JPS6187101A - Artificial double refracting medium - Google Patents

Artificial double refracting medium

Info

Publication number
JPS6187101A
JPS6187101A JP59208353A JP20835384A JPS6187101A JP S6187101 A JPS6187101 A JP S6187101A JP 59208353 A JP59208353 A JP 59208353A JP 20835384 A JP20835384 A JP 20835384A JP S6187101 A JPS6187101 A JP S6187101A
Authority
JP
Japan
Prior art keywords
refractive index
artificial
amorphous
birefringent medium
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59208353A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kitagawa
勝浩 北川
Mitsuhiro Tatsuta
立田 光廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59208353A priority Critical patent/JPS6187101A/en
Publication of JPS6187101A publication Critical patent/JPS6187101A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To make controllable the magnitude of a main refractive index and double refraction by laminating alternately two kinds of amorphous dielectric materials having different refractive indices at the period substantially smaller than the wavelength of light. CONSTITUTION:Two kinds of the amorphous dielectric materials 1 and 2 which have different refractive indices and are alternately laminated at the period substantially smaller than the wavelength of light are disposed on a substrate 3 and the artificial refracting medium is constituted of the periodic multi-layered films consisting of the materials 1 and 2. The multi-layered films act as the negative uniaxial double refracting medium of which the optical axis is the normal 4 of the layers. The magnitude of the main refractive index and double refraction can be changed simply by changing the ratio of the multi-layered films with the period. The larger double refraction than heretofore is realized with some materials. The artificial constitution of the double refracting medium having optional and desired characteristics is thus made possible by changing the main refractive index and double refraction.

Description

【発明の詳細な説明】 [技術分野] 本発明は、主屈折率および複屈折の大きさを制御可能な
人工的な複屈折媒質に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an artificial birefringent medium whose principal refractive index and magnitude of birefringence can be controlled.

[従来技術] 従来は、複屈折媒質として、複屈折性結晶を用いていた
ので、主屈折率および複屈折の大きさは結晶に固有な定
数として定まっており、人工的に制御できないという欠
点があった。
[Prior art] Conventionally, birefringent crystals have been used as birefringent media, so the principal refractive index and the magnitude of birefringence are fixed as constants unique to the crystal, and there is a drawback that they cannot be artificially controlled. there were.

また、複屈折性結晶は基板との格子整合や成長温度の制
約が厳しいので、他の材料の上に作製することが困難で
あるという欠点があった。
Furthermore, since birefringent crystals have severe restrictions on lattice matching with the substrate and growth temperature, they have the drawback of being difficult to fabricate on other materials.

また、複屈折性結晶には、潮解性をもつものが多いとい
う欠点があった。
Additionally, many birefringent crystals have deliquescent properties.

他方、非晶質誘電体は光学的に等方性であるので、複屈
折媒質として使用できないという欠点があった。
On the other hand, since amorphous dielectrics are optically isotropic, they have the disadvantage that they cannot be used as birefringent media.

[目的] 本発明は、これらの欠点を解決して、主屈折率および複
屈折の大きさを制御可能な人工的な複屈折媒質を提供す
ることにある。
[Objective] The object of the present invention is to solve these drawbacks and provide an artificial birefringent medium in which the principal refractive index and the magnitude of birefringence can be controlled.

[発明の構成] かかる目的を達成するために、本発明では、屈折率の異
なる2種類の非晶質誘電体を光の波長よりも十分小さい
周期で交互に積層することによって非晶質誘電体に光学
的異方性を付与し、主屈折率および複屈折の大きさが積
層した2種類の非晶質誘電体の屈折率および層厚によっ
て制御可能な人工的な複屈折媒質を構成する。
[Structure of the Invention] In order to achieve the above object, in the present invention, two types of amorphous dielectric materials having different refractive indexes are alternately laminated at a period sufficiently smaller than the wavelength of light, thereby forming an amorphous dielectric material. An artificial birefringent medium is constructed in which the principal refractive index and the magnitude of birefringence can be controlled by the refractive index and layer thickness of two types of laminated amorphous dielectrics.

