JPH0766967B2 - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereofInfo
- Publication number
- JPH0766967B2 JPH0766967B2 JP62154646A JP15464687A JPH0766967B2 JP H0766967 B2 JPH0766967 B2 JP H0766967B2 JP 62154646 A JP62154646 A JP 62154646A JP 15464687 A JP15464687 A JP 15464687A JP H0766967 B2 JPH0766967 B2 JP H0766967B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- film
- gate electrode
- forming
- refractory metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置およびその製造方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and its manufacturing method.
従来の技術 従来の電界効果型(以下MOS型と略す)半導体装置は第
2図に示すように半導体基板1上に分離酸化膜21,ゲー
ト酸化膜22およびゲート電極23を形成した後、半導体基
板にソースおよびドレイン領域24を形成する。全面に層
間絶縁膜25を形成したのち、前記ソースおよびドレイン
領域上の層間絶縁膜を選択的に除去し、金属配線層26を
形成し、ソースおよびドレインの接続配線層26とする。
前記接続配線層26は半導体基板上を配線し、他のMOS型
半導体装置など他の素子と接続する。2. Description of the Related Art A conventional field effect (hereinafter abbreviated as MOS) semiconductor device is a semiconductor substrate after forming an isolation oxide film 21, a gate oxide film 22 and a gate electrode 23 on a semiconductor substrate 1 as shown in FIG. A source and drain region 24 is formed in. After forming an interlayer insulating film 25 on the entire surface, the interlayer insulating film on the source and drain regions is selectively removed to form a metal wiring layer 26, which is used as a source and drain connection wiring layer 26.
The connection wiring layer 26 is wired on the semiconductor substrate and is connected to another element such as another MOS type semiconductor device.
発明が解決しようとする問題点 上述した従来のMOS型半導体装置においては半導体基板
表面にソースおよびドレイン領域を形成し、かつソース
およびドレイン電極との接続部を形成するため、半導体
基板表面での占有面積が大きく、高密度化の妨げとなっ
ている。また、ソースおよびドレインの接続配線がMOS
型半導体装置上に配線されるため、ゲート電極との変差
部あるいは他の配線との変差部での断線が生じやすいと
いう欠点があった。Problems to be Solved by the Invention In the above-described conventional MOS semiconductor device, since the source and drain regions are formed on the semiconductor substrate surface and the connection portions with the source and drain electrodes are formed, the semiconductor substrate surface is occupied. The large area hinders high density. Also, the source and drain connection wiring is MOS
Since the wiring is formed on the semiconductor device of the type, there is a drawback that disconnection is likely to occur at a variation portion with the gate electrode or a variation portion with another wiring.
問題点を解決するための手段 本発明は上記問題点を解決するため、半導体基板上にゲ
ート電極を形成したのち、半導体基板に開孔部を形成し
ソースおよびドレイン領域を前記開孔部の側壁で、かつ
前記ゲート電極の下部に形成し、ソースおよびドレイン
電極との接続部を前記開孔部側壁に形成するとともに、
ソースおよびドレインの接続配線を前記半導体基板の開
孔部に埋込み形成することにより半導体装置を形成す
る。Means for Solving the Problems In order to solve the above problems, the present invention forms a gate electrode on a semiconductor substrate and then forms an opening in the semiconductor substrate to form source and drain regions on the sidewalls of the opening. And at the bottom of the gate electrode, and forming a connection portion with the source and drain electrodes on the side wall of the opening,
A semiconductor device is formed by embedding the source and drain connection wirings in the opening of the semiconductor substrate.
作用 本発明によれば半導体基板に形成した開孔部の側壁にソ
ースおよびドレイン領域および金属配線との接続部を形
成するため、従来と異なり半導体基板表面にソースおよ
びドレイン領域および接続部を形成する必要がなく、半
導体基板表面での半導体装置の占有面積が少なくて良
い。Effect According to the present invention, the source and drain regions and the connection with the metal wiring are formed on the sidewalls of the opening formed in the semiconductor substrate. Therefore, unlike the conventional case, the source and drain regions and the connection are formed on the surface of the semiconductor substrate. There is no need, and the area occupied by the semiconductor device on the surface of the semiconductor substrate may be small.
またソースおよびドレインの接続配線を前記半導体基板
の開孔部に埋込み形成するため、半導体基板上の配線層
が少なくなり、ゲート電極との交差部での断線および配
線層間での短絡が少なくなる。Further, since the source and drain connection wirings are embedded in the openings of the semiconductor substrate, the number of wiring layers on the semiconductor substrate is reduced, and the disconnection at the intersection with the gate electrode and the short circuit between the wiring layers are reduced.
実施例 第1図にもとづいて本発明の一実施例を説明する。Embodiment An embodiment of the present invention will be described with reference to FIG.
