JPH0766084B2 - Polarizing / splitting element composed of shaped birefringent body and manufacturing method thereof - Google Patents

Polarizing / splitting element composed of shaped birefringent body and manufacturing method thereof

Info

Publication number
JPH0766084B2
JPH0766084B2 JP2221671A JP22167190A JPH0766084B2 JP H0766084 B2 JPH0766084 B2 JP H0766084B2 JP 2221671 A JP2221671 A JP 2221671A JP 22167190 A JP22167190 A JP 22167190A JP H0766084 B2 JPH0766084 B2 JP H0766084B2
Authority
JP
Japan
Prior art keywords
transparent
bodies
polarization separation
polarization
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2221671A
Other languages
Japanese (ja)
Other versions
JPH04104103A (en
Inventor
和男 白石
彰二郎 川上
Original Assignee
彰二郎 川上
和男 白石
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彰二郎 川上, 和男 白石 filed Critical 彰二郎 川上
Priority to JP2221671A priority Critical patent/JPH0766084B2/en
Publication of JPH04104103A publication Critical patent/JPH04104103A/en
Publication of JPH0766084B2 publication Critical patent/JPH0766084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、1本の光束を空間的に平行で、かつ、偏波方
向が互いに直交する2本の直線偏波光束(常光線、異常
光線に対応)に分離、あるいは逆に合成する偏光分離素
子に関するものであり、特に形状複屈折を利用して大き
な偏光分離性能や広い開口を有する偏光分離素子及びそ
の製造方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to two linearly polarized light fluxes (an ordinary ray and an anomalous ray) in which one light flux is spatially parallel and whose polarization directions are orthogonal to each other. The present invention relates to a polarization separation element that separates light beams (corresponding to light rays) or reversely combines, and particularly relates to a polarization separation element having a large polarization separation performance and a wide aperture by utilizing shape birefringence, and a manufacturing method thereof.

[従来の技術] 従来より、1本の光束を空間的に平行で、かつ、偏波方
向が互いに直交する2本の直線偏波光束(常光線、異常
光線に対応)に分離、あるいは逆に合成する偏光分離素
子としては、方解石やルチル等の結晶がある。
[Prior Art] Conventionally, one light beam is separated into two linearly polarized light beams (corresponding to ordinary ray and extraordinary ray) which are spatially parallel and whose polarization directions are orthogonal to each other, or vice versa. Crystals such as calcite and rutile are used as the polarized light separating element to be synthesized.

この場合、該結晶の複屈折性は、入射光束に対して該結
晶の光学的主軸を傾斜させることにより生ずるものであ
り、該結晶の材質自体の機能に基づくものである。
In this case, the birefringence of the crystal is caused by inclining the optical principal axis of the crystal with respect to the incident light beam, and is based on the function of the material itself of the crystal.

しかしながら、ルチルや方解石等の結晶から成る偏光分
離素子には、以下のようにいくつかの問題があった。
However, the polarization separation element made of crystals such as rutile and calcite has some problems as follows.

(1)偏光分離性能が低いこと 1本の入射光束が結晶中で2本の直線偏波光束に分離す
る偏光分離角は、ルチル及び方解石のいずれも約5.7゜
であり、2本の偏波光束について所定の分離幅を得るた
めには、ルチル及び方解石の厚みは該分離幅の10倍程度
が必要とされるので、必然的に光波回路の大型化を招
き、光路長の増加に伴う光の回折損失の増大を生じさせ
る。
(1) Poor polarization separation performance The polarization separation angle at which one incident light beam is separated into two linearly polarized light beams in the crystal is approximately 5.7 ° for both rutile and calcite, and the two polarizations In order to obtain a predetermined separation width for the luminous flux, the thickness of rutile and calcite needs to be about 10 times the separation width, which inevitably leads to an increase in the size of the lightwave circuit and increases the optical path length. Causes an increase in the diffraction loss of.

(2)大きな開口の素子を得難いこと 天然産のルチルや方解石は均質で大型のものが得難いの
で、量産が困難であり、また、人工的に得られるルチル
についても大型で均質な結晶の育成や量産は難しく、従
って、開口を大きくして多数の入射光束を夫々同時に偏
光分離することができない。
(2) Difficult to obtain a device with a large opening Natural rutile and calcite are difficult to obtain because they are homogeneous and large, so mass production is difficult, and even for artificially obtained rutile, it is possible to grow large and homogeneous crystals. Mass production is difficult, and therefore it is not possible to enlarge the aperture and polarize and separate a large number of incident light beams at the same time.

(3)自然界からの採掘に限界があること 一方、偏光を分離する効率は、複屈折の大きさが大なる
程高くなることが知られているが、より優れた偏光分離
性能を得るには、より大きい複屈折をもつ結晶が必要で
あった。しかし、従来使用されてきたルチルや方解石以
上の複屈折をもつ結晶を、自然界から探すには限界があ
る。同時に、そのような結晶で大型で安定なものを得る
見込みは殆ど無い。
(3) There is a limit to mining from the natural world. On the other hand, it is known that the efficiency of separating polarized light increases as the magnitude of birefringence increases. , A crystal with greater birefringence was needed. However, there is a limit in searching the natural world for a crystal having a birefringence higher than that of rutile or calcite used conventionally. At the same time, it is unlikely that such crystals will be large and stable.

(4)加工等の取扱上に難があること ルチルは硬度が高過ぎるので、切断や研磨などの加工が
難しく、また、方解石は水分に対する溶解性が高く、耐
環境特性が悪い他、機械的に脆いという問題がある。
(4) Difficult to handle such as processing Rutile has too high hardness, so processing such as cutting and polishing is difficult, and calcite has high solubility in water, poor environmental resistance, and mechanical properties. There is a problem of being brittle.