[実施例] 以下に、図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示し、ここで、■および2
は光の波長よりも十分小さい周期で交互に積層された、
屈折率の異なる2種類の非晶質誘電体であり、これら非
晶質誘電体1および2を基板3上に配置する。非晶質誘
電体1および2の屈折率はそれぞれnlおよび12(#
n+ )であり、各々の層厚はそれぞれdlおよびd2
である。このように、本発明では、非晶質誘電体1と2
とからなる周期的な多層膜によって人工屈折媒質を構成
する。
FIG. 1 shows an embodiment of the present invention, where ■ and 2
are alternately layered at a period sufficiently smaller than the wavelength of light,
There are two types of amorphous dielectrics having different refractive indexes, and these amorphous dielectrics 1 and 2 are arranged on a substrate 3. The refractive indices of amorphous dielectrics 1 and 2 are nl and 12 (#
n+), and the thickness of each layer is dl and d2, respectively.
It is. In this way, in the present invention, the amorphous dielectrics 1 and 2
The artificial refractive medium is composed of a periodic multilayer film consisting of.

かかる周期的な多層膜の動作は次に述べる原理に基く。Such periodic operation of the multilayer film is based on the principle described below.

今、かかる多層膜の周期Δ−dl +d2は光の波長入
に比べて十分小さいので、この多層膜は光に対して均質
な媒質とみなせ、その光学的性質は誘電体テンソルεで
表わされる。直交座標!+L2を第1図のようにとると
、εは ε6 = fln、2+r2n2” ε6 =(ft  nI−”+f2  n2−’戸<ε
0となる。ただし、 ft ”dx /Δ*f2−d2
/Δ−1−f、はそれぞれ非晶質誘電体lおよび2の層
厚の周期に対する比である。
Now, since the period Δ-dl +d2 of such a multilayer film is sufficiently small compared to the wavelength of light, this multilayer film can be regarded as a homogeneous medium for light, and its optical properties are expressed by a dielectric tensor ε. Cartesian coordinates! If +L2 is taken as shown in Figure 1, ε is ε6 = fln, 2+r2n2" ε6 = (ft nI-"+f2 n2-'door<ε
It becomes 0. However, ft "dx /Δ*f2-d2
/Δ-1-f are the ratios of the layer thicknesses of the amorphous dielectrics l and 2, respectively, to the period.

従うて、この多層膜は、Z軸、すなわち層の法線4を光
学軸とする負の一軸性複屈折媒質として動作する。常光
、異常光に対する主屈折率no +neおよび複屈折の
大きさΔnは、それぞれno 4 = (ft nl”
 +(1−ft )nz2)+(1)ne 4 =(f
t ni2+(1−ft )nz−”)−”     
    (2)Δns n□ −n6        
        (3)となり、’l 、11 +!1
2によって制御することが可能である。従って、同じ材
料の組合せであっても、多層膜の周期に対する比flを
変えるだけでnQ +ne +Δnを変えることができ
る。
Therefore, this multilayer film operates as a negative uniaxial birefringent medium whose optical axis is the Z axis, that is, the layer normal 4. The principal refractive index no +ne and the magnitude of birefringence Δn for ordinary light and extraordinary light are respectively no 4 = (ft nl”
+(1-ft)nz2)+(1)ne4=(f
tni2+(1-ft)nz-")-"
(2) Δns n□ −n6
(3), 'l, 11 +! 1
It is possible to control by 2. Therefore, even with the same combination of materials, nQ +ne +Δn can be changed simply by changing the ratio fl to the period of the multilayer film.

さらにまた、材料によっては従来の複屈折性結晶よりも
大きな複屈折を実現することができる。
Furthermore, depending on the material, it is possible to achieve greater birefringence than conventional birefringent crystals.

