The obtained spinel-type lithium manganate was mixed with acetylene black as a conductive agent and Teflon as an adhesive in a weight ratio of 65:25:10 to prepare a positive electrode mixture. The opposite electrode is metallic lithium,
PC + D containing 1 M (mol / l) LiClO 4
A test battery was prepared as EM (1: 1 mixed solution), the charge / discharge current density was set to 0.2 mA / cm 2 , and the ambient temperature was set to 25.
The charge and discharge voltage range was 3.0 to 4.3 V, and the change in capacity due to repeated charge and discharge was examined.

【0015】[0015]

【実施例2】γ−オキシ水酸化マンガン2モルに対し
て、水酸化リチウム1.3モルの割合で良く混合した
後、酸化剤とする過酸化水素1.0モルをオートクレー
ブに入れた。そして、230℃、12時間の水熱条件で
反応させて、スピネル型マンガン酸リチウムを合成し
た。
Example 2 1.3 mol of lithium hydroxide was thoroughly mixed with 2 mol of γ-manganese oxyhydroxide, and then 1.0 mol of hydrogen peroxide as an oxidizing agent was placed in an autoclave. Then, the reaction was carried out at 230 ° C. for 12 hours under hydrothermal conditions to synthesize spinel-type lithium manganate.

【0016】生成物のXRDによる構造解析の結果か
ら、単相のスピネル型マンガン酸リチウムが生成したこ
とが判明した。またICPによる測定の結果、Li:M
n=1.04:2.0であることが分かった。得られたス
ピネル型マンガン酸リチウムを用いて、実施例1と同様
にして試験電池を調製し、繰り返しの充放電に伴う、容
量の変化を調べた。
XRD analysis of the product revealed that a single-phase spinel-type lithium manganate was formed. As a result of measurement by ICP, Li: M
It was found that n = 1.04: 2.0. Using the obtained spinel-type lithium manganate, a test battery was prepared in the same manner as in Example 1, and a change in capacity due to repeated charging and discharging was examined.

【0017】[0017]

【実施例3】γ−オキシ水酸化マンガン2モルに対し
て、水酸化リチウム1.2モルを添加した水溶液を良く
混合した後、酸化剤とする過酸化水素1.0モルをオー
トクレーブに入れた。そして、220℃、12時間の水
熱条件で反応させて、スピネル型マンガン酸リチウムを
合成した。
Example 3 An aqueous solution obtained by adding 1.2 mol of lithium hydroxide to 2 mol of γ-manganese oxyhydroxide was mixed well, and then 1.0 mol of hydrogen peroxide as an oxidizing agent was placed in an autoclave. . Then, the mixture was reacted under hydrothermal conditions at 220 ° C. for 12 hours to synthesize spinel-type lithium manganate.

【0018】XRDによる構造解析の結果、単相のスピ
ネル型マンガン酸リチウムが生成したことが判明した。
またICPによる測定の結果、Li:Mn=1.02:
2.0であることが分かった。
As a result of structural analysis by XRD, it was found that single-phase spinel-type lithium manganate was formed.
As a result of measurement by ICP, Li: Mn = 1.02:
It turned out to be 2.0.

【0019】得られたスピネル型マンガン酸リチウムを
用いて、実施例1と同様にして試験電池を作成し、繰り
返しの充放電に伴う容量の変化を調べた。
Using the obtained spinel-type lithium manganate, a test battery was prepared in the same manner as in Example 1, and the change in capacity due to repeated charging and discharging was examined.

【0020】[0020]

【実施例4】γ−オキシ水酸化マンガン2モルに対し
て、水酸化リチウム1.1モルの割合で良く混合した
後、酸化剤とする過酸化水素1.0モルをオートクレー
ブに入れた。そして、220℃、12時間の水熱条件で
反応させて、スピネル型マンガン酸リチウムを合成し
た。
Example 4 1.1 mol of lithium hydroxide was mixed well with 2 mol of γ-manganese oxyhydroxide, and then 1.0 mol of hydrogen peroxide as an oxidizing agent was placed in an autoclave. Then, the mixture was reacted under hydrothermal conditions at 220 ° C. for 12 hours to synthesize spinel-type lithium manganate.