他方、光学の分野では、形状異方性を有する微小透明体
を規則的に配置させると、人工的に複屈折体が得られる
ことが知られており、これを形状複屈折と称している。
例えば、本願出願前の刊行物(「光学の原理」第4版、
M.ボルン及びE.ウルフ共著;1970年、パーガモン・プレ
ス刊、第705〜708頁)には、屈折率の異なる2種の透明
体を多数積層し、積層面の法線方向を光学軸としたとき
の複屈折、あるいは細い円筒状の無数の透明体が屈折率
の異なる他の透明体中に存在する場合の複屈折について
記載されている。
On the other hand, in the field of optics, it is known that a birefringent body can be artificially obtained by regularly arranging minute transparent bodies having shape anisotropy, and this is called shape birefringence.
For example, publications before the present application (“Principles of Optics”, 4th edition,
M. Born and E. Wolf, co-authored; 1970, published by Pergamon Press, pp. 705-708), in which a large number of two kinds of transparent bodies having different refractive indexes are laminated, and the direction normal to the laminated surface is the optical axis. It describes the birefringence in the case of the above, or the birefringence when an innumerable thin cylindrical transparent body is present in another transparent body having a different refractive index.

なお、特開昭61−87101号公報には、前記2種の透明体
を多数積層した具体的な構成例として、二酸化ケイ素、
及び五酸化二タンタル又は五酸化ニオブを用いたものが
記載されている。
It should be noted that, in JP-A-61-87101, as a specific structural example in which a large number of the above two kinds of transparent bodies are laminated, silicon dioxide,
And those using ditantalum pentoxide or niobium pentoxide are described.

さらに、前記形状複屈折の解析については、本願出願前
の論文(「巨大分子の形状複屈折」;W.L.ブラッグ及び
A.B.ピッパード,アクタクリスタル 6(1953)、865
〜867)等に記載されている。
Further, regarding the analysis of the shape birefringence, a paper before the application of the present application (“shape birefringence of macromolecule”; WL Bragg and
AB Pippard, Actor Crystal 6 (1953), 865
~ 867) and the like.

[発明が解決しようとする課題] しかしながら、上記形状複屈折に関する従来技術は、単
に形状複屈折を発生させたり、その大きさを精密に制御
することに止まり、それ以上の機能拡大や性能向上に寄
与するものではなかった。
[Problems to be Solved by the Invention] However, the conventional techniques relating to the above-described shape birefringence are limited to merely generating the shape birefringence and precisely controlling the size thereof, and to further expand the function and improve the performance. It did not contribute.

また、例えば、本願出願前の論文(S.ヤコブ、Y.アサハ
ラ、T.イズミタニ;アプライドオプティックス,21(no.
24,1982)4526〜4532)には、空気を含む多孔質ガラス
を加熱して延伸することにより、形状複屈折を得る技術
が記載されているが、少なくとも偏光を分離する機能に
ついては何等開示されてはいない。
In addition, for example, papers before the application of the present application (S. Jacob, Y. Asahara, T. Izumitani; Applied Optics, 21 (no.
24,1982) 4526 to 4532) describes a technique for obtaining a shape birefringence by heating and stretching a porous glass containing air. However, nothing is disclosed about at least the function of separating polarized light. Not.

本発明は、上記従来技術の課題を解決するべくなされた
ものであり、大きな偏光分離性能を有し、さらには広い
開口を有し、耐環境特性や加工性に優れたものとする
等、形状複屈折体から成る偏光分離素子及びその製造方
法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems of the prior art, has a large polarization separation performance, further has a wide opening, and has excellent environmental resistance characteristics and workability, etc. An object of the present invention is to provide a polarization separation element made of a birefringent body and a method for manufacturing the same.

〔課題を解決するための手段〕[Means for Solving the Problems]

請求項1の発明は、屈折率の異なる2種の透明薄膜を交
互に多数積層させて形状複屈折を有する透明積層体と
し、その積層体の積層面を光の人射方向に対して斜めに
なるように配置し、かつ、光の入射および出射位置をこ
の積層体の積層面の斜め断面内とした。これにより形状
複屈折を有する透明積層体が偏光を分離する機能をもつ
ようになり、しかも2種の透明薄膜の屈折率の組み合わ
せによって、偏光分性能を制御することがでる。
According to the invention of claim 1, a large number of two kinds of transparent thin films having different refractive indexes are alternately laminated to form a transparent laminated body having shape birefringence, and the laminated surface of the laminated body is oblique to the direction of light irradiation. And the positions of incidence and emission of light were within the oblique cross section of the stacking surface of this stack. As a result, the transparent laminate having the shape birefringence has the function of separating polarized light, and the polarization component performance can be controlled by combining the refractive indexes of two kinds of transparent thin films.

請求項2の発明は、請求項1における2種の薄膜状透明
体のうちの1種の薄膜透明体がシリコンで構成した。こ
れにより、他の透明体との大きな屈折率差を有するもの
が容易に得られることになる。
According to the invention of claim 2, one of the two kinds of thin film-shaped transparent bodies in claim 1 is made of silicon. As a result, a material having a large difference in refractive index from other transparent bodies can be easily obtained.

請求項3の発明は、請求項1記載の形状複屈折を有する
透明積層体の製造方法であり、スパッタリング法、化学
的気相成長法、あるいはプラズマ化学気相成長法により
製造できる。
The invention of claim 3 is the method for manufacturing a transparent laminate having the shape birefringence of claim 1, which can be manufactured by a sputtering method, a chemical vapor deposition method, or a plasma chemical vapor deposition method.

請求項4の発明は、2種の透明体のうちの一方を他の長
細体とし、長さ方向を一定ほ方向に揃え、屈折率の異な
る他の透明体中に離散的に配置させて全体を形状複屈折
体にした上で、該長細体の長さ方向が光の入射方向に対
して斜めになるように配置させて偏光分離機能をもたせ
たものである。この構造は、薄膜を多数積層する必要が
ないので、大きな開口をもつ偏光分離素子を製造するの
に適している。
According to a fourth aspect of the present invention, one of the two types of transparent bodies is another elongated body, the length directions thereof are aligned in a constant direction, and the transparent bodies are discretely arranged in another transparent body having a different refractive index. The whole is formed into a shape birefringent body, and the elongated body is arranged so that the lengthwise direction thereof is oblique to the incident direction of light, thereby having a polarization separating function. This structure is suitable for manufacturing a polarization separation element having a large aperture because it is not necessary to stack a large number of thin films.