一導電型半導体基板1に選択的に絶縁物膜からなる素子
分離層2を形成する。次に前記半導体基板1上にゲート
酸化膜3およびゲート電極となる多結晶硅素膜4および
窒化硅素膜5を形成する(第1図A)。次に前記窒化硅
素膜5および多結晶硅素膜4に所定のパターンを形成
(第1図B)した後、高温酸化雰囲気中で加熱処理し、
前記多結晶硅素膜パターン側壁に二酸化硅素膜6を形成
する(第1図C)。次に露出している前記ゲート酸化膜
3を食刻除去し、露出した半導体基板に開孔部7を形成
する(第1図D)。次に全面に二酸化硅素膜などの絶縁
物膜8を形成した後、多結晶硅素膜4上および前記開孔
部7の上部すなわちゲート酸化膜直下の前記絶縁膜8の
一部を除去し、多結晶硅素膜および前記開孔部上部の半
導体基板9を露出する(第1図F)。次に全面にダング
ステン又はチタニウム等の高融点金属膜10を形成した後
(第1図G)高温処理を行なう。熱処理により前記多結
晶硅素膜および前記半導体基板の露出領域と前記高融点
金属膜が反応しシリサイド層11,12が形成される。前記
半導体基板の露出領域9、即ち開孔部側壁に形成された
シリサイド層12をソース,ドレインとする。The element isolation layer 2 made of an insulating film is selectively formed on the one-conductivity-type semiconductor substrate 1. Next, a gate oxide film 3 and a polycrystalline silicon film 4 and a silicon nitride film 5 to be a gate electrode are formed on the semiconductor substrate 1 (FIG. 1A). Next, after forming a predetermined pattern on the silicon nitride film 5 and the polycrystalline silicon film 4 (FIG. 1B), heat treatment is performed in a high temperature oxidizing atmosphere,
A silicon dioxide film 6 is formed on the side wall of the polycrystalline silicon film pattern (FIG. 1C). Then, the exposed gate oxide film 3 is removed by etching to form an opening 7 in the exposed semiconductor substrate (FIG. 1D). Next, after forming an insulating film 8 such as a silicon dioxide film on the entire surface, a part of the insulating film 8 on the polycrystalline silicon film 4 and on the opening portion 7, that is, directly below the gate oxide film is removed to remove the insulating film 8. The crystalline silicon film and the semiconductor substrate 9 above the opening are exposed (FIG. 1F). Next, after forming a refractory metal film 10 of dungsten, titanium or the like on the entire surface (FIG. 1G), high temperature treatment is performed. By the heat treatment, the exposed regions of the polycrystalline silicon film and the semiconductor substrate and the refractory metal film react with each other to form silicide layers 11 and 12. The exposed region 9 of the semiconductor substrate, that is, the silicide layer 12 formed on the side wall of the opening is used as a source and a drain.
次に、高融点金属膜10の一部を選択的に除去してソー
ス,ドレイン電極とし、しかるのち前記露出半導体基板
側壁に形成したシリサイド層12より下部の開孔部の高融
点金属膜10上に二酸化硅素膜などの絶縁物膜13を埋込み
形成する(第1図H)。こうして膜10よりなるソース,
ドレイン電極配線をソース,ドレイン領域により下方に
形成したMOSトランジスタが得られる。Then, a part of the refractory metal film 10 is selectively removed to form source and drain electrodes, and then, on the refractory metal film 10 in the openings below the silicide layer 12 formed on the side wall of the exposed semiconductor substrate. Then, an insulator film 13 such as a silicon dioxide film is buried and formed (FIG. 1H). Thus the source consisting of the membrane 10,
A MOS transistor is obtained in which the drain electrode wiring is formed below the source and drain regions.
発明の効果 以上のように、本発明によればソースおよびドレインを
半導体基板の開孔部の側壁にシリサイド層で形成するた
め、半導体基板表面での占有面積が少なく、かつ浅い接
合を有するソースおよびドレイン領域を形成することが
でき、高密度が半導体集積回路を構成することができ
る。また半導体基板に形成した開孔部にソースおよびド
レイン電極接続配線である高融点金属膜を埋込み形成す
るため、半導体基板上に形成する配線層が少なく、した
がってゲート電極との交差および他の配線との交差が少
ないため断線およびショートが少なく歩留の高い半導体
集積回路を形成することができる。As described above, according to the present invention, since the source and the drain are formed by the silicide layer on the side wall of the opening of the semiconductor substrate, the area occupied on the surface of the semiconductor substrate is small, and the source and the drain having a shallow junction are formed. A drain region can be formed, and a high density semiconductor integrated circuit can be formed. In addition, since the refractory metal film which is the source and drain electrode connecting wiring is buried in the opening formed in the semiconductor substrate, the wiring layer formed on the semiconductor substrate is small, and therefore the intersection with the gate electrode and other wirings are not formed. Since there are few intersections between the two, it is possible to form a semiconductor integrated circuit with less disconnection and short circuit and high yield.