【0021】XRDによる構造解析の結果、単相のスピ
ネル型マンガン酸リチウムが生成していた。またICP
による測定の結果、Li:Mn=1.0:2.0であるこ
とが分かった。
As a result of structural analysis by XRD, single-phase spinel-type lithium manganate was found to have formed. Also ICP
As a result, it was found that Li: Mn = 1.0: 2.0.

【0022】得られたスピネル型マンガン酸リチウム
を、実施例1と同様にしてリチウム2次電池に用い、繰
り返しの充放電に伴う容量の変化を調べた。
The obtained spinel-type lithium manganate was used in a lithium secondary battery in the same manner as in Example 1, and the change in capacity due to repeated charging and discharging was examined.

【0023】[0023]

【実施例5】酸化マンガン(Mn)1モルに対し
て、水酸化リチウム1.1モルの割合で良く混合した
後、酸化剤とする過酸化水素1.5モルをオートクレー
ブに入れた。そして、220℃、12時間の水熱条件で
反応させて、スピネル型マンガン酸リチウムを合成し
た。
Example 5 After mixing well at a ratio of 1.1 mol of lithium hydroxide to 1 mol of manganese oxide (Mn 2 O 3 ), 1.5 mol of hydrogen peroxide as an oxidizing agent was put into an autoclave. . Then, the mixture was reacted under hydrothermal conditions at 220 ° C. for 12 hours to synthesize spinel-type lithium manganate.

【0024】XRDによる構造解析の結果、単相のスピ
ネル型マンガン酸リチウムが生成していた。またICP
による測定の結果、Li:Mn=1.0:2.0であるこ
とが分かった。
As a result of structural analysis by XRD, single-phase spinel-type lithium manganate was found to have formed. Also ICP
As a result, it was found that Li: Mn = 1.0: 2.0.

【0025】得られたスピネル型マンガン酸リチウム
を、実施例1と同様にしてリチウム2次電池に用い、繰
り返しの充放電に伴う容量の変化を調べた。
The obtained spinel-type lithium manganate was used in a lithium secondary battery in the same manner as in Example 1, and the change in capacity due to repeated charging and discharging was examined.

【0026】[0026]

【実施例6】硫酸マンガン(II)2モルをアンモニア水
と反応させて得た沈殿物を蒸留水で洗浄した後、1.1
モルの水酸化リチウムおよび酸化剤とする過酸化水素
(H)2.0モルと一緒にオートクレーブに入れ
た。そして、220℃、12時間の水熱条件で反応し、
スピネル型マンガン酸リチウムを合成した。
Example 6 A precipitate obtained by reacting 2 mol of manganese (II) sulfate with aqueous ammonia was washed with distilled water, and then washed with 1.1 ml.
The autoclave was placed along with 2.0 moles of lithium hydroxide and 2.0 moles of hydrogen peroxide (H 2 O 2 ) as oxidizing agent. Then, react under hydrothermal conditions of 220 ° C. for 12 hours,
Spinel-type lithium manganate was synthesized.

【0027】XRDによる構造解析の結果、単相のスピ
ネル型マンガン酸リチウムが生成していた。またICP
による測定の結果、Li:Mn=1.0:2.0であるこ
とが分かった。
As a result of structural analysis by XRD, single-phase spinel-type lithium manganate was found to have formed. Also ICP
As a result, it was found that Li: Mn = 1.0: 2.0.

【0028】得られたスピネル型マンガン酸リチウムを
用いて、実施例1と同様にしてリチウム2次電池を作成
し、繰り返しの充放電に伴う容量の変化を調べた。
Using the obtained spinel-type lithium manganate, a lithium secondary battery was prepared in the same manner as in Example 1, and the change in capacity due to repeated charging and discharging was examined.

【0029】[0029]

【実施例7】硫酸マンガン(II)2モルをアンモニア水
と反応させて得た沈殿物を蒸留水で洗浄した後、1.1
モルの水酸化リチウムと一緒にオートクレーブに入れ
た。210℃、24時間の水熱条件で反応させながら、
酸化剤としての酸素(O)をオートクレーブに導入し
反応させて、スピネル型マンガン酸リチウムを合成し
た。
Example 7 A precipitate obtained by reacting 2 mol of manganese (II) sulfate with aqueous ammonia was washed with distilled water, and then washed with 1.1 ml.
Autoclaved with moles of lithium hydroxide. While reacting under hydrothermal conditions at 210 ° C. for 24 hours,
Oxygen (O 2 ) as an oxidizing agent was introduced into an autoclave and reacted to synthesize spinel-type lithium manganate.