請求項5の発明は、請求項4の発明において、透明ガラ
ス又は透明プラスチック中に長細状の気泡や透明体が存
在する、形状複屈折体を用いた偏光分離素子を特徴とし
ている。空気は屈折率が最も低いので、他の透明体との
屈折率差が大きくなり、形状複屈折を大きくできるた
め、偏光分離性能が大きくなる。
The invention of claim 5 is characterized in that, in the invention of claim 4, a polarization separation element using a shape birefringent body in which elongated bubbles or transparent bodies are present in transparent glass or transparent plastic. Since air has the lowest refractive index, the difference in the refractive index with other transparent bodies becomes large, and the shape birefringence can be made large, so that the polarization separation performance becomes large.

請求項6の発明は、請求項5の発明に係わる偏光分離素
子の製造方法であり、広開口の素子を安価に製造でき
る。
The invention of claim 6 is the method for manufacturing a polarization beam splitting element according to the invention of claim 5, wherein an element having a wide aperture can be manufactured at low cost.

〔作用〕[Action]

請求項1の構成では、第1図及び第2図に示すように、
偏光分離素子10を構成する積層体における積層面10cの
斜め断面10a内に入射した光束Rは、互いに偏波が直交
する常光Eoと異常光Eeに分離する。即ち、偏光分離素子
10内では、常光Eoは入射光束Rの入射方向と同一方向
に、また異常光Eeは入射光束Rの方向と積層面10cのな
す角度θ及び形状複屈折の値で決まる角度の方向に屈折
し、両光は分離するため、偏光分離素子としての機能を
もつようになる。形状複屈折の大きさ、あるい入射光束
Rと積層面10cのなす角度θを調節すれば、偏光の分離
角φを制御することができる。該偏光分離素子10から出
射する両光Eo、Eeはいずれも入射光束Rと同じ方向に出
射する。
In the structure of claim 1, as shown in FIG. 1 and FIG.
The light flux R incident on the oblique cross section 10a of the stacking surface 10c of the stack constituting the polarization separation element 10 is split into ordinary light Eo and extraordinary light Ee whose polarizations are orthogonal to each other. That is, the polarization separation element
Within 10, the ordinary light Eo is refracted in the same direction as the incident direction of the incident light beam R, and the extraordinary light Ee is refracted in the direction of the angle θ formed by the laminated surface 10c with the direction of the incident light beam R and the angle determined by the value of the shape birefringence. Since both lights are separated, they have a function as a polarization separation element. The separation angle φ of the polarized light can be controlled by adjusting the size of the shape birefringence or the angle θ formed by the incident light beam R and the laminated surface 10c. Both the lights Eo and Ee emitted from the polarization separation element 10 are emitted in the same direction as the incident light flux R.

この場合、請求項2の構成とすることにより、大きな形
状複屈折を有するものが容易に得られる。
In this case, with the structure of claim 2, a material having a large shape birefringence can be easily obtained.

請求項3の製造方法によれば、請求項1に示される構造
を有する偏光分離素子を容易に製造することができる。
According to the manufacturing method of claim 3, it is possible to easily manufacture the polarization beam splitting element having the structure shown in claim 1.

請求項4の構成によれば、第5図及び第6図に示すよう
に、偏光分離素子20への入射光束Rに対して斜めに配向
した多数の透明長細体3を含む透明体4に人射した光束
Rは、常光Eoと異常光Eeに分離する。即ち、常光Eoは人
射光束Rの入射方向と同一方向に、また、異常光Eeは入
射光束Rの入射方向と透明長細体3の配向方向となす角
度及び形状複屈折の値で決まる角度の方向に屈折し、両
光は分離するため、偏光分離素子としての機能が生じ
る。この場合、形状複屈折の大きさ、あるいは入射光R
と透明長細体3の配向方向なす角度を調節すれば、偏光
の分離角を制御することができる。偏光分離素子20から
出射する両光Eo、Eeはいずれも入射光束Rの入射方向と
同一方向に出射する。
According to the structure of claim 4, as shown in FIG. 5 and FIG. 6, the transparent body 4 including a large number of transparent elongated bodies 3 obliquely oriented with respect to the incident light beam R to the polarization separation element 20 is provided. The luminous flux R emitted by a person is separated into an ordinary light Eo and an extraordinary light Ee. That is, the ordinary light Eo is in the same direction as the incident direction of the incident light beam R, and the extraordinary light Ee is the angle formed by the incident direction of the incident light beam R and the orientation direction of the transparent elongated body 3 and the angle determined by the value of the shape birefringence. Since the light is refracted in the direction of and both lights are separated, a function as a polarization separation element occurs. In this case, the size of the shape birefringence or the incident light R
By adjusting the angle formed by the alignment direction of the transparent elongated body 3, the polarization separation angle can be controlled. Both the lights Eo and Ee emitted from the polarization separation element 20 are emitted in the same direction as the incident direction of the incident light flux R.

請求項5の構成によれば、ガラスやプラスチックなどの
安価な材料を用いて、大きな開口をもつ請求項4記載の
偏光分離素子を容易に製造することができる。
According to the structure of claim 5, an inexpensive material such as glass or plastic can be used to easily manufacture the polarization separation element of claim 4 having a large opening.

請求項6の製造方法によれば、空気を含む透明体を加熱
し、延伸するという簡単な工程により、請求項5に示さ
れる構造を有する偏光分離素子を容易に製造することが
できる。
According to the manufacturing method of claim 6, the polarization separation element having the structure shown in claim 5 can be easily manufactured by a simple process of heating and stretching a transparent body containing air.