第1図は本発明の一実施例を説明するための工程断面
図、第2図は従来例を説明するための工程断面図であ
る。 1……半導体基板、2,8,13……絶縁物膜、3……ゲート
酸化膜、4……多結晶硅素膜、5……窒化硅素膜、6…
…二酸化硅素膜、10……高融点金属膜、11,12……シリ
サイド層。FIG. 1 is a process sectional view for explaining an embodiment of the present invention, and FIG. 2 is a process sectional view for explaining a conventional example. 1 ... Semiconductor substrate, 2,8,13 ... Insulator film, 3 ... Gate oxide film, 4 ... Polycrystalline silicon film, 5 ... Silicon nitride film, 6 ...
… Silicon dioxide film, 10 …… Refractory metal film, 11,12 …… Silicide layer.
Claims (1)
び多結晶硅素膜からなるゲート電極を選択的に形成し、
前記ゲート電極を食刻マスクとして、前記半導体基板を
食刻し、開孔部を形成する工程と、前記開孔部側壁に絶
縁膜を形成した後、前記ゲート電極に接した前記半導体
基板の側壁を露出する工程と、全面に高融点金属を形成
する工程と、高温処理により、前記ゲート電極の多結晶
硅素膜および露出半導体基板と、前記高融点金属とのシ
リサイド層を形成する工程とを備え、前記高融点金属を
選択的に食刻し、前記半導体基板上のシリサイド層と接
続された高融点金属パターンを形成してなる半導体装置
の製造方法。1. A gate electrode composed of a gate oxide film and a polycrystalline silicon film is selectively formed on a semiconductor substrate of one conductivity type,
Etching the semiconductor substrate using the gate electrode as an etching mask to form an opening, and forming an insulating film on the sidewall of the opening, and then forming a side wall of the semiconductor substrate in contact with the gate electrode And a step of forming a refractory metal on the entire surface, and a step of forming a silicide layer of the polycrystalline silicon film of the gate electrode and the exposed semiconductor substrate and the refractory metal by high temperature treatment. A method of manufacturing a semiconductor device, wherein the refractory metal is selectively etched to form a refractory metal pattern connected to a silicide layer on the semiconductor substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62154646A JPH0766967B2 (en) | 1987-06-22 | 1987-06-22 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62154646A JPH0766967B2 (en) | 1987-06-22 | 1987-06-22 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63318780A JPS63318780A (en) | 1988-12-27 |
JPH0766967B2 true JPH0766967B2 (en) | 1995-07-19 |
Family
ID=15588776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62154646A Expired - Lifetime JPH0766967B2 (en) | 1987-06-22 | 1987-06-22 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0766967B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2538857B2 (en) * | 1984-02-14 | 1996-10-02 | 株式会社東芝 | Method for manufacturing semiconductor device |
JPS60207367A (en) * | 1984-03-31 | 1985-10-18 | Toshiba Corp | Manufacture of complementary type semiconductor device |
-
1987
- 1987-06-22 JP JP62154646A patent/JPH0766967B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63318780A (en) | 1988-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1070281A (en) | Semiconductor device and fabrication thereof | |
JPS6321351B2 (en) | ||
JP2749750B2 (en) | Manufacturing method of integrated circuit chip | |
JP3229665B2 (en) | Method of manufacturing MOSFET | |
JPH0677428A (en) | Semiconductor memory and manufacture thereof | |
JP2537202B2 (en) | Semiconductor device | |
JPH0766967B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH03263330A (en) | Semiconductor device | |
JP2792089B2 (en) | Method for manufacturing semiconductor memory device | |
JP2672596B2 (en) | Method for manufacturing semiconductor device | |
JP2773205B2 (en) | Semiconductor memory | |
JP3271090B2 (en) | Semiconductor device manufacturing method | |
JP2741964B2 (en) | Method for manufacturing semiconductor device | |
JP2604487B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH09139353A (en) | Manufacture of field-effect-type semiconductor device | |
JPH08316303A (en) | Semiconductor device and its manufacturing method | |
JPH07105492B2 (en) | Method for manufacturing semiconductor device | |
JP2000040817A (en) | Semiconductor device and its manufacture | |
JPH1032264A (en) | Semiconductor device and manufacture thereof | |
JPH1126756A (en) | Manufacture of semiconductor device | |
JPS63252483A (en) | Manufacture of semiconductor device | |
JPH08203885A (en) | Fabrication of semiconductor device | |
JPH01241163A (en) | Semiconductor device and manufacture thereof | |
JPH06188216A (en) | Semiconductor device and manufacture thereof | |
JPH0685204A (en) | Manufacture of semiconductor device |