【0030】XRDによる構造解析の結果、単相のスピ
ネル型マンガン酸リチウムが生成していた。またICP
による測定の結果、Li:Mn=1.0:2.0であるこ
とが分かった。
As a result of structural analysis by XRD, single-phase spinel-type lithium manganate was found to have formed. Also ICP
As a result, it was found that Li: Mn = 1.0: 2.0.

【0031】得られたスピネル型マンガン酸リチウムを
用いて、実施例1と同様にしてリチウム2次電池を作成
し、繰り返しの充放電に伴う容量の変化を調べた。
Using the obtained spinel-type lithium manganate, a lithium secondary battery was prepared in the same manner as in Example 1, and a change in capacity due to repeated charging and discharging was examined.

【0032】[0032]

【実施例8】硫酸マンガン(II)2モルをアンモニア水
と反応させて得た沈殿物を蒸留水で洗浄した後、1.1
モルの水酸化リチウムと一緒にオートクレーブに入れ
た。そして、210℃、24時間の水熱条件で反応しな
がら、酸化剤の酸素(O)を十分にオートクレーブに
導入して反応させ、スピネル型マンガン酸リチウムを合
成した。
Example 8 A precipitate obtained by reacting 2 mol of manganese (II) sulfate with aqueous ammonia was washed with distilled water, and then washed with 1.1 ml.
Autoclaved with moles of lithium hydroxide. Then, while reacting under hydrothermal conditions at 210 ° C. for 24 hours, oxygen (O 2 ) as an oxidizing agent was sufficiently introduced into the autoclave and reacted to synthesize spinel-type lithium manganate.

【0033】XRDによる構造解析の結果、単相のスピ
ネル型マンガン酸リチウムであることが判明した。また
ICPによる測定の結果、Li:Mn=1.0:2.0で
あることが分かった。
As a result of structural analysis by XRD, it was found that the substance was a single-phase spinel-type lithium manganate. Further, as a result of measurement by ICP, it was found that Li: Mn = 1.0: 2.0.

【0034】得られたスピネル型マンガン酸リチウム
を、実施例1と同様にしてリチウム2次電池に用い、繰
り返しの充放電に伴う容量の変化を調べた
The obtained spinel-type lithium manganate was used in a lithium secondary battery in the same manner as in Example 1, and the change in capacity due to repeated charging and discharging was examined.

【0035】[0035]

【比較例1】γ−オキシ水酸化マンガン(γ−MnOO
H)2モルに対して水酸化リチウム(LiOH・H
O)1.0モルの割合で良く混合したのち、混合物を
酸素気流中で750℃、24時間加熱して、比較例1の
LiMnを合成した。
Comparative Example 1 γ-Manganese oxyhydroxide (γ-MnOO
H) 2 moles of lithium hydroxide (LiOH.H
2 O) 1.0 were mixed well at a ratio of moles, 750 ° C. The mixture in an oxygen stream, and heated for 24 hours to synthesize LiMn 2 O 4 of Comparative Example 1.

【0036】XRDによる構造解析の結果はスピネル型
マンガン酸リチウムであり、ICPによる測定の結果L
i:Mn=1.0:2.0であることが分かった。
The result of structural analysis by XRD is spinel-type lithium manganate, and the result of measurement by ICP is L
i: Mn was found to be 1.0: 2.0.

【0037】得られたスピネル型マンガン酸リチウムを
実施例1と同様にしてリチウム2次電池に用いて、繰り
返しの充放電に伴う、容量の変化を調べた。
The obtained spinel-type lithium manganate was used in a lithium secondary battery in the same manner as in Example 1 to examine a change in capacity due to repeated charging and discharging.

【0038】[0038]

【比較例2】硝酸マンガン2モルに対して硝酸リチウム
1.0モルの割合で良く混合したのち、混合物を酸素気
流中で750℃、24時間加熱して比較例2のLiMn
を合成した。
Comparative Example 2 Lithium nitrate per 2 mol of manganese nitrate
After mixing well at a 1.0 mole ratio, the mixture is
LiMn of Comparative Example 2 by heating in a stream at 750 ° C. for 24 hours
2O 4Was synthesized.