[実施例] 第1図及び第2図は、本発明に係る複屈折体から成る偏
光分離素子の第1実施例を示すものである。
[Embodiment] FIGS. 1 and 2 show a first embodiment of a polarization beam splitting element comprising a birefringent body according to the present invention.

この複屈折体から成る偏光分離素子10は、全体として薄
板状に形成されており、2種の透明体たる透明薄膜1、
2を交互に多数枚積層して成る。前記透明薄膜1は、水
素入りアモルフアスシリコンにて形成され、透明薄膜2
は、石英にて形成されている。
The polarization splitting element 10 composed of this birefringent body is formed in a thin plate shape as a whole, and the transparent thin film 1 which is two kinds of transparent bodies,
It is formed by laminating a large number of 2 alternately. The transparent thin film 1 is made of amorphous silicon containing hydrogen, and the transparent thin film 2
Are made of quartz.

ここで、水素入りアモルフアスシリコン及び石英は、波
長1.3μmの入射光に対して、屈折率が夫々3.823、1.44
6であるものを用いる。また、両薄膜1、2の各厚み
は、入射光の波長に比べて短かくなるように設定され
る。
Here, hydrogen-containing amorphous silicon and quartz have refractive indices of 3.823 and 1.44, respectively, for incident light with a wavelength of 1.3 μm.
Use the one that is 6. Further, the thicknesses of the thin films 1 and 2 are set to be shorter than the wavelength of incident light.

本実施例に係る偏光分離素子10は、少くとも第1図に示
すY方向については構造的に一様であり、両薄膜1、2
の積層面(該積層面に平行な方向を想像線10cにて示し
ている)は、入射光Rの入射方向(入射側の斜め断面10
aの法線方向)であるZ方向に対して所定の角度だけ傾
斜させている。換言すれば、前記積層面は、X方向に平
行な入射側の斜め断面10a及びこれに平行な出射側の斜
め断面10bと夫々所定の交角θを有すようにしている。
The polarization separation element 10 according to this embodiment is structurally uniform at least in the Y direction shown in FIG.
Of the laminated surface (the direction parallel to the laminated surface is indicated by an imaginary line 10c) is the incident direction of the incident light R (oblique cross section 10 on the incident side).
It is inclined by a predetermined angle with respect to the Z direction which is the normal direction of a). In other words, the laminated surface has a predetermined crossing angle θ with the incident side oblique section 10a parallel to the X direction and the emitting side oblique section 10b parallel thereto.

なお、かかる構成のものを作製するには下記のような工
程を踏む。まず、高周波スパツタリング法により、アル
ゴン及び水素の所定混合比の雰囲気中でシリコンをター
ゲットとして、水素入りアモルファスシリコンの薄膜を
例えば50nmの厚みで石英基板上に形成し、続いて、高周
波スパッタリング法により、石英をターゲットとしてア
ルゴンと酸素の雰囲気中でシリコンの薄膜を例えば50nm
の厚みで形成し、以下両薄膜を交互に堆積(例えば1000
周期)させる。この堆積により得られた積層体を積層面
に対して所定の角度(前記入射光束Rの入射方向積層面
とのなす角度θ)で薄板状に切り出した後、例えば100
μmの厚みに研磨する。
It should be noted that the following steps are taken in order to manufacture such a structure. First, by high-frequency sputtering method, targeting silicon in an atmosphere of a predetermined mixture ratio of argon and hydrogen, to form a thin film of hydrogen-containing amorphous silicon on a quartz substrate with a thickness of, for example, 50 nm, followed by high-frequency sputtering method, A thin film of silicon, for example, 50 nm in an atmosphere of argon and oxygen with quartz as the target
And then deposit both thin films alternately (for example, 1000
Cycle). The laminated body obtained by this deposition is cut into a thin plate at a predetermined angle with respect to the laminated surface (angle θ formed by the incident light flux R and the laminated surface in the incident direction), and then, for example, 100
Polish to a thickness of μm.

なお、前記薄膜1、2は、前記スパッタリング法により
形成する以外に、化学的気相成長法(CVD)、あるいは
プラズマ化学気相成長法(PCVD)等により形成すること
ができる。
The thin films 1 and 2 can be formed by a chemical vapor deposition method (CVD), a plasma chemical vapor deposition method (PCVD), or the like, in addition to the sputtering method.

本実施例は上記のように構威されているので、第2図に
示すように、同図の左方から所定の方向、換言すれば前
記Z方向に沿って光が入射すると、該入射光RはY方向
に偏波した常光Eoと、X方向に偏波した異常光Eeとに所
定の偏光分離角φで分離される。
Since the present embodiment is constructed as described above, as shown in FIG. 2, when light is incident along the predetermined direction from the left side of FIG. The R is separated into the ordinary light Eo polarized in the Y direction and the extraordinary light Ee polarized in the X direction at a predetermined polarization separation angle φ.

本実施例の構成では、前記2種の薄膜1、2の屈折折率
の差分が大きくなると、形状複屈折性が大きくなり、前
記分離角φは、より大きなものとなる。
In the structure of the present embodiment, when the difference in refractive index between the two types of thin films 1 and 2 becomes large, the shape birefringence becomes large, and the separation angle φ becomes larger.

第3図は、波長1.3μmの入射光を用い、常光Eoと異常
光Eeについての夫々の屈折率nの変化を、占績率(水素
入りアモルフアスシリコンが石英中に占める体積の割
合)Saに対して示したものである。
FIG. 3 shows the change in the refractive index n of the ordinary ray Eo and the extraordinary ray Ee using incident light with a wavelength of 1.3 μm in the occupation ratio (the ratio of the volume of hydrogen-containing amorphous silicon in quartz) Sa. It is shown to the contrary.