あるいはまた、八をλよりも十分小さくすることによっ
て周期構造による分散を小さくすることができる。
Alternatively, the dispersion due to the periodic structure can be reduced by making 8 sufficiently smaller than λ.

さらに、非晶5!j誘電体1および2は非晶質であるの
で、格子整合の必要がなく、スパッタ法、 ECR型プ
ラズマ付着法、蒸着法などを用いて、他の物質の上に低
温で作製することが可能である。
Furthermore, amorphous 5! j Since dielectrics 1 and 2 are amorphous, there is no need for lattice matching, and they can be fabricated on other materials at low temperatures using sputtering, ECR-type plasma deposition, vapor deposition, etc. It is.

なお、非晶質誘電体は従来の複屈折性結晶よりも潮解性
が少ないので安定である。
Note that amorphous dielectrics are stable because they are less deliquescent than conventional birefringent crystals.

本発明の人工複屈折媒質は、このように制御可能な光学
特性をもち、かつ、他の物質の上に容易に作製可能であ
るため、精密な屈折率制御を必要とし、かつ、半導体、
磁気光学結晶、電気光学結晶など異種材料との組合せが
必要な、光集積回路用の複屈折材料として有用である。
The artificial birefringence medium of the present invention has controllable optical properties as described above and can be easily fabricated on other materials, so it requires precise refractive index control and requires semiconductors,
It is useful as a birefringent material for optical integrated circuits, which requires combination with different materials such as magneto-optic crystals and electro-optic crystals.

第2図は上述した実施例において、基板3として非晶質
石英基板を用い、その上に非晶質誘電体層1.2として
Ta205  (五酸化二タンタル。
FIG. 2 shows that in the above-described embodiment, an amorphous quartz substrate is used as the substrate 3, and an amorphous dielectric layer 1.2 formed of Ta205 (ditantalum pentoxide) is formed thereon.

nI=2.2)、 5i02 (二敢化ケイ素、  n
2−1.5)をスパッタ法で形成した場合のnQ l 
 ne +Δnとf、との関係を示したものである。
nI=2.2), 5i02 (silicon, n
2-1.5) when formed by sputtering method
It shows the relationship between ne +Δn and f.

ここで、5i02とTa2o5はともに可視、近赤外゛
 にわたる広い波長領域で透明、すなわち低損失であり
、かつ、屈折率差が比較的大きいので、大きな複屈折を
得ることができる。さらに、5i02とTa205は機
械的にも安定であるから、同一のプロセスで作製可能で
あり、かつ任意の割合で混合物を形成するので、積層し
た場合の両者の界面の密着性が良い。
Here, both 5i02 and Ta2o5 are transparent in a wide wavelength range from visible to near infrared, that is, have low loss, and have a relatively large difference in refractive index, so that a large birefringence can be obtained. Furthermore, since 5i02 and Ta205 are mechanically stable, they can be manufactured in the same process, and a mixture can be formed in any ratio, so that when laminated, the adhesion of the interface between the two is good.

第2図において、実線5.破線6.一点鎖線7はそれぞ
れnQ、+16.Δnの理論値であり、式%式% 実験値であり、A m35nta 、全層数100の人
工複屈折媒質についてλ〜840nm付近で測定したも
のである。これら実験値は理論値とよく一致し、 fl
によってnQ one +Δnを制御できることを示し
ている。
In FIG. 2, the solid line 5. Broken line 6. The dash-dotted lines 7 are nQ, +16, respectively. It is a theoretical value of Δn, and it is an experimental value, which was measured in the vicinity of λ to 840 nm for an artificial birefringent medium with A m35nta and a total number of 100 layers. These experimental values are in good agreement with the theoretical values, and fl
This shows that nQ one +Δn can be controlled by .

この実験では、 f1=o、52でΔnmO,13の複
屈折が得られたが、この値は従来使用されてきた代表的
な複屈折結晶である方解石(CaCO3)のΔrl ”
0.17とならぶ大きな値であり、複屈折の大きさの点
でも本発明が有用であることを示している。
In this experiment, a birefringence of ΔnmO, 13 was obtained at f1=o, 52, but this value is smaller than Δrl of calcite (CaCO3), which is a typical birefringent crystal used conventionally.
This is a large value on par with 0.17, indicating that the present invention is useful also in terms of the magnitude of birefringence.

第3図は、上述の人工複屈折媒質のnoの分散特性の測
定結果であり、八を入よりも十分小さくしたことによっ
て、入30.5〜2.0 #Lmの広い範囲で分散が非
常に小さくなっていることを示している。
Figure 3 shows the measurement results of the dispersion characteristics of the above-mentioned artificial birefringent medium. By making 8 sufficiently smaller than the input, the dispersion is extremely large over a wide range of input of 30.5 to 2.0 #Lm. It shows that it has become smaller.

上記実施例において、非晶質誘電体1としてTa205
の代わりにTa205と同様な特性をもっ五酸化二ニオ
ブNbzOs (nt・2.2)を用いても同様な結果
が得られる。
In the above embodiment, Ta205 is used as the amorphous dielectric 1.
Similar results can be obtained by using diniobium pentoxide NbzOs (nt·2.2), which has properties similar to Ta205, instead of Ta205.

さらに、上記実施例において、非晶質誘電体1または2
)あるいは1および2として5i02とTa2Q5また
はNb2O5との混合物を用いれば、その混合比に応じ
て”l +12を自在に変えることができるので、 ”
+ +”2 offを適当な値にすることによって、所
望の”O+”e +Δnをもった人工複屈折媒質を構成
できる。
Furthermore, in the above embodiment, the amorphous dielectric 1 or 2
) Alternatively, if a mixture of 5i02 and Ta2Q5 or Nb2O5 is used as 1 and 2, "l +12" can be freely changed according to the mixture ratio, so "
By setting + +"2 off to an appropriate value, an artificial birefringence medium having a desired "O+"e + Δn can be constructed.

さらにまた、上記実施例において、非晶質誘電体1また
は2)あるいは1および2として5iNx(屈折率1.
7〜3.5)または5iOx(0にX≦2)(屈折率!
、5〜3.5)を用いれば、その組成比Xによって”1
 +n2を任意所望の値に変える。ことができるので、
”1 、n2 offを適当な値にすることによって所
望の”Oone +Δnをもった人工複屈折媒質を構成
できる。
Furthermore, in the above embodiments, the amorphous dielectric 1 or 2) or 1 and 2 may be 5iNx (refractive index 1.
7-3.5) or 5iOx (0 to X≦2) (refractive index!
, 5 to 3.5), depending on the composition ratio
Change +n2 to any desired value. Because you can
By setting ``1'' and n2off to appropriate values, an artificial birefringent medium having a desired ``Oone +Δn'' can be constructed.

なお、上述した実施例では多層膜の暦数が100層の場
合について示したが、層数は数周期以上あれば十分効果
が得られる。
In addition, in the above-mentioned embodiment, the case where the number of cycles of the multilayer film was 100 was shown, but sufficient effects can be obtained if the number of layers is several cycles or more.

[効果] 以上説明したように1本発明人工複屈折媒質の主屈折率
nQ oneおよび複屈折の大きさΔnは材料の非晶質
誘電体の屈折率と層厚とによって決めることができるか
ら、それらを変えることによって任意所望の特性をもっ
た複屈折媒質を人工的に構成できるという利点がある。
[Effect] As explained above, the principal refractive index nQ one and the magnitude of birefringence Δn of the artificial birefringent medium of the present invention can be determined by the refractive index and layer thickness of the amorphous dielectric material. By changing these, there is an advantage that a birefringent medium having any desired characteristics can be artificially constructed.

さらに加えて、本発明の人工複屈折媒質は非晶質である
から、結晶成長を必要とせず他の材料の上に容易に作製
可能であるという利点および潮解性がないという利点が
ある。
In addition, since the artificial birefringent medium of the present invention is amorphous, it has the advantage of not requiring crystal growth and can be easily produced on other materials, and has the advantage of not being deliquescent.

従って、本発明人工屈折媒質を光集積回路に使用すれば
、半導体、電気光学結晶、磁気光学結晶など他の材料に
接して、それと屈折率の整合がとれた複屈折媒質を形成
し、光の偏波を制御することができるという利点がある
Therefore, if the artificial refractive medium of the present invention is used in an optical integrated circuit, it will come into contact with other materials such as semiconductors, electro-optic crystals, and magneto-optic crystals to form a birefringent medium whose refractive index is matched to that of other materials, allowing light to pass through. It has the advantage of being able to control polarization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2図は本発
明の主屈折率および複屈折の大きさの層厚比f1依存性
の一例を示す特性曲線図、 第3図は本発明の常光に対する主屈折率の分散特性の一
例を示す特性曲線図である。 l・・・非晶質誘電体。 2・・・非晶質誘電体、 3・・・基板。 4・・・層法線、 5・・・主屈折率(常光)。 6・・・主屈折率(異常光)、 7・・・複屈折の大きさ。 1.2−一−−非晶貫誘電体 3−−−−一基板 4−−−−一法蝶 第゛2図 0   0.2  0.4  0.6  0.8   
1.0λ (J、1m)
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a characteristic curve diagram showing an example of the dependence of the principal refractive index and birefringence on the layer thickness ratio f1 of the present invention, and FIG. FIG. 2 is a characteristic curve diagram showing an example of the dispersion characteristics of the principal refractive index for ordinary light according to the present invention. l...Amorphous dielectric. 2...Amorphous dielectric, 3...Substrate. 4... Layer normal, 5... Principal refractive index (ordinary light). 6... Principal refractive index (extraordinary light), 7... Magnitude of birefringence. 1.2-1--Amorphous dielectric material 3-----1 substrate 4-----1 method butterfly Fig. 2 0 0.2 0.4 0.6 0.8
1.0λ (J, 1m)

Claims (1)

【特許請求の範囲】 1)屈折率の異なる2種類の非晶質誘電体を光の波長よ
りも十分小さい周期で交互に積層して構成したことを特
徴とする人工複屈折媒質。 2)特許請求の範囲第1項記載の人工複屈折媒質におい
て、前記2種類の非晶質誘電体を二酸化ケイ素と五酸化
二タンタルまたは五酸化二ニオブとしたことを特徴とす
る人工複屈折媒質。 3)特許請求の範囲第1項記載の人工複屈折媒質におい
て、前記2種類の非晶質誘電体の少なくとも一方を、混
合比によって屈折率が制御可能な二酸化ケイ素と五酸化
二タンタルまたは五酸化二ニオブとの混合物としたこと
を特徴とする人工複屈折媒質。 4)特許請求の範囲第1項記載の人工複屈折媒質におい
て、前記2種類の非晶質誘電体の少なくとも一方を、組
成比によって屈折率が制御可能なケイ素窒化物またはケ
イ素酸化物としたことを用いることを特徴とする人工複
屈折媒質。
[Scope of Claims] 1) An artificial birefringent medium characterized in that it is constructed by alternately laminating two types of amorphous dielectric materials with different refractive indexes at a period sufficiently smaller than the wavelength of light. 2) The artificial birefringent medium according to claim 1, wherein the two types of amorphous dielectrics are silicon dioxide and ditantalum pentoxide or diniobium pentoxide. . 3) In the artificial birefringent medium according to claim 1, at least one of the two types of amorphous dielectrics is silicon dioxide, ditantalum pentoxide, or pentoxide, the refractive index of which can be controlled by changing the mixing ratio. An artificial birefringent medium characterized by being a mixture with diniobium. 4) In the artificial birefringent medium according to claim 1, at least one of the two types of amorphous dielectrics is silicon nitride or silicon oxide whose refractive index can be controlled by changing the composition ratio. An artificial birefringent medium characterized by using.
JP59208353A 1984-10-05 1984-10-05 Artificial double refracting medium Pending JPS6187101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59208353A JPS6187101A (en) 1984-10-05 1984-10-05 Artificial double refracting medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59208353A JPS6187101A (en) 1984-10-05 1984-10-05 Artificial double refracting medium

Publications (1)

Publication Number Publication Date
JPS6187101A true JPS6187101A (en) 1986-05-02

Family

ID=16554876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59208353A Pending JPS6187101A (en) 1984-10-05 1984-10-05 Artificial double refracting medium

Country Status (1)

Country Link
JP (1) JPS6187101A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104103A (en) * 1990-08-23 1992-04-06 Shojiro Kawakami Polarized light separating element and production thereof
JPH07146649A (en) * 1993-09-30 1995-06-06 Toppan Printing Co Ltd Seal
WO1997007425A1 (en) * 1995-08-14 1997-02-27 Sumitomo Osaka Cement Co., Ltd. Polarization-independent optical isolator
JP2002509041A (en) * 1998-01-13 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー Colorless and transparent-colored security film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PRINICPLE OF QPTICS *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104103A (en) * 1990-08-23 1992-04-06 Shojiro Kawakami Polarized light separating element and production thereof
JPH07146649A (en) * 1993-09-30 1995-06-06 Toppan Printing Co Ltd Seal
WO1997007425A1 (en) * 1995-08-14 1997-02-27 Sumitomo Osaka Cement Co., Ltd. Polarization-independent optical isolator
US5848203A (en) * 1995-08-14 1998-12-08 Sumitomo Osaka Cement Co., Ltd. Polarization-independent optical isolator
JP2002509041A (en) * 1998-01-13 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー Colorless and transparent-colored security film
JP4786792B2 (en) * 1998-01-13 2011-10-05 スリーエム カンパニー Colorless transparent-colored security film

Similar Documents

Publication Publication Date Title
US7848020B2 (en) Thin-film design for positive and/or negative C-plate
US6590707B1 (en) Birefringent reflectors using isotropic materials and form birefringence
US5912762A (en) Thin film polarizing device
KR101234986B1 (en) Multilayer Wire-Grid Polarizer
WO2014168185A1 (en) Phase contrast compensation element and projection-type image projection device
KR20020024563A (en) Collimator and back light system
US4737015A (en) Optical waveguide having a silicon oxi-nitride layer
JPS63113507A (en) Light guide and its production
CA2292808C (en) Thin film polarizing device having metal-dielectric films
US7164530B2 (en) Polarizing filter and optical device using the same
US8164727B2 (en) Liquid crystal display with refractive index matched electrodes
JPS6187101A (en) Artificial double refracting medium
CN105988158B (en) Wavelength plate and optical device
JPH075316A (en) Diffraction grating type polarizer and its production
JP4975162B2 (en) Self-cloning photonic crystal for ultraviolet light
JP2556206B2 (en) Method for manufacturing dielectric thin film
JPH08110406A (en) Optical multilayered film
JPS6098401A (en) Plastic optical parts
JPH04256904A (en) Polarizing element
CN113215534A (en) Optical element and method for manufacturing the same
JP2000347028A (en) Diffraction grating type polarizing element
Belyaeva Cryogenic infrared multilayer filters: the origin of low-temperature shift of the pass-band edge
JPH0723927B2 (en) Method of manufacturing optical waveguide
JPH06208022A (en) Solid etalon
JPH04104103A (en) Polarized light separating element and production thereof