【0039】そのXRDによる構造解析の結果は、スピ
ネル型マンガン酸リチウムであると考えられた。また、
ICPによる測定の結果Li:Mn=1.0:2.0であ
ることが分かった。
The result of the structural analysis by XRD was considered to be spinel-type lithium manganate. Also,
As a result of measurement by ICP, it was found that Li: Mn = 1.0: 2.0.

【0040】得られたスピネル型マンガン酸リチウム
を、実施例1と同様にしてリチウム2次電池に用いて、
繰り返しの充放電に伴う容量の変化を調べた。
The obtained spinel-type lithium manganate was used in a lithium secondary battery in the same manner as in Example 1,
The change in capacity due to repeated charge and discharge was examined.

【0041】[0041]

【比較例3】炭酸マンガン(MnCO)2モルに対し
て炭酸リチウム(LiCO)0.5モルの割合で良
く混合したのち、混合物を酸素気流中で750℃、48
時間加熱して比較例3のLiMnを合成した。
Comparative Example 3 After 0.5 mol of lithium carbonate (Li 2 CO 3 ) was mixed well with 2 mol of manganese carbonate (MnCO 3 ), the mixture was mixed at 750 ° C., 48 in an oxygen stream.
After heating for an hour, LiMn 2 O 4 of Comparative Example 3 was synthesized.

【0042】XRDによる構造解析の結果スピネル型マ
ンガン酸リチウムであることが判明し、ICPによる測
定の結果Li:Mn=1.0:2.0であることが分かっ
た。
As a result of structural analysis by XRD, it was found to be spinel-type lithium manganate. As a result of measurement by ICP, it was found that Li: Mn = 1.0: 2.0.

【0043】得られたスピネル型マンガン酸リチウム
を、実施例1と同様にしてリチウム2次電池に用いて、
繰り返しの充放電に伴う容量の変化を調べた。
The obtained spinel-type lithium manganate was used in a lithium secondary battery in the same manner as in Example 1,
The change in capacity due to repeated charge and discharge was examined.

【0044】[0044]

【比較例4】1モルのMnに対して炭酸リチウム
(LiCO)0.5モルの割合で良く混合したの
ち、混合物を酸素気流中で750℃、48時間加熱して
比較例4のLiMnを合成した。
Comparative Example 4 0.5 mol of lithium carbonate (Li 2 CO 3 ) was mixed well with 1 mol of Mn 2 O 3 , and the mixture was heated in an oxygen stream at 750 ° C. for 48 hours for comparison. LiMn 2 O 4 of Example 4 was synthesized.

【0045】XRDによる構造解析の結果スピネル型マ
ンガン酸リチウムであることが判明し、ICPによる測
定の結果Li:Mn=1.0:2.0であることが分かっ
た。
As a result of structural analysis by XRD, it was found to be spinel-type lithium manganate. As a result of measurement by ICP, it was found that Li: Mn = 1.0: 2.0.

【0046】得られたスピネル型マンガン酸リチウム
を、実施例1と同様にして繰り返しの充放電に伴う、容
量の変化を調べた。
With respect to the obtained spinel-type lithium manganate, a change in capacity due to repeated charging and discharging was examined in the same manner as in Example 1.

【0047】実施例1〜8及び比較例1〜4で得られた
スピネル型マンガン酸リチウムの繰り返し充放電に伴う
容量変化を、表1に示す。なお電流密度を0.5mA/
cm とすると、実施例1では初期放電容量が114m
Ah/gで50サイクル後に100mAh/g、実施例
3で初期放電容量が124mAh/gで50サイクル後
に100mAh/gであった。
Obtained in Examples 1 to 8 and Comparative Examples 1 to 4.
Accompanying repeated charge and discharge of spinel-type lithium manganate
Table 1 shows the change in capacitance. The current density was 0.5 mA /
cm 2In Example 1, the initial discharge capacity was 114 m.
100 mAh / g after 50 cycles at Ah / g, Example
3. After 50 cycles at an initial discharge capacity of 124 mAh / g at 3
Was 100 mAh / g.