同図によれば、常光Eo、及び異常光Eeについての各屈折
率の差は最大で1以上になる。これは従来のルチルや方
解石を用いたものが夫々0.258,0.160であるのに対し、
極めて大き値となっている。
According to the figure, the difference in refractive index between the ordinary ray Eo and the extraordinary ray Ee is 1 or more at maximum. This is 0.258 and 0.160 respectively using conventional rutile and calcite, whereas
It is extremely large.

前記両透明体は上記実施例のものに限定されるものでは
なく、例えば一方の透明体として厚さ50nmのアモルファ
スニ酸化チタンの薄膜を、他方の透明体として同じ厚さ
の石英の薄膜を用い、これらを交互に積層(例えば1000
周期)させることによっても上記実施例と同様な偏光分
離機能を示す。すなわち、波長1.3μmの光を入射する
と分離角φが5゜で常光Eoと異常光Eeとに分離する。
The both transparent bodies are not limited to those in the above-mentioned embodiment, for example, one transparent body is a thin film of amorphous titanium dioxide having a thickness of 50 nm, and the other transparent body is a quartz thin film of the same thickness. , Stack them alternately (eg 1000
The same polarization separation function as in the above-described embodiment is exhibited by the periodicity. That is, when light having a wavelength of 1.3 μm is incident, the light is separated into ordinary light Eo and extraordinary light Ee at a separation angle φ of 5 °.

かかる構成のものを作製するには、上記説明と同様に下
記のような工程を踏む。
In order to manufacture such a structure, the following steps are performed as in the above description.

まず、反応性直流スパッタリング法によりチタンをター
ゲットとし、酸素とアルゴンの雰囲気中で反応性直流ス
パッタリング法によりアモルファスニ酸化チタン薄膜を
石英基板上に形成し、続いて、高周波スパッタリング法
により、該アモルファスニ酸化チタン薄膜上に石英の薄
膜を形成し、以下両薄膜を交互に堆積させる。この堆積
により得られた積層体を積層面に対して、例えば45゜で
薄板状に切り出した後、例えば厚さ100μmに研磨す
る。
First, a titanium target is formed by a reactive DC sputtering method, an amorphous titanium dioxide thin film is formed on a quartz substrate by a reactive DC sputtering method in an atmosphere of oxygen and argon, and then the amorphous nitric oxide film is formed by a high frequency sputtering method. A quartz thin film is formed on the titanium oxide thin film, and then both thin films are alternately deposited. The laminated body obtained by this deposition is cut into a thin plate shape at, for example, 45 ° with respect to the laminated surface, and then polished to a thickness of 100 μm, for example.

第4図は、前記偏光分離角φの変化を積層面に対する入
射光の傾斜角θに対して示したものである。
FIG. 4 shows the change in the polarization separation angle φ with respect to the inclination angle θ of the incident light with respect to the laminated surface.

すなわち、曲線Paは、上記第1図及び第2図に示す構成
の場合(すなわち、水素入りアモルフアスシリコンの薄
膜と石英の薄膜を積層した多層膜構造のもの)、曲線Pt
はアモルフアスニ酸化チタンの薄膜と石英の薄膜を積層
した多層膜構造の場合を示している。
That is, the curve Pa is the curve Pt in the case of the configuration shown in FIG. 1 and FIG. 2 (that is, the multilayer film structure in which the hydrogen-containing amorphous silicon thin film and the quartz thin film are laminated).
Shows a case of a multilayer film structure in which a thin film of amorphous titanium dioxide and a thin film of quartz are laminated.

なお、曲線Pc、Prは従来構造のもの、すなわち方解石、
ルチルを用いて構成した場合の結果を、それらの光学軸
と入射光とのなす傾斜角について示している。本発明の
前記曲線Paから、傾斜角θが約57゜付近で約23゜という
最大の幅光分離角φが得られることが理解できる。この
値は曲線Pc、Prで示す従来構造の場合に比べ約4倍の大
きさである。
The curves Pc and Pr have the conventional structure, that is, calcite,
The results in the case of using the rutile are shown for the tilt angles formed by those optical axes and the incident light. From the curve Pa of the present invention, it can be seen that the maximum width light separation angle φ of about 23 ° is obtained when the inclination angle θ is about 57 °. This value is about four times as large as that of the conventional structure shown by the curves Pc and Pr.

次に、第5図及び第6図は本発明の第2実施例に係る偏
光分離素子を示すものであり、この形状複屈折体から成
る偏光分離素子20は、全体として薄板状に形成されてお
り、異なる屈折率をもつ2種の透明体は、夫々多数の長
細体3、及び該各長細体3を離散的に埋設した透明基板
母体4である。前記各長細体3は、透明基板母体4内で
一定の方位に揃うように、すなわち長細体3の長さ方向
(想像線20cで示す方向)と入射光Rとが一定の角度を
なすように配列されている。ここで、前記長細体3は、
例えば気泡から成り、前記透明基板母体4はガラス又は
透明プラスチックから成る。
Next, FIGS. 5 and 6 show a polarization beam splitting element according to the second embodiment of the present invention. The polarization beam splitting element 20 composed of this shape birefringent body is formed as a thin plate as a whole. The two types of transparent bodies having different refractive indexes are a large number of elongated bodies 3 and a transparent substrate matrix 4 in which the elongated bodies 3 are discretely embedded. The elongated bodies 3 are aligned in a fixed orientation within the transparent substrate matrix 4, that is, the length direction of the elongated bodies 3 (direction indicated by an imaginary line 20c) and the incident light R form a constant angle. Are arranged as follows. Here, the elongated body 3 is
For example, the transparent substrate matrix 4 is made of bubbles, and is made of glass or transparent plastic.