【0048】[0048]

【表1】 [Table 1]

【0049】表1から、実施例では、従来の固相法(比
較例)よりも、初期放電容量及びサイクル特性の両面
で、優れたスピネル型マンガン酸リチウムが得られるこ
とが判った。
From Table 1, it was found that in the examples, spinel-type lithium manganate was obtained which was superior in both the initial discharge capacity and the cycle characteristics as compared with the conventional solid-phase method (comparative example).

【図面の簡単な説明】[Brief description of the drawings]

【図1】 220℃で水熱合成したLi1+xMn
のX線回折パターンを示す特性図で、反応時間は12
時間である。
FIG. 1 Li 1 + x Mn 2 O hydrothermally synthesized at 220 ° C.
4 is a characteristic diagram showing an X-ray diffraction pattern of FIG.
Time.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒木 俊宏 香川県三豊郡詫間町大字香田80 神島化学 工業株式会社神島技術研究所内 (72)発明者 滝川 誠一 香川県三豊郡詫間町大字香田80 神島化学 工業株式会社神島技術研究所内 (72)発明者 山崎 仲道 香川県三豊郡詫間町大字香田80 神島化学 工業株式会社神島技術研究所内 Fターム(参考) 4G048 AA04 AB02 AC06 AD06 AE05 5H050 AA00 AA07 AA08 BA15 BA16 CA09 CB12 FA19 GA15 HA02 HA14 HA20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshihiro Kuroki 80, Kada, Takuma-cho, Mitoyo-gun, Kagawa Prefecture Kamishima Chemical Industry Co., Ltd. (72) Nakamichi Yamazaki, Inventor, Kadashima-machi, Mitoyo-gun, Kagawa 80 CB12 FA19 GA15 HA02 HA14 HA20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 マンガン化合物と水酸化リチウムとを出
発原料とし、酸化剤の存在下で水熱反応を行うことによ
り、スピネル型マンガン酸リチウム(Li1+xMn
,但しx=0.0〜0.2)を合成する、スピネル型
マンガン酸リチウムの製造方法。
1. A spinel-type lithium manganate (Li 1 + x Mn 2) obtained by performing a hydrothermal reaction in the presence of an oxidizing agent using a manganese compound and lithium hydroxide as starting materials.
A method for producing spinel-type lithium manganate, which synthesizes O 4 , where x = 0.0 to 0.2).
【請求項2】 スピネル型マンガン酸リチウムがリチウ
ム2次電池の電極用で、前記マンガン化合物が水熱反応
に対して不溶な+2〜+3価のマンガン化合物であるこ
とを特徴とする、請求項1のスピネル型マンガン酸リチ
ウムの製造方法。
2. The spinel-type lithium manganate for an electrode of a lithium secondary battery, wherein the manganese compound is a +2 to +3 valent manganese compound insoluble in a hydrothermal reaction. For producing a spinel-type lithium manganate.
【請求項3】 前記酸化剤が酸素,オゾン,過酸化水素
から選ばれる少なくとも一種であることを特徴とする、
請求項1または2のスピネル型マンガン酸リチウム製造
方法。
3. The method according to claim 2, wherein the oxidizing agent is at least one selected from oxygen, ozone, and hydrogen peroxide.
The method for producing a spinel-type lithium manganate according to claim 1.
【請求項4】 前記水熱反応温度が180〜250℃
で、反応時間が6〜36時間であることを特徴とする、
請求項1〜3のいずれかのスピネル型マンガン酸リチウ
ム製造方法。
4. The hydrothermal reaction temperature is 180 to 250 ° C.
Wherein the reaction time is from 6 to 36 hours,
The method for producing a spinel-type lithium manganate according to claim 1.
JP2000003206A 1999-10-12 2000-01-12 Method of manufacturing spinel type lithium manganate Pending JP2001180940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000003206A JP2001180940A (en) 1999-10-12 2000-01-12 Method of manufacturing spinel type lithium manganate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-289010 1999-10-12
JP28901099 1999-10-12
JP2000003206A JP2001180940A (en) 1999-10-12 2000-01-12 Method of manufacturing spinel type lithium manganate

Publications (1)