本第2実施例は上記のように構成されているので、長細
体3の長手方向に対して傾斜した方向、すなわち第6図
の左方からZ方向に(入射側の斜め断面20aに垂直方向
に)光が入射すると、該入射光はY方向に偏波した常光
Eoと、X方向に偏波した異常光Eeとに所定の分離角φで
分離され、両分離光は出射側を斜め断面20bから前記Z
方向と平行に出射する。
Since the second embodiment is configured as described above, it is in a direction inclined with respect to the longitudinal direction of the elongated body 3, that is, from the left side in FIG. 6 to the Z direction (perpendicular to the oblique cross section 20a on the incident side). (In the direction), the incident light is the ordinary light polarized in the Y direction.
Eo and extraordinary light Ee polarized in the X direction are separated at a predetermined separation angle φ.
Emit in parallel to the direction.

第7図は、上記第2実施例において、波長1.3μmの入
射光を使用すると共に、多数の気泡を配した透明基板母
体4として屈折率1.5のガラスを用い、常光Eoと異常光E
eついての夫々の屈折率nの変化を、占績率(空気がガ
ラス中に占める体積の割合)Snに対して示したものであ
るが、両光Eo、Eeの屈折率の差は最大で0.04である。す
なわち、第7図に示すように、そのときの各屈折率を
ne、noとすると、ne−no=1.27−1.23=0.04となる。
FIG. 7 shows that, in the second embodiment, incident light having a wavelength of 1.3 μm is used, and glass having a refractive index of 1.5 is used as the transparent substrate matrix 4 in which a large number of bubbles are arranged.
The change in each refractive index n for e is shown with respect to the occupation ratio (the ratio of the volume occupied by the air in the glass) Sn. The difference between the refractive indices of the two lights Eo and Ee is 0.04 at maximum. Is. That is, as shown in FIG.
n e, When n o, a n e -n o = 1.27-1.23 = 0.04 .

第8図は、本第2実施例の場合における前記偏光分離角
φの変化を長細体に配向方向に対する入射光の傾斜角θ
に対して示したもので、傾斜角θが約45゜付近で偏光分
離角φが最大になることが理解できる。なお、上記説明
では一方の透明体である長細体3として気泡を用いた場
合につき説明したが、これに限定されるものではなく、
例えばカルコゲンガラス等の透明物質を用いてもよい。
FIG. 8 shows the change of the polarization splitting angle φ in the case of the second embodiment in which the slender angle θ of the incident light with respect to the alignment direction in the elongated body.
It can be understood that the polarization separation angle φ becomes maximum when the tilt angle θ is about 45 °. In the above description, the case where bubbles are used as the elongated body 3 which is one transparent body has been described, but the present invention is not limited to this.
For example, a transparent substance such as chalcogen glass may be used.

また、長細体3と透明基板母体4の組合せを変えて、屈
折率の各屈折率の差の異なる組合せのものを用いれば上
記第1の実施例のように、屈折率の差に応じて所望の偏
光分離角を有する偏光分離素子を得ることができる。
Further, if the combination of the elongated body 3 and the transparent substrate matrix 4 is changed and a combination having a different refractive index difference is used, as in the first embodiment, the refractive index difference may be changed according to the difference. A polarization beam splitting element having a desired polarization beam splitting angle can be obtained.

[発明の効果] 以上のように本発明は形状複屈折体において、その多層
薄膜面あるいは多数の長細体の配向方向を、光の人射方
向に対して傾けることによって偏光を分離させる効果を
もたせたものである。
[Effects of the Invention] As described above, the present invention has the effect of separating polarized light by inclining the orientation direction of the multilayer thin film surface or a large number of elongated bodies in the shape birefringent body with respect to the direction of light irradiation. It is something that was held.

請求項1の発明によれば、屈折率の異なる2種の透明薄
膜の交互多層膜による形状複屈折体を用い、偏光を分離
できる素子ができる。しかも、その分離角は2種の透明
薄膜の組合せにより、あるいは、それらの交互多層膜面
と人射光束とのなす角を変えることにより、偏光の分離
角を制御できる。特に、アモルファスシリコンと石英の
組合せでは、従来の偏光分離素子の4倍も大きな偏光分
離性能を達成する効果が得られる。アモルファスシリコ
ンと石英はいずれも機械的にも化学的にも安定なため、
耐環境性の優れた偏光分離素子ができる。この材料の組
合せは、形状複屈折の大きさだけに着目しても、1.0以
上と極めて大きく、従来報告されていた石英と五酸化二
タンタルや五酸化二ニオブを用いたものが0.13であるの
と較べると飛躍的に大きい。
According to the first aspect of the present invention, it is possible to provide an element capable of separating polarized light by using a shaped birefringent body formed by an alternating multilayer film of two kinds of transparent thin films having different refractive indexes. Moreover, the separation angle can be controlled by a combination of two types of transparent thin films or by changing the angle formed by the alternating multilayer film surface and the human luminous flux. In particular, the combination of amorphous silicon and quartz has the effect of achieving a polarization separation performance that is four times as large as that of the conventional polarization separation element. Since amorphous silicon and quartz are both mechanically and chemically stable,
A polarized light separating element having excellent environment resistance can be obtained. Considering only the magnitude of the shape birefringence, the combination of this material is extremely large, 1.0 or more, and 0.13 is the one using quartz and ditantalum pentoxide or diniobium pentoxide, which has been reported previously. It is dramatically larger than

請求項2の発明によれば、シリコンという容易に得られ
る材料を用いて偏光分離性能の大きなものを容易に得る
ことができる。
According to the invention of claim 2, it is possible to easily obtain a material having a large polarization separation performance by using a material such as silicon which is easily obtained.

請求項3の製造法によれば、2種の透明体薄膜はスパッ
タリングなどの従来の技術を用いることができるため、
製造が容易である。またこれらの製造法によって製造さ
れれば、機械的、化学的に安定な素子を製造できる。
According to the manufacturing method of claim 3, since the two kinds of transparent thin films can use the conventional techniques such as sputtering,
Easy to manufacture. Further, if manufactured by these manufacturing methods, a mechanically and chemically stable element can be manufactured.

請求項4の発明によれば、多数の配向した長細体を含ん
だ形状複屈折を有する透明体を、人射光束に対して長細
体の配向方向を傾けた状態にすれば、偏光を分離する効
果が得られる。これは、基板の上に多数の配向した長細
体を形成するだけで、偏光を分離できるため、広面積の
基板を用いれば広開口の偏光分離素子が得られる。ま
た、長細体の配向方向を変えれば、偏光分離角を制御で
きる。
According to the invention of claim 4, when a transparent body having a shape birefringence including a large number of oriented elongated bodies is tilted in the orientation direction of the elongated bodies with respect to a human luminous flux, polarized light is emitted. The effect of separation is obtained. This is because polarized light can be separated only by forming a large number of oriented long and narrow bodies on a substrate, so that a wide aperture polarization separating element can be obtained by using a substrate having a wide area. Further, the polarization separation angle can be controlled by changing the orientation direction of the elongated body.

請求項5の発明によれば、気泡を含むガラスやプラスチ
ックなどの安価な材料を利用できる。また、ガラスやプ
ラスチックなどでできているため、温度を上げて形状を
自由に変えることもできる。プラスチックで製造したも
のは、可撓性をもたせることも可能である。
According to the invention of claim 5, an inexpensive material such as glass or plastic containing bubbles can be used. Since it is made of glass or plastic, its shape can be changed freely by raising the temperature. Those made of plastic can be made flexible.

請求項6の製造法によれば、加熱、延伸という従来の技
術を利用して広開口の偏光分離素子を作製できる。
According to the manufacturing method of the sixth aspect, a wide aperture polarization separation element can be manufactured by utilizing the conventional techniques of heating and stretching.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に係る形状複屈折体から成る偏光分離
素子の第1実施例の外観構成を示す斜視図、第2図は第
1図に示す素子の偏光分離機能を説明するための側面
図、第3図は、常光と異常光についての夫々の屈折率の
変化を、占績率(水素入りアモルファスシリコンが石英
中に占める割合)に対して示したグラフ、第4図は、第
1実施例に係る偏光分離素子及び従来の偏光分離素子の
各偏光分離角の変化を積層面及び光学軸に対する入射光
の傾斜角に対して示したグラフ、第5図は、本発明に係
る形状複屈折体から成る偏光分離素子の第2実施例の外
観構成を示す斜視図、第6図は、第5図に示す素子の偏
光分離機能を説明するための側面図、第7図は常光と異
常光についての夫々の屈折率の変化を、占績率(空気が
ガラス中に占める割合)に対して示したグラフ、第8図
は、第2実施例に係る偏光分離素子の偏光分離角の変化
を長細体の配向方向に対する入射光の傾斜角に対して示
したグラフである。 (符号の説明) 1……透明薄膜、2……透明薄膜、3……長細体、4…
…透明基板母体、10、20……形状複屈折体から成る偏光
分離素子。
FIG. 1 is a perspective view showing the external configuration of a first embodiment of a polarization splitting element composed of a shape birefringent body according to the present invention, and FIG. 2 is a view for explaining the polarization splitting function of the element shown in FIG. A side view and FIG. 3 are graphs showing changes in the respective refractive indices for ordinary light and extraordinary light with respect to the occupation ratio (ratio of hydrogen-containing amorphous silicon in quartz), and FIG. FIG. 5 is a graph showing the change in each polarization separation angle of the polarization separation element according to the example and the conventional polarization separation element with respect to the inclination angle of the incident light with respect to the laminated surface and the optical axis, and FIG. FIG. 6 is a perspective view showing an appearance configuration of a second embodiment of a polarization separating element made of a refracting body, FIG. 6 is a side view for explaining the polarization separating function of the element shown in FIG. 5, and FIG. The change in each refractive index with respect to light is calculated as Graph showing relative), 8 is a graph showing changes in the polarization separation angle of the polarization separating element according to the second embodiment with respect to the inclination angle of the incident light with respect to the orientation direction of the long thin body. (Explanation of symbols) 1 ... Transparent thin film, 2 ... Transparent thin film, 3 ... Elongated body, 4 ...
… Transparent substrate matrix, 10, 20 …… A polarization separation element consisting of a shape birefringent body.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】屈折率の異なる2種の薄膜状透明体から成
り、該両透明体を交互に多数積層させて形状複屈折を有
する透明積層体とし、その透明積層体を積層面に対して
斜めに切り出し、光の入射および出射位置をこの斜めに
切り出した面内とすることを特徴とする形状複屈折体か
ら成る偏光分離素子。
1. A transparent laminated body comprising two kinds of thin film transparent bodies having different refractive indexes, and alternately laminating a large number of the transparent bodies to form a birefringent body. A polarization splitting element composed of a shape birefringent body, which is obliquely cut out and the incident and outgoing positions of light are in the obliquely cut out plane.
【請求項2】前記2種の薄膜状透明体は、そのうちの1
種の薄膜透明体がシリコンであることを特徴とする請求
項1に記載の形状複屈折体から成る偏光分離素子。
2. The two types of thin film transparent bodies are one of
A polarization separation element comprising a shaped birefringent body according to claim 1, wherein the kind of thin film transparent body is silicon.
【請求項3】スパッタリング法、化学的気相成長法、又
はプラズマ化学気相成長法により、互いに屈折率の異な
る2種の透明体から成る薄膜を交互に堆積させ、しかる
後、該堆積された透明積層体から、切断面が各積層面に
対して略一定の交角を有し、略平行平板状を呈したもの
を切り出すことを特徴とする請求項1の形状複屈折体か
ら成る偏光分離素子の製造方法。
3. Thin films composed of two kinds of transparent bodies having mutually different refractive indexes are alternately deposited by a sputtering method, a chemical vapor deposition method, or a plasma chemical vapor deposition method, and then the deposited thin films are deposited. 2. A polarization separation element comprising a shape birefringent body according to claim 1, wherein a cut surface having a substantially constant intersecting angle with respect to each of the laminated surfaces and having a substantially parallel plate shape is cut out from the transparent laminated body. Manufacturing method.
【請求項4】多数の長細体から成る一方の透明体と、該
一方の透明体とは屈折率が異なる板状の他方の透明体と
から成り、前記長細体は、各長さ方向が略一定の方向に
揃い、かつ、前記他方の透明体内に離散的に配列される
と共に、各長さ方向が、入射光に対して斜めになるよう
に配置したことを特徴とする形状複屈折体から成る偏光
分離素子。
4. One transparent body composed of a large number of elongated bodies and another plate-shaped transparent body having a refractive index different from that of the one transparent body, wherein the elongated bodies are arranged in respective longitudinal directions. Are aligned in a substantially constant direction and are discretely arranged in the other transparent body, and each length direction is arranged so as to be oblique with respect to the incident light. A polarization separation element consisting of a body.
【請求項5】前記一方の透明体は、気泡又は前記他方の
透明体とは屈折率の異なる長細状透明物質であり、前記
他方の透明体は、透明ガラス又は透明プラスチックであ
ることを特徴とする請求項4に記載の形状複屈折体から
成る偏光分離素子。
5. The one transparent body is a bubble or an elongated transparent substance having a refractive index different from that of the other transparent body, and the other transparent body is transparent glass or transparent plastic. A polarization separation element comprising the shape birefringent body according to claim 4.
【請求項6】透明ガラス又は透明プラスチックを加熱
し、該透明ガラス又は透明プラスチック内に離散的に混
在する各気泡又は該透明ガラス若しくは透明プラスチッ
クと屈折率の異なる透明物質が夫々一定の方向に長く延
在するように前記透明ガラス又は透明プラスチックを延
伸して成形し、しかる後、該成形された形状複屈折体か
ら、切断面が離散的に混在する各透明物質の長さ方向に
対して略一定の交角を有し、略平行平板状に呈されたも
のを切り出すことを特徴とする請求項5の形状複屈折体
から成る偏光分離素子の製造方法。
6. A transparent glass or a transparent plastic is heated, and each air bubble discretely mixed in the transparent glass or the transparent plastic or a transparent substance having a refractive index different from that of the transparent glass or the transparent plastic is long in a certain direction. The transparent glass or transparent plastic is stretched and molded so as to extend, and thereafter, from the molded shape birefringent body, cut surfaces are substantially mixed in the longitudinal direction of each transparent substance mixed in a discrete manner. The method for manufacturing a polarization beam splitting element composed of a shape birefringent body according to claim 5, wherein a substantially parallel plate-shaped object having a constant intersection angle is cut out.
JP2221671A 1990-08-23 1990-08-23 Polarizing / splitting element composed of shaped birefringent body and manufacturing method thereof Expired - Fee Related JPH0766084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2221671A JPH0766084B2 (en) 1990-08-23 1990-08-23 Polarizing / splitting element composed of shaped birefringent body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2221671A JPH0766084B2 (en) 1990-08-23 1990-08-23 Polarizing / splitting element composed of shaped birefringent body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04104103A JPH04104103A (en) 1992-04-06
JPH0766084B2 true JPH0766084B2 (en) 1995-07-19