Publication Number Publication Date
JP2001180940A true JP2001180940A (en) 2001-07-03

Family

ID=26557415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000003206A Pending JP2001180940A (en) 1999-10-12 2000-01-12 Method of manufacturing spinel type lithium manganate

Country Status (1)

Country Link
JP (1) JP2001180940A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325959A (en) * 2000-05-15 2001-11-22 Toyota Central Res & Dev Lab Inc Manufacturing method of lithium-manganese compound oxide for lithium secondary cell positive electrode active material
JP2006089320A (en) * 2004-09-22 2006-04-06 Univ Kanagawa Lithium manganese-based multiple oxide powder, method of manufacturing the same, positive electrode active material for lithium secondary cell and lithium secondary cell
JP2010113950A (en) * 2008-11-06 2010-05-20 Sumitomo Chemical Co Ltd Method of manufacturing positive electrode material for non-aqueous electrolytic solution secondary battery
US20110175019A1 (en) * 2010-01-15 2011-07-21 Tsinghua University Method for preparing cathode active material of lithium battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325959A (en) * 2000-05-15 2001-11-22 Toyota Central Res & Dev Lab Inc Manufacturing method of lithium-manganese compound oxide for lithium secondary cell positive electrode active material
JP2006089320A (en) * 2004-09-22 2006-04-06 Univ Kanagawa Lithium manganese-based multiple oxide powder, method of manufacturing the same, positive electrode active material for lithium secondary cell and lithium secondary cell
JP2010113950A (en) * 2008-11-06 2010-05-20 Sumitomo Chemical Co Ltd Method of manufacturing positive electrode material for non-aqueous electrolytic solution secondary battery
US20110175019A1 (en) * 2010-01-15 2011-07-21 Tsinghua University Method for preparing cathode active material of lithium battery
US8303841B2 (en) * 2010-01-15 2012-11-06 Tsinghua University Method for preparing cathode active material of lithium battery

Similar Documents

Publication Publication Date Title
US6159636A (en) Mixtures of lithium manganese oxide spinel as cathode active material
JP3221352B2 (en) Method for producing spinel-type lithium manganese composite oxide
EP1837937B1 (en) Lithium manganese-based composite oxide and method for preparing the same
KR100483656B1 (en) Synthesis of Lithium Cobalt Dioxide
US6720111B2 (en) Single-phase lithium ferrite based oxide
JP2000503622A (en) Method for producing mixed amorphous vanadium oxide and its use as electrode in rechargeable lithium batteries
WO1997023918A1 (en) Anode active material and nonaqueous secondary battery
EP0876296B1 (en) Low temperature synthesis of layered alkali metal-containing transition metal oxides
JP2001028265A (en) Positive electrode active material for lithium secondary battery and manufacture thereof
JP3263725B2 (en) Method for producing layered rock salt type lithium manganese oxide by mixed alkaline hydrothermal method
CA2672072A1 (en) Li-ni composite oxide particles for non-aqueous electrolyte secondary cell, process for producing the same, and non-aqueous electrolyte secondary cell
JPH11180717A (en) Lithium manganate, its production and lithium cell produced by using the same
EP0624552B1 (en) Novel method for preparing solid solution materials for secondary non-aqueous batteries
JPH08273665A (en) Positive electrode material for lithium secondary battery and its manufacture and lithium secondary battery using it
JPH10270044A (en) High capacity limn2o4 secondary battery cathode compound preparing method
JP2001114521A (en) Trimanganese tetraoxide and method for its production
WO2006126854A1 (en) Processes of preparing manganese oxides and processes of preparing spinel type cathode active material using the same
JP2001180940A (en) Method of manufacturing spinel type lithium manganate
JPH10106566A (en) Manufacture of positive electrode active material for lithium secondary battery
JP3908829B2 (en) Positive electrode active material and non-aqueous secondary battery using the same
JPH09270260A (en) Lithium nickelate as positive electrode active material of lithium secondary battery and manufacture thereof
JP3407042B2 (en) Lithium ion secondary battery positive electrode material and method for producing the same
KR20060122450A (en) Manganese oxides, spinel type cathode active material for lithium secondary batteries using thereby and preparation of the same
JP4695237B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3914981B2 (en) Cubic rock salt type lithium ferrite oxide and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302