Family

ID=16770447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2221671A Expired - Fee Related JPH0766084B2 (en) 1990-08-23 1990-08-23 Polarizing / splitting element composed of shaped birefringent body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0766084B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3979138B2 (en) * 2001-12-20 2007-09-19 住友電気工業株式会社 Optical isolator and polarizer
CN1333270C (en) * 2002-09-19 2007-08-22 住友电气工业株式会社 Diffractive optical device and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187101A (en) * 1984-10-05 1986-05-02 Nippon Telegr & Teleph Corp <Ntt> Artificial double refracting medium
JP2790669B2 (en) * 1989-08-18 1998-08-27 日本電信電話株式会社 Polarizer

Also Published As

Publication number Publication date
JPH04104103A (en) 1992-04-06

Similar Documents

Publication Publication Date Title
Hodgkinson et al. Inorganic chiral optical materials
JP5224252B2 (en) Selective absorptive wire grid polarizer
JP2005534981A (en) Precision phase lag device and method of manufacturing the same
US9376744B2 (en) Phase-difference element having birefringent film containing TiO2 and Ta2O5
JP2001051122A (en) Double refraction periodic structure, phase plate, diffraction grating type polarizing beam splitter and their manufacture
JP2000056133A (en) Polarizer and its production
JP2000304933A (en) Polarizing filter and its manufacture
JP2003172824A (en) Polarization beam splitter and polarizer using the same
JP2002372620A (en) Polarization control element and method for manufacturing the same
JPH0766084B2 (en) Polarizing / splitting element composed of shaped birefringent body and manufacturing method thereof
CN101661185B (en) Liquid crystal light attenuation device
JP2790669B2 (en) Polarizer
JP4622685B2 (en) Reflective polarizer and method of manufacturing the same
JPH01265206A (en) Polarizing element
JP2003014932A (en) Polarized beam splitter and method for fabricating polarized beam splitter
CN112327390A (en) Flat-plate type laser beam splitting film based on composite material and design method thereof
JPS5997105A (en) Interference type polarizer
TWI797616B (en) Optical device and method of manufacturing the same
JPH08146218A (en) Polarizing beam splitter
JP2003114326A (en) Polarized beam splitter and optical apparatus using the polarized beam splitter
JP4650931B2 (en) Polarization separation element
JPH04256904A (en) Polarizing element
KR100968208B1 (en) Circularly polarized light conversion element and brightness enhancing element and the fabrication method thereof
JPH10282337A (en) Sheet-like polarization separation and transformation polarizing element, and liquid crystal display device using same
JP3356793B2 (en) Polarizing beam splitter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees