JP2001051122A - Double refraction periodic structure, phase plate, diffraction grating type polarizing beam splitter and their manufacture - Google Patents

Double refraction periodic structure, phase plate, diffraction grating type polarizing beam splitter and their manufacture

Info

Publication number
JP2001051122A
JP2001051122A JP2000164954A JP2000164954A JP2001051122A JP 2001051122 A JP2001051122 A JP 2001051122A JP 2000164954 A JP2000164954 A JP 2000164954A JP 2000164954 A JP2000164954 A JP 2000164954A JP 2001051122 A JP2001051122 A JP 2001051122A
Authority
JP
Japan
Prior art keywords
periodic
index medium
birefringent
axis direction
refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000164954A
Other languages
Japanese (ja)
Other versions
JP2001051122A5 (en
Inventor
Shojiro Kawakami
彰二郎 川上
Takashi Sato
尚 佐藤
Yasuo Odera
康夫 大寺
Takayuki Kawashima
貴之 川嶋
Kenta Miura
健太 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUTOCLONING TECHNOLOGY KK
Original Assignee
AUTOCLONING TECHNOLOGY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AUTOCLONING TECHNOLOGY KK filed Critical AUTOCLONING TECHNOLOGY KK
Priority to JP2000164954A priority Critical patent/JP2001051122A/en
Publication of JP2001051122A publication Critical patent/JP2001051122A/en
Publication of JP2001051122A5 publication Critical patent/JP2001051122A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double refraction element having large double refractivity having an optical axis in a face, capable of having a large opening area with a small optical path length, and capable of being manufactured at a low cost, by laminating a high refractive index medium, and low refractive index medium by repeating the shape in every period, on a substrate having periodic grooves or the like. SOLUTION: This structure is a multilayer structure in the z-axis direction comprising two or more kinds of transparent bodies having different refractive indices, and the shape of a layer which is a unit of lamination in each transparent body has a cyclic uneven structure in the x-axis direction. This structure is a double refraction periodic structure having a periodic or non-periodic uneven structure, uniform in the y-axis direction or having a larger length than that in the z-axis direction, and formed by being laminated in a layered shape in the z-axis direction by repeating the shape in every cycle shorter than a first Bragg condition in the z-axis direction. This double refraction periodic structure has a high refractive index medium layer 1 mainly composed of Si or TiO2 or Ta2O5 or Nb2O5 or Si3N4 and a low refractive index medium layer 2 mainly composed of SiO2, alternately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光の複屈折現象を
利用した光学機器に用いられ、特定方向の直線偏波成分
とそれと直交する直線偏波成分を持つ入射光に対し、平
面内に光学軸を有する複屈折性により、位相差の制御お
よび偏波依存性の回折などの機能を与える複屈折性素子
およびその作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for an optical device utilizing a birefringence phenomenon of light, and is capable of detecting incident light having a linear polarization component in a specific direction and a linear polarization component orthogonal thereto in a plane. The present invention relates to a birefringent element which provides functions such as phase difference control and polarization-dependent diffraction by birefringence having an optical axis, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、複屈折性を示す材料としては、人
造または天然のルチル、方解石、水晶などの一軸異方性
結晶が知られている。しかしながら、人造の結晶では均
一な成長が難しく、また天然の結晶では光学的に均一で
大きな形状のものは入手が困難であり、高価である。
2. Description of the Related Art Conventionally, as a material exhibiting birefringence, artificial or natural uniaxial anisotropic crystals such as rutile, calcite, and quartz have been known. However, uniform growth is difficult for artificial crystals, and optically uniform and large-sized natural crystals are difficult to obtain and expensive.

【0003】位相板は直線偏光を楕円偏光に、逆に楕円
偏光を直線偏光に変換させたり、直線偏光の方位角を所
望の方位角に変換させる目的の素子である。通常、位相
板は上記の一軸性異方性結晶を用い、光学軸を平面内に
設定して切断・研磨することで形成される。例えば1/2
波長板や1/4波長板をこれらの結晶を用いて作製する場
合、厚さが数十μm以下となり、研磨による作製が困難
であり、さらには取り扱いが不便である。例えば波長0.
4μmに対する1/2波長板の場合では、厚さが20μmとな
る。これを避けるためには、半波長の奇数倍の厚さにす
る方法、あるいは厚さの差が半波長の位相差を与える2
枚の素子を互いに光軸を90°ずらし貼り合せる方法があ
る。しかし、前者は動作波長範囲が狭いこと、後者は工
程が煩雑であることが問題である。
[0003] A phase plate is an element for converting linearly polarized light into elliptically polarized light and vice versa, or converting azimuth of linearly polarized light into a desired azimuth. Usually, the phase plate is formed by using the above-described uniaxial anisotropic crystal, and cutting and polishing the optical axis set in a plane. For example 1/2
When a wave plate or a quarter-wave plate is manufactured using these crystals, the thickness becomes several tens μm or less, which is difficult to manufacture by polishing, and furthermore, handling is inconvenient. For example, wavelength 0.
In the case of a half-wave plate for 4 μm, the thickness is 20 μm. In order to avoid this, a method of making the thickness an odd multiple of a half wavelength, or a difference in thickness gives a phase difference of a half wavelength2
There is a method in which two elements are bonded with their optical axes shifted by 90 ° from each other. However, the former has a problem that the operating wavelength range is narrow, and the latter has a problem that the process is complicated.

【0004】また、複屈折性素子の利用技術としては、
光ディスク用ピックアップなどでは必要不可欠である。
その一つに直交する二つの偏波成分を空間的に分離する
ことが挙げられる。一般的な方法としては、一軸異方性
結晶の結晶軸を光の伝搬方向から傾けることで偏光分離
を行なう方法である。しかしながら、十分大きな分離幅
を得るためには素子の厚さを分離幅の10倍とることが必
要となり、素子の大型化、光学系の大型化が避けられな
い。その他の方法として、異方性結晶であるLiNbO3結晶
にプロトン交換を施すことでストライプ状に屈折率の異
なる領域を設け、位相回折格子を形成する方法が提案さ
れている(賣野、西本、太田、1988年春季応用物理学会
関係連合講演会、29a-ZH-9.)。しかしこの方法では、
格子間隔を数十μm以下にすることは難しく、従って回
折条件により偏光分離角は1°以下に制限されている。
その結果、やはり光学系の大型化は不可避である。
[0004] In addition, as a technique of utilizing a birefringent element,
This is indispensable for pickups for optical disks.
One method is to spatially separate two polarization components orthogonal to one of them. As a general method, polarization separation is performed by inclining the crystal axis of the uniaxially anisotropic crystal from the light propagation direction. However, in order to obtain a sufficiently large separation width, it is necessary to make the thickness of the element 10 times the separation width, and it is inevitable that the element becomes large and the optical system becomes large. As another method, a method has been proposed in which regions having different refractive indices are provided in stripes by subjecting a LiNbO 3 crystal, which is an anisotropic crystal, to proton exchange to form a phase diffraction grating (Nano, Nishimoto, Ota, Spring 1988 Related Conference of the Japan Society of Applied Physics, 29a-ZH-9.) But with this method,
It is difficult to reduce the grating interval to several tens of μm or less, so that the polarization separation angle is limited to 1 ° or less due to diffraction conditions.
As a result, the enlargement of the optical system is inevitable.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の問題点
を解決するためのものであり、本発明の目的は、面内に
光学軸を持つ大きな複屈折性を有し、小さな光路長で大
きな開口面積も可能な、工業的に低価格で作製できる複
屈折素子を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a large birefringence having an in-plane optical axis and a small optical path length. An object of the present invention is to provide a birefringent element which can have a large opening area and can be manufactured at low cost industrially.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めには、簡便かつ信頼性・再現性に優れた方法で、透明
材料からなり面内に構造異方性をもつ媒質を形成するこ
とが必要である。このためには、周期的な溝または周期
的な線状突起または細長い突起または細長い凹みを有す
る基板の上に、高屈折率媒質と低屈折率媒質とを、少な
くとも一部にドライエッチングを含む膜形成方法により
周期ごとに形状を繰り返しつつ積層する方法が有効であ
る(S. Kawakami, T. Kawashima, and T. Sato, "Mecha
nism ofshape-formation of 3D periodic nanostructur
es by bias sputtering," Applied Physics Letters, v
ol. 74, no. 3, pp. 463-465, 18 January 1999.)。こ
の方法によって面内に光学軸を有する複屈折素子を作製
することができる。
In order to achieve the above object, a medium made of a transparent material and having in-plane structural anisotropy is formed by a simple and excellent method of reliability and reproducibility. is necessary. For this purpose, a film including a high-refractive index medium and a low-refractive index medium, at least partially including dry etching, is formed on a substrate having periodic grooves or periodic linear projections or elongated projections or elongated depressions. It is effective to stack the layers while repeating the shape in each cycle depending on the forming method (S. Kawakami, T. Kawashima, and T. Sato, "Mecha
nism ofshape-formation of 3D periodic nanostructur
es by bias sputtering, "Applied Physics Letters, v
ol. 74, no. 3, pp. 463-465, 18 January 1999.). By this method, a birefringent element having an in-plane optical axis can be manufactured.

【0007】[0007]

【作用】前項の手段によって人工的に複屈折媒質を形成
できれば、その厚さを制御することによって、面型の位
相制御素子を簡便に再現性よく実現することができる。
さらに複屈折性の積層構造部分と、複屈折性のない積層
構造部分とを周期的に縞状に繰り返すことで、位相回折
格子として利用することができる。
If a birefringent medium can be artificially formed by the means described in the preceding paragraph, a surface-type phase control element can be easily realized with good reproducibility by controlling its thickness.
Further, by periodically repeating the birefringent laminated structure portion and the non-birefringent laminated structure portion in a striped manner, it can be used as a phase diffraction grating.

【0008】[0008]

【実施例】[実施例1]図1は、本発明の実施例の構造
を示す図である。この図において、符号1はアモルファ
スSiの層であり、符号2はアモルファスSiO2の層であ
る。x軸方向の周期Lxは0.45μm、z軸方向の周期L
zは0.36μmである。SiO2層およびSi層は周期的に折れ
曲がった形状をなしている。
[Embodiment 1] FIG. 1 is a diagram showing the structure of an embodiment of the present invention. In this figure, reference numeral 1 denotes an amorphous Si layer, and reference numeral 2 denotes an amorphous SiO 2 layer. The period Lx in the x-axis direction is 0.45 μm, and the period L in the z-axis direction
z is 0.36 μm. The SiO 2 layer and the Si layer have a periodically bent shape.

【0009】作製方法を次に示す。まず、基板上に電子
ビームリソグラフィとドライエッチングにより、図2に
示すような周期的な溝を作製する。符号3は石英ガラス
基板、符号4は溝部分の拡大である。溝の幅は0.35μ
m、溝の深さは0.2μmである。境界面での反射を防ぐた
めに、必要であれば符号5に示す反射防止膜を付ける。
今回は、溝の断面形状が三角形であるが、矩形や半円な
ど他の形でも良い。この基板上に、SiO2およびSiターゲ
ットを用い、スパッタデポジションとスパッタエッチン
グを組み合わせて交互多層膜を積層する。このとき、各
層のx軸方向に周期的な凹凸形状を保存しながら成膜す
ることが肝要である。その条件は次の通りであった。Si
層の成膜では、ガス圧2mTorr、ターゲット印加高周波電
力400W、SiO2層の成膜では、ガス圧6mTorr、ターゲット
印加高周波電力400W、スパッタエッチングはSiO2層成膜
後行ない、ガス圧2mTorr、基板印加高周波電力180Wであ
る。SiO2層とSi層はそれぞれ0.18μmとし、8周期繰り返
した。従って多層膜の厚さは約2.9μmである。
The manufacturing method is described below. First, a periodic groove as shown in FIG. 2 is formed on a substrate by electron beam lithography and dry etching. Reference numeral 3 is a quartz glass substrate, and reference numeral 4 is an enlargement of a groove portion. Groove width is 0.35μ
m, and the depth of the groove is 0.2 μm. In order to prevent reflection at the boundary surface, an antireflection film indicated by reference numeral 5 is provided if necessary.
In this case, the cross-sectional shape of the groove is triangular, but other shapes such as a rectangle and a semicircle may be used. On this substrate, alternate multilayer films are laminated by using a combination of sputter deposition and sputter etching, using SiO 2 and Si targets. At this time, it is important to form a film while preserving the periodic uneven shape in the x-axis direction of each layer. The conditions were as follows. Si
In forming the layer, the gas pressure was 2 mTorr and the target applied high frequency power of 400 W. In the case of the SiO 2 layer, the gas pressure was 6 mTorr and the target applied high frequency power was 400 W. Sputter etching was performed after the SiO 2 layer was formed. The applied high frequency power is 180W. The SiO 2 layer and the Si layer each had a thickness of 0.18 μm, and were repeated eight cycles. Therefore, the thickness of the multilayer film is about 2.9 μm.

【0010】構造異方性により、溝の長手方向に光学軸
をもつ複屈折性が生じる。この構造に面垂直方向から波
長1.5μmの光を入射して、複屈折性を確かめた。入射光
の偏波が、溝に対して45°の直線偏波のとき、出射光の
偏波は入射偏波に対して90°回転していた。これは本周
期構造体が半波長の位相差を与えたことを示す。同様
に、4周期の多層膜を積層した場合には、位相差は四分
の一波長となり、直線偏波を円偏波に変換することがで
きた。
Due to the structural anisotropy, birefringence having an optical axis in the longitudinal direction of the groove is generated. Light having a wavelength of 1.5 μm was incident on this structure from a direction perpendicular to the plane, and the birefringence was confirmed. When the polarization of the incident light was a linear polarization of 45 ° with respect to the groove, the polarization of the output light was rotated by 90 ° with respect to the incident polarization. This indicates that the periodic structure provided a half-wave phase difference. Similarly, when a multilayer film having four periods was stacked, the phase difference was a quarter wavelength, and linearly polarized light could be converted to circularly polarized light.

【0011】図3はこの周期構造体における周波数と波
数ベクトルの関係を周期境界条件を用いたFDTD法
(有限差分時間領域法)により計算した結果を示す。横
軸はz方向に1周期進んだときの位相をπで正規化した
値kz Lz/π、縦軸は正規化した周波数Lz/λである。こ
こでλは入射光の波長、kzは波数ベクトルのz成分であ
る。実線と破線は、それぞれ周期構造体を伝搬するTE
波(電界が溝に平行な偏波)とTM波(電界が溝に垂
直)に対する分散曲線を示す。上記の場合では、Lz=0.4
5μm、波長1.5μmより、周波数Lz/λ=0.3となる。TE
波およびTM波の分散曲線と、Lz/λ=0.3の直線との交
点をそれぞれAとBとする。TE波とTM波がz方向に
1周期伝搬するときの位相変化の差は、点Aと点Bを与
える横軸kz Lz/πの値の差0.125から、π/8であること
がわかる。従って、多層膜を8周期積層した構造では、
πの位相差を与えることができ、半波長板として動作す
る。また4周期積層した構造では、π/2の位相差を与え
ることができ、1/4波長板として動作する。
FIG. 3 shows the result of calculating the relationship between the frequency and the wave number vector in this periodic structure by the FDTD method (finite difference time domain method) using a periodic boundary condition. The horizontal axis represents a value kz Lz / π obtained by normalizing the phase when the phase advances one cycle in the z direction with π, and the vertical axis represents the normalized frequency Lz / λ. Here, λ is the wavelength of the incident light, and kz is the z component of the wave number vector. Solid lines and broken lines indicate TEs propagating through the periodic structure, respectively.
4 shows dispersion curves for a wave (polarization in which an electric field is parallel to a groove) and a TM wave (electric field is perpendicular to a groove). In the above case, Lz = 0.4
From 5 μm and a wavelength of 1.5 μm, the frequency Lz / λ = 0.3. TE
Intersection points of the dispersion curves of the wave and the TM wave and the straight line of Lz / λ = 0.3 are assumed to be A and B, respectively. The difference in phase change when the TE wave and the TM wave propagate for one cycle in the z direction is π / 8 from the difference 0.125 between the values of the horizontal axis kz Lz / π that provides the points A and B. Therefore, in a structure in which a multilayer film is stacked eight periods,
It can provide a phase difference of π and operates as a half-wave plate. Further, in a structure in which four periods are stacked, a phase difference of π / 2 can be given, and the structure operates as a 波長 wavelength plate.

【0012】[実施例2]本実施例では、実施例1で示
したような周期構造体を利用した偏光依存性の位相回折
格子について示す。
[Embodiment 2] In this embodiment, a polarization-dependent phase diffraction grating using a periodic structure as shown in Embodiment 1 will be described.

【0013】図4は本実施例の構成を示す図である。符
号6は石英ガラス基板であり、その上に凹凸形状を保存
したまま多層膜が積層されている。凹凸断面形状が異な
る二つの領域(符号7と符号8)が周期Lで周期的に繰
り返されている。符号9は低屈折率層、符号10は高屈
折率層である。今回は周期Lを4μm、低屈折率材料と高
屈折率材料をそれぞれアモルファスSiO2とアモルファス
TiO2とした。また、符号7の領域においてx軸方向の周
期Lxは0.15μm、z軸方向の周期Lzは0.12μmであ
り、符号8の領域においてはx軸方向の周期を無限大、
即ち凹凸のない平坦な構造にした。
FIG. 4 is a diagram showing the configuration of the present embodiment. Reference numeral 6 denotes a quartz glass substrate, on which a multilayer film is laminated while keeping the concavo-convex shape. Two regions (symbols 7 and 8) having different concavo-convex cross-sectional shapes are periodically repeated at a period L. Reference numeral 9 denotes a low refractive index layer, and reference numeral 10 denotes a high refractive index layer. This time, the period L was 4 μm, and the low and high refractive index materials were amorphous SiO 2 and amorphous, respectively.
TiO 2 was used. Further, in the region indicated by reference numeral 7, the period Lx in the x-axis direction is 0.15 μm, and the period Lz in the z-axis direction is 0.12 μm. In the region indicated by reference numeral 8, the period in the x-axis direction is infinite,
That is, a flat structure having no unevenness was obtained.

【0014】作製方法を次に示す。まず、基板上に電子
ビームリソグラフィとドライエッチングにより、図2に
示すような周期的な溝をもつ領域と平らな領域とを周期
4μmとなるよう加工する。溝の幅は0.1μm、周期は0.1
5μm、溝の深さは0.1μmである。ここでは三角形の溝形
状を示したが、矩形や半円など他の形でも良い。この基
板上に、TiO2およびSiO2ターゲットを用い、スパッタデ
ポジションとスパッタエッチングを組み合わせて交互多
層膜を積層する。ここでTiO2層はTiターゲットを酸素を
含むガスでスパッタしてもよい。このとき、各層のx軸
方向に周期的な凹凸形状を保存しながら成膜することが
重要である。その条件は次の通りであった。TiO2層の成
膜では、ガス圧2mTorr、ターゲット印加高周波電力300
W、SiO2層の成膜では、ガス圧6mTorr、ターゲット印加
高周波電力300W、スパッタエッチングはSiO2層成膜後に
行ない、ガス圧2mTorr、基板印加高周波電力100Wであ
る。但し、実施例1とは別のスパッタ装置を用いた。Si
O2層とTiO2層はそれぞれ0.06μmとし、8周期繰り返し
た。従って多層膜の厚さは0.96μmである。
The fabrication method is described below. First, a region having a periodic groove as shown in FIG. 2 and a flat region are processed to have a period of 4 μm on the substrate by electron beam lithography and dry etching. Groove width 0.1 μm, period 0.1
5 μm and the depth of the groove is 0.1 μm. Although a triangular groove shape is shown here, other shapes such as a rectangle and a semicircle may be used. On this substrate, using a TiO 2 and SiO 2 target, alternate multilayer films are stacked by combining sputter deposition and sputter etching. Here, the TiO 2 layer may be formed by sputtering a Ti target with a gas containing oxygen. At this time, it is important to form a film while preserving a periodic uneven shape in the x-axis direction of each layer. The conditions were as follows. In forming the TiO 2 layer, the gas pressure was 2 mTorr and the target applied RF power was 300
In forming the W and SiO 2 layers, the gas pressure is 6 mTorr and the target applied high frequency power is 300 W. Sputter etching is performed after the SiO 2 layer is formed, and the gas pressure is 2 mTorr and the substrate applied high frequency power is 100 W. However, a different sputtering apparatus from that of Example 1 was used. Si
Each of the O 2 layer and the TiO 2 layer was set to 0.06 μm, and the cycle was repeated eight times. Therefore, the thickness of the multilayer film is 0.96 μm.

【0015】本構造体に波長0.4μmの光を基板面垂直方
向あるいは斜めから入射すると、図5に示すように溝に
平行な偏波成分と、溝に垂直な偏波成分とに空間的に分
離することができる。ここでは簡単のため垂直入射にお
ける動作原理を説明する。
When light having a wavelength of 0.4 μm is incident on the structure from a direction perpendicular or oblique to the substrate surface, as shown in FIG. 5, a polarization component parallel to the groove and a polarization component perpendicular to the groove are spatially formed. Can be separated. Here, the operation principle at normal incidence will be described for simplicity.

【0016】図6は、符号7の周期構造体におけるy偏
波(TE波)とx偏波(TM波)の分散関係(実線と破
線)と、符号8の一次元(1D)周期構造体における分
散関係(点線)を示した。上記の場合Lz=0.12μm、波長
0.4μmであるから、周波数はLz/λ=0.3となる。 Lz/λ=
0.3の直線と分散曲線との交点を与えるkzが、それぞれ
の光波のz方向の伝搬定数となる。この図より、符号7
の2次元周期構造体を一周期伝搬するときの位相変化量
は、y偏波とx偏波とでπ/8異なる。一方、符号8の一
次元周期構造体の位相定数は符号7の領域を伝搬するx
偏波と等しい。即ち、図5に示す構造体に光を入射した
場合、x偏波では出射後の位相分布は平坦であるが、y
偏波では位相分布が周期L、振幅πの変調を受ける。従
って、 x偏波はz軸方向に出射されるが、y偏波は回
折により角度θ(=sin-1(λ/L))方向に出射されるた
め、両者を分離することができる。本発明の構造ではL
が4μmであるため分離角度θ=5°が得られる。
FIG. 6 shows the dispersion relationship (solid line and broken line) between the y-polarized wave (TE wave) and the x-polarized wave (TM wave) in the periodic structure denoted by reference numeral 7, and the one-dimensional (1D) periodic structure denoted by reference numeral 8. Shows the dispersion relationship (dotted line). In the above case, Lz = 0.12μm, wavelength
Since it is 0.4 μm, the frequency is Lz / λ = 0.3. Lz / λ =
Kz, which gives the intersection of the straight line of 0.3 and the dispersion curve, is the propagation constant of each light wave in the z direction. From FIG.
The phase change amount when propagating one cycle through the two-dimensional periodic structure is different by π / 8 between the y polarization and the x polarization. On the other hand, the phase constant of the one-dimensional periodic structure denoted by reference numeral 8 is x
Equivalent to polarization. That is, when light is incident on the structure shown in FIG. 5, the phase distribution after emission is flat for x polarization, but y
In polarization, the phase distribution is modulated with a period L and an amplitude π. Therefore, while the x-polarized light is emitted in the z-axis direction, the y-polarized light is emitted in the direction of angle θ (= sin −1 (λ / L)) by diffraction, so that both can be separated. In the structure of the present invention, L
Is 4 μm, so that a separation angle θ = 5 ° is obtained.

【0017】上記の実施例の変形例を示す。上記の実施
例では、面内に光学軸をもつ複屈折領域と、面内には光
学軸を持たない一様領域とを、周期的に配置した例を示
した。もちろん、面内周期や積層周期、凹凸の段差が異
なる2種以上の領域を組み合わせてもよい。その他、溝
や突起の方向を一方向だけではなく、異なる方向の領域
を組み合わせることも可能である。
A modification of the above embodiment will be described. In the above-described embodiment, an example has been described in which a birefringent region having an optical axis in a plane and a uniform region having no optical axis in a plane are periodically arranged. Of course, two or more types of regions having different in-plane periods, lamination periods, and uneven steps may be combined. In addition, it is possible to combine not only the direction of the groove and the projection in one direction but also the regions in different directions.

【0018】その一例としてブレーズ回折格子を示す。
図7のように、凹凸の周期をLx1からLx2まで連続的
に変化させた領域を、さらに周期Lで繰り返す。この構
造では、x偏波の位相分布については上述の例と同様で
平坦であるが、y偏波の位相分布は周期Lの鋸歯状にな
る。位相分布の振幅がπになるように積層数を調整す
る。これによって、x偏波は直進、y偏波は位相分布が
傾く方向に100%分離する回折格子が得られる。
A blazed diffraction grating is shown as an example.
As shown in FIG. 7, a region in which the period of the unevenness is continuously changed from Lx1 to Lx2 is further repeated at period L. In this structure, the phase distribution of the x polarization is flat as in the above example, but the phase distribution of the y polarization has a sawtooth shape with a period L. The number of layers is adjusted so that the amplitude of the phase distribution becomes π. As a result, a diffraction grating can be obtained in which x-polarized light travels straight and y-polarized light separates 100% in the direction in which the phase distribution is inclined.

【0019】[実施例3]本実施例では、実施例1で示し
た位相板を、平坦面を有する光学部品に直接作製した例
を示す。
[Embodiment 3] In this embodiment, an example is shown in which the phase plate shown in Embodiment 1 is directly manufactured on an optical component having a flat surface.

【0020】図8は本実施例の構成を示す図である。符
号11は光学ガラスからなるプリズムであり、表面に周
期的な溝列を加工してある。その構造は、面内の周期が
0.15μm、溝の深さが0.1μmである。符号12はアモル
ファスTiO2とアモルファスSiO 2からなる多層膜であり、
表面は周期的に折れ曲がった形状をなしている。面内の
周期は0.15μm、面垂直方向の周期は0.12μmである。
FIG. 8 is a diagram showing the configuration of this embodiment. Mark
Reference numeral 11 denotes a prism made of optical glass, and the prism
Periodic groove rows are machined. The structure has a period in the plane
The depth of the groove is 0.1 μm. Symbol 12 is amole
Fasu TiOTwoAnd amorphous SiO TwoA multilayer film consisting of
The surface has a periodically bent shape. In plane
The period is 0.15 μm, and the period in the direction perpendicular to the surface is 0.12 μm.

【0021】この構造に矢印の方向から光を入射する
と、位相板により偏波回転を受けた後、プリズムに入射
し、屈折する。このように位相板とプリズムを一体化し
て作製することができるため、部品点数を減らすことが
できる、空気との境界面が減るため反射防止膜が不要に
なる、集積化には有効などの利点がある。
When light is incident on this structure in the direction of the arrow, the light is subjected to polarization rotation by the phase plate, and then enters the prism and is refracted. In this way, the phase plate and the prism can be integrally manufactured, so that the number of parts can be reduced, the interface with air is reduced, so that an antireflection film is not required, and advantages such as being effective for integration are provided. There is.

【0022】ここでは光学部品としてプリズムを例に示
したが、その他ミラー、偏光分離素子、偏光子、レンズ
にも応用できる。また、フィルム状の基板あるいは薄い
ガラス基板に、初期の凹凸パターンを加工し多層膜を積
層してから、光学部品の表面に貼り付けてもよい。
Here, a prism is shown as an example of the optical component, but the present invention can also be applied to a mirror, a polarization separation element, a polarizer, and a lens. Alternatively, an initial concave-convex pattern may be processed on a film-like substrate or a thin glass substrate, and a multilayer film may be laminated on the substrate, and then may be attached to the surface of the optical component.

【0023】[実施例4]実施例1ないし3においては、
層の形状を繰り返しつつ積層する手段として、スパッタ
成膜とスパッタエッチングを時間的にずらして独立に行
なったが、同時に行なうバイアス・スパッタリング法で
積層しても良い。例えばTiO2層を通常のスパッタで、Si
O2層をバイアススパッタで成膜する。詳細の実験条件は
以下に示す。TiO2膜はTiターゲットをガス圧(酸素とAr
の混合比10%)2mTorrでスパッタ成膜する。一方SiO2
は、Arのみでガス圧6mTorrとし、ターゲット印加高周波
電力300W、バイアス電力80Wで成膜する。SiO2層とTiO2
層はそれぞれ0.06μmとし、8周期繰り返した。従って多
層膜の厚さは0.96μmである。
[Embodiment 4] In Embodiments 1 to 3,
As a means for laminating layers while repeating the shape of the layers, sputter deposition and sputter etching are performed independently with a time lag, but lamination may be performed by a bias sputtering method which is performed simultaneously. For example, a TiO 2 layer is
An O 2 layer is formed by bias sputtering. Detailed experimental conditions are shown below. TiO 2 film is used for gas pressure (oxygen and Ar
(Mixing ratio: 10%) by sputtering at 2 mTorr. On the other hand, the SiO 2 film is formed at a gas pressure of 6 mTorr using only Ar, with a target applied high-frequency power of 300 W and a bias power of 80 W. SiO 2 layer and TiO 2
Each layer was set to 0.06 μm, and was repeated for 8 cycles. Therefore, the thickness of the multilayer film is 0.96 μm.

【0024】また、堆積方法として、化学気相法(CV
D)や蒸着法などを利用しても良い。さらに、低屈折率
材料に、アモルファスSiO2以外にも、バイレックスなど
の光学ガラスを用いてもよい。
As a deposition method, a chemical vapor deposition (CV) method is used.
D) or a vapor deposition method may be used. Further, an optical glass such as VIREX may be used as the low refractive index material in addition to amorphous SiO 2 .

【0025】また、高屈折率材料にアモルファスSiやTi
O2以外にも、Ta2O5、Nb2O5、Si3N4などを用いてもよ
い。作製条件の一例を挙げる。Ta2O5膜はTa2O5ターゲッ
トをガス圧(酸素とArの混合比5%)1mTorrでスパッタ
成膜する。一方SiO2膜は、ガス圧5mTorr、ターゲット印
加高周波電力300W、スパッタエッチングはSiO2層成膜後
行ない、ガス圧2mTorr、基板印加高周波電力100Wであ
る。SiO2層とTa2O5層の厚さはそれぞれ0.08μm、面内の
凹凸周期は0.18μm、10周期繰り返した。Ta2O5は材料自
身がもつバンド端波長が約300nmとTiO2に比べて短い。
したがって、波長400nm付近で屈折率が2.2と高いだけで
なく、屈折率分散や吸収損失が小さいという光学的優位
性をもつことが特徴である。この波長域は青紫色レーザ
の開発により、高密度記録光ディスクなどで用いること
のできる有用な波長域である。
Also, amorphous Si or Ti may be used as the high refractive index material.
Other than O 2 , Ta 2 O 5 , Nb 2 O 5 , Si 3 N 4 or the like may be used. An example of manufacturing conditions will be described. The Ta 2 O 5 film is formed by sputtering a Ta 2 O 5 target at a gas pressure (mixing ratio of oxygen and Ar: 5%) of 1 mTorr. On the other hand, the SiO 2 film has a gas pressure of 5 mTorr and a high frequency power of 300 W applied to the target, and the sputter etching is performed after the SiO 2 layer is formed, and has a gas pressure of 2 mTorr and a high frequency power of 100 W applied to the substrate. The thicknesses of the SiO 2 layer and the Ta 2 O 5 layer were each 0.08 μm, the in-plane unevenness period was 0.18 μm, and 10 cycles were repeated. Ta 2 O 5 has a band edge wavelength of about 300 nm, which is shorter than TiO 2 .
Therefore, it is characterized by having an optical advantage that not only the refractive index is high at 2.2 near the wavelength of 400 nm but also the refractive index dispersion and absorption loss are small. This wavelength range is a useful wavelength range that can be used in high-density recording optical disks and the like due to the development of a blue-violet laser.

【0026】積層した膜の断面形状は実施例1ないし3
においてはV型であるが、矩形や三角柱などの多様な断
面形状も可能である。
The cross-sectional shapes of the laminated films are shown in Examples 1 to 3.
Are V-shaped, but various cross-sectional shapes such as a rectangle and a triangular prism are also possible.

【0027】また溝や線状の突起は直線だけでなく、曲
線にすることで、より複雑な位相差分布を与えることも
できる。
The grooves and the linear projections can be formed not only as straight lines but also as curved lines, so that a more complicated phase difference distribution can be given.

【0028】このように作製した積層膜を、表面・界面
と基板裏面に無反射コーティングを施した後、切断する
と良い。多数の素子を一括して作製できるだけでなく、
研磨が不要、切断工程が簡易である。また、積層膜の厚
さには再現性があり、素子の特性の変動は少ない。一
方、基板に初期加工する溝の形状には高い精度を要求し
ないため、電子ビームリソグラフィに限らず、凹凸形状
を加工した金型を利用したナノプリント技術などのより
簡易な方法で作製することも可能である。その結果、低
価格な素子を提供することができ、光ディスク用ピック
アップなど広範囲な利用が可能である。
The laminated film thus produced is preferably cut after applying a non-reflective coating to the front surface / interface and the back surface of the substrate. In addition to being able to fabricate many devices at once,
Polishing is unnecessary and the cutting process is simple. In addition, the thickness of the laminated film has reproducibility, and there is little change in the characteristics of the element. On the other hand, high precision is not required for the shape of the groove to be initially machined on the substrate, so it is not limited to electron beam lithography, and it can be manufactured by simpler methods such as nanoprinting technology using a mold with uneven shape. It is possible. As a result, an inexpensive element can be provided, and can be used in a wide range such as an optical disk pickup.

【0029】[0029]

【発明の効果】本発明のスパッタエッチング作用を含む
成膜方法によって作製した複屈折素子は、光透過方向の
厚さが微小で、1回の成膜プロセスで大面積の積層膜が
得られ、個々の素子を作製するときに研磨が不要であ
り、切断が容易であるという特徴を備えている。他方、
使用する波長帯に応じて、任意の複屈折率、および任意
の位相差制御を与えることが設計が可能である。さら
に、基板上に任意のパターンに複屈折構造を描くことが
可能である。このような複屈折媒質を使った位相制御素
子や位相回折格子などの複屈折素子は、光ディスク用ピ
ックアップなど工業的用途は広く、従来の複屈折素子を
置き換えることが可能である。
The birefringent element manufactured by the film forming method including the sputter etching action of the present invention has a small thickness in the light transmission direction, and a large-area laminated film can be obtained by one film forming process. Polishing is not required when individual elements are manufactured, and cutting is easy. On the other hand,
It is possible to design an arbitrary birefringence index and an arbitrary phase difference control according to the wavelength band to be used. Further, it is possible to draw a birefringent structure in an arbitrary pattern on the substrate. Birefringent elements such as a phase control element and a phase diffraction grating using such a birefringent medium are widely used in industrial applications such as optical disk pickups, and can replace conventional birefringent elements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の構造を示す図FIG. 1 is a diagram showing a structure of a first embodiment.

【図2】表面に溝を有する基板を示す図FIG. 2 is a diagram showing a substrate having a groove on a surface.

【図3】第1の実施例における周波数と波数ベクトルの
関係を示す図
FIG. 3 is a diagram showing a relationship between a frequency and a wave vector in the first embodiment.

【図4】第2の実施例の構造を示す図FIG. 4 is a diagram showing a structure of a second embodiment.

【図5】第2の実施例における偏光分離動作を示す図FIG. 5 is a diagram illustrating a polarization separation operation in the second embodiment.

【図6】第2の実施例における周波数と波数ベクトルの
関係を示す図
FIG. 6 is a diagram showing a relationship between a frequency and a wave vector in the second embodiment.

【図7】第2の実施例の構造を示す図FIG. 7 is a diagram showing a structure of a second embodiment.

【図8】第3の実施例における周波数と波数ベクトルの
関係を示す図
FIG. 8 is a diagram illustrating a relationship between a frequency and a wave vector in the third embodiment.

【符号の説明】[Explanation of symbols]

1 SiO2層 2 Si層 3 基板 4 溝部分の拡大 5 反射防止膜 6 基板 7 面内周期の小さい凹凸形状を有する領域 8 面内周期の大きい凹凸形状を有する領域 9 SiO2層 10 TiO2層 11 プリズム 12 凹凸形状を有する薄膜1 SiO 2 layer 2 Si layer 3 substrate 4 grooves partially enlarged 5 antireflection film 6 region 9 SiO 2 layer 10 TiO 2 layer having a large uneven shape of the region 8 plane period having small irregularities of the substrate 7 surface cycle of DESCRIPTION OF SYMBOLS 11 Prism 12 Thin film with uneven shape

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大寺 康夫 宮城県仙台市青葉区土樋1丁目6番15号コ ーポ金子201号 (72)発明者 川嶋 貴之 宮城県仙台市青葉区川内三十人町45番5号 ル・ヴィラージュ203号 (72)発明者 三浦 健太 宮城県仙台市太白区八木山南3丁目8番12 号アパートメントハウス八木山101号 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuo Odera 1-6-16-1 Doi, Aoba-ku, Aoba-ku, Sendai City, Miyagi Prefecture Co., Ltd. Kaneko 201 (72) Inventor Takayuki Kawashima Thirty Persons Kawauchi, Aoba-ku, Sendai City, Miyagi Prefecture Town No. 45-5 Le Village 203 No. 72 (72) Inventor Kenta Miura 3-81-12 Yagiyama Minami 3-chome, Taihaku-ku, Sendai City, Miyagi Prefecture Apartment house No. 101 Yagiyama

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 3次元の直交座標x、y、zにおいて、
屈折率の異なる2種類以上の透明体よりなるz軸方向の
多層構造体であって、各透明体ごとに積層の単位となる
層の形状がx軸方向に周期凹凸構造を有し、y軸方向に
は一様であるか、またはx軸方向より大きい長さの周期
的または非周期的な凹凸構造を有し、その形状をz方向
の第一ブラッグ条件より短い周期ごとに繰り返しつつz
軸方向に層状に積層されることを特徴とする複屈折性周
期構造体。
1. In three-dimensional rectangular coordinates x, y, z,
A multilayer structure in the z-axis direction comprising two or more types of transparent bodies having different refractive indices, wherein a layer serving as a unit of lamination for each transparent body has a periodic uneven structure in the x-axis direction and a y-axis direction. It has a periodic or aperiodic uneven structure having a length that is uniform in the direction or longer than the x-axis direction, and its shape is repeated at intervals shorter than the first Bragg condition in the z direction.
A birefringent periodic structure characterized by being laminated in layers in the axial direction.
【請求項2】 請求項1記載の複屈折性周期構造体であ
って、SiまたはTiO2またはTa2O5またはNb2O5またはSi3N
4を主成分とする高屈折率媒質層とSiO2を主成分とする
低屈折率媒質層とを交互に有することを特徴とする複屈
折性周期構造体。
2. The birefringent periodic structure according to claim 1, wherein the structure is Si, TiO 2, Ta 2 O 5, Nb 2 O 5, or Si 3 N.
A birefringent periodic structure, characterized by having alternately high refractive index medium layers mainly composed of 4 and low refractive index medium layers mainly composed of SiO 2 .
【請求項3】 周期的な溝または周期的な線状突起また
は細長い突起または細長い凹みを有する基板の上に、高
屈折率媒質と低屈折率媒質とを、少なくとも一部にドラ
イエッチングを含む膜形成方法により周期ごとに凹凸形
状を繰り返しつつ積層することを特徴とし、凹凸形状の
長手方向を光学軸としz方向の第一ブラッグ条件より短
い周期で積層される複屈折性周期構造体の作製方法。
3. A film containing a high-refractive-index medium and a low-refractive-index medium, at least partially including dry etching, on a substrate having periodic grooves or periodic linear projections or elongated projections or elongated depressions. A method of manufacturing a birefringent periodic structure, wherein the birefringent periodic structure is laminated with a period shorter than the first Bragg condition in the z-direction with the longitudinal direction of the concave-convex shape as an optical axis, wherein .
【請求項4】 周期的な溝または周期的な線状突起また
は細長い突起または細長い凹みを有する基板の上に、Si
またはTiO2またはTa2O5またはNb2O5またはSi 3N4を主成
分とする高屈折率媒質とSiO2を主成分とする低屈折率媒
質とを、少なくとも一部にドライエッチングを含む膜形
成方法により周期ごとに凹凸形状を繰り返しつつ積層す
ることを特徴とし、凹凸形状の長手方向を光学軸とする
複屈折性周期構造体の作製方法。
4. Periodic grooves or periodic linear projections or
On a substrate with elongated protrusions or recesses,
Or TiOTwoOr TaTwoOFiveOr NbTwoOFiveOr Si ThreeNFourThe main
High refractive index medium and SiOTwoLow-refractive-index medium whose main component is
Quality and at least part of the film type including dry etching
Laminating while repeating the irregular shape every period by the forming method
Characterized in that the longitudinal direction of the uneven shape is the optical axis
A method for producing a birefringent periodic structure.
【請求項5】 請求項1記載の複屈折性周期構造体であ
って、xy面に垂直あるいは斜めに光を入射したときx
方向に電界成分をもつ偏波とy方向に電界成分をもつ偏
波の間に位相差を与えることを特徴とする位相板。
5. The birefringent periodic structure according to claim 1, wherein when light enters the xy plane perpendicularly or obliquely, x
A phase plate, wherein a phase difference is provided between a polarization having an electric field component in a direction and a polarization having an electric field component in a y direction.
【請求項6】 請求項1記載の複屈折性周期構造体であ
って、SiまたはTiO2またはTa2O5またはNb2O5またはSi3N
4を主成分とする高屈折率媒質とSiO2を主成分とする低
屈折率媒質からなり、xy面に垂直あるいは斜めに光を
入射したときx方向に電界成分をもつ偏波とy方向に電
界成分をもつ偏波の間に位相差を与えることを特徴とす
る位相板。
6. The birefringent periodic structure according to claim 1, wherein the structure is Si, TiO 2, Ta 2 O 5, Nb 2 O 5, or Si 3 N.
It consists of a high-refractive-index medium whose main component is 4 and a low-refractive-index medium whose main component is SiO 2. When light is incident perpendicularly or obliquely to the xy plane, it has polarization in the x direction and electric field components in the y direction. A phase plate for providing a phase difference between polarized waves having an electric field component.
【請求項7】 周期的な溝または周期的な線状突起また
は細長い突起または細長い凹みを有する基板の上に、高
屈折率媒質と低屈折率媒質とを、少なくとも一部にドラ
イエッチングを含む膜形成方法により周期ごとに形状を
繰り返しつつ積層することを特徴とし、凹凸形状の長手
方向を光学軸とする複屈折性周期構造体であって、積層
方向に成分を持つ光を入射したとき凹凸形状の長手方向
の偏波と垂直方向の偏波の間に位相差を与えることを特
徴とする位相板の作製方法。
7. A film containing a high-refractive-index medium and a low-refractive-index medium at least in part on a substrate having periodic grooves or periodic linear projections or elongated projections or elongated recesses, at least partially including dry etching. A birefringent periodic structure having a longitudinal direction of an uneven shape as an optical axis, wherein the shape is repeated while repeating a shape in each cycle by a forming method, and the uneven shape is formed when light having a component in a stacking direction is incident. Providing a phase difference between the polarization in the longitudinal direction and the polarization in the vertical direction.
【請求項8】 周期的な溝または周期的な線状突起また
は細長い突起または細長い凹みを有する基板の上に、Si
またはTiO2またはTa2O5またはNb2O5またはSi 3N4を主成
分とする高屈折率媒質とSiO2を主成分とする低屈折率媒
質からなり、少なくとも一部にドライエッチングを含む
膜形成方法により周期ごとに形状を繰り返しつつ積層す
ることを特徴とする複屈折性周期構造体であって、積層
方向に成分を持つ光を入射したとき凹凸形状の長手方向
の偏波と垂直方向の偏波の間に位相差を与えることを特
徴とする位相板の作製方法。
8. A periodic groove or periodic linear projection or
On a substrate with elongated protrusions or recesses,
Or TiOTwoOr TaTwoOFiveOr NbTwoOFiveOr Si ThreeNFourThe main
High refractive index medium and SiOTwoLow-refractive-index medium whose main component is
Quality, at least partially including dry etching
Laminate while repeating the shape every period by film formation method
A birefringent periodic structure, characterized in that
Longitudinal direction of uneven shape when light with component in the direction is incident
It provides a phase difference between the polarization of
A method for manufacturing a phase plate.
【請求項9】 請求項1記載の複屈折性周期構造体であ
って、x軸方向あるいはz軸方向の周期、または凹凸形
状の段差が異なる縞状の2つ以上の領域からなることを
特徴とする回折格子型の偏光ビームスプリッタ。
9. The birefringent periodic structure according to claim 1, wherein the birefringent periodic structure comprises two or more stripe-shaped regions having different periods in the x-axis direction or the z-axis direction or steps in the uneven shape. A diffraction grating type polarization beam splitter.
【請求項10】 SiまたはTiO2またはTa2O5またはNb2O5
またはSi3N4を主成分とする高屈折率媒質とSiO2を主成
分とする低屈折率媒質層を有する請求項1記載の複屈折
性周期構造体であって、x軸方向あるいはz軸方向の周
期、または凹凸形状の段差が異なる縞状の2つ以上の領
域からなることを特徴とする回折格子型の偏光ビームス
プリッタ。
10. Si or TiO 2 or Ta 2 O 5 or Nb 2 O 5
2. The birefringent periodic structure according to claim 1, further comprising a high-refractive-index medium containing Si 3 N 4 as a main component and a low-refractive-index medium layer containing SiO 2 as a main component. 3. A diffraction grating type polarizing beam splitter comprising two or more stripe-shaped regions having different periods in the direction or steps of unevenness.
【請求項11】 周期的な溝または周期的な線状突起ま
たは細長い突起または細長い凹みを有する基板の上に、
高屈折率媒質と低屈折率媒質とを、少なくとも一部にド
ライエッチングを含む膜形成方法により周期ごとに形状
を繰り返しつつ積層することを特徴とする複屈折性周期
構造体からなる回折格子型の偏光ビームスプリッタの作
製方法。
11. On a substrate having periodic grooves or periodic linear projections or elongated projections or elongated depressions,
A high-refractive-index medium and a low-refractive-index medium are formed at least in part by a film forming method including dry etching while repeating the shape in each period while repeating the shape thereof. A method for manufacturing a polarizing beam splitter.
【請求項12】 周期的な溝または周期的な線状突起ま
たは細長い突起または細長い凹みを有する基板の上に、
SiまたはTiO2またはTa2O5またはNb2O5またはSi3N4を主
成分とする高屈折率媒質とSiO2を主成分とする低屈折率
媒質とを、少なくとも一部にドライエッチングを含む膜
形成方法により周期ごとに形状を繰り返しつつ積層する
ことを特徴とする複屈折性周期構造体からなる回折格子
型の偏光ビームスプリッタの作製方法。
12. On a substrate having periodic grooves or periodic linear projections or elongated projections or elongated depressions,
Dry etching is performed on at least part of a high-refractive index medium mainly composed of Si or TiO 2 or Ta 2 O 5 or Nb 2 O 5 or Si 3 N 4 and a low refractive index medium mainly composed of SiO 2. A method of manufacturing a diffraction grating type polarizing beam splitter comprising a birefringent periodic structure, wherein the lamination is performed while repeating a shape in each cycle by a film forming method including the same.
【請求項13】 請求項1記載の複屈折性周期構造領域
と、z軸方向に多層構造があってx軸方向およびy軸方
向には一様である周期構造領域とを有することを特徴と
する回折格子型の偏光ビームスプリッタ。
13. A birefringent periodic structure region according to claim 1, and a periodic structure region having a multilayer structure in the z-axis direction and being uniform in the x-axis direction and the y-axis direction. Grating type polarizing beam splitter.
【請求項14】 SiまたはTiO2またはTa2O5またはNb2O5
またはSi3N4を主成分とする高屈折率媒質とSiO2を主成
分とする低屈折率媒質層からなり、請求項1記載の複屈
折性周期構造領域と、z軸方向に多層構造があってx軸
方向およびy軸方向には一様である周期構造領域とを有
することを特徴とする回折格子型の偏光ビームスプリッ
タ。
14. Si or TiO 2 or Ta 2 O 5 or Nb 2 O 5
Or a high refractive index medium mainly composed of Si 3 N 4 and a low refractive index medium layer mainly composed of SiO 2 , wherein the birefringent periodic structure region according to claim 1 and a multilayer structure in the z-axis direction are formed. A diffraction grating type polarization beam splitter having a periodic structure region that is uniform in the x-axis direction and the y-axis direction.
JP2000164954A 1999-06-01 2000-06-01 Double refraction periodic structure, phase plate, diffraction grating type polarizing beam splitter and their manufacture Pending JP2001051122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000164954A JP2001051122A (en) 1999-06-01 2000-06-01 Double refraction periodic structure, phase plate, diffraction grating type polarizing beam splitter and their manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19218199 1999-06-01
JP11-192181 1999-06-01
JP2000164954A JP2001051122A (en) 1999-06-01 2000-06-01 Double refraction periodic structure, phase plate, diffraction grating type polarizing beam splitter and their manufacture

Publications (2)

Publication Number Publication Date
JP2001051122A true JP2001051122A (en) 2001-02-23
JP2001051122A5 JP2001051122A5 (en) 2009-01-08

Family

ID=26507161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000164954A Pending JP2001051122A (en) 1999-06-01 2000-06-01 Double refraction periodic structure, phase plate, diffraction grating type polarizing beam splitter and their manufacture

Country Status (1)

Country Link
JP (1) JP2001051122A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008196A1 (en) * 2002-07-13 2004-01-22 Autocloning Technology Ltd. Polarization analyzer
US6735354B2 (en) 2001-04-04 2004-05-11 Matsushita Electric Industrial Co., Ltd. Optical device
US6813399B2 (en) 2001-02-09 2004-11-02 Matsushita Electric Industrial Co., Ltd. Optical device
JP2005321562A (en) * 2004-05-07 2005-11-17 Canon Inc Polarization separation element and optical system having the same
JP2007114375A (en) * 2005-10-19 2007-05-10 Ricoh Opt Ind Co Ltd Light irradiation device, liquid crystal display apparatus and liquid crystal projection apparatus
JP2007139814A (en) * 2005-11-14 2007-06-07 Matsushita Electric Ind Co Ltd Retardation element
JP2008008990A (en) * 2006-06-27 2008-01-17 Ricoh Co Ltd Wavelength plate, image projector, and optical pick-up
CN100410695C (en) * 2003-11-28 2008-08-13 日本板硝子株式会社 Multilayered structure and manufacturing method thereof
JP2009116077A (en) * 2007-11-07 2009-05-28 Ricoh Opt Ind Co Ltd Wavelength plate using photonic crystal and method of manufacturing the same
US7589895B2 (en) 2003-10-07 2009-09-15 Nalux Co., Ltd. Polarizing element and optical system including polarizing element
JP2010152391A (en) * 2010-03-05 2010-07-08 Canon Inc Polarization splitting element
JP2010156896A (en) * 2008-12-26 2010-07-15 Photonic Lattice Inc Multi-value wavelength plate
JP2010164752A (en) * 2009-01-15 2010-07-29 Ricoh Co Ltd Optical element, optical pickup, optical information processing device, optical attenuator, polarization conversion element, projector optical system, and optical equipment
JP2010230856A (en) * 2009-03-26 2010-10-14 Fujifilm Corp Polarization conversion device an polarized illumination optical device, and liquid crystal projector
JP2010230857A (en) * 2009-03-26 2010-10-14 Fujifilm Corp Polarization conversion device and polarized illumination optical device, and liquid crystal projector
KR101051372B1 (en) * 2010-04-19 2011-07-22 주식회사 엘엠에스 Waveplate for blue-ray disk
CN102576792A (en) * 2009-10-22 2012-07-11 日本电气株式会社 Light emitting element and image display device using the light emitting element
US8643050B2 (en) 2009-10-22 2014-02-04 Nec Corporation Light emitting element and image display apparatus using the light emitting element
US8792165B2 (en) 2008-12-22 2014-07-29 3M Innovative Properties Company Internally patterned multilayer optical films with multiple birefringent layers
US8807769B2 (en) 2010-04-06 2014-08-19 Nec Corporation Wavelength plate, light emitting element, and image display device using the light emitting element
US9016883B2 (en) 2010-03-11 2015-04-28 Nec Corporation Polarized light emitting element for display apparatus

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6813399B2 (en) 2001-02-09 2004-11-02 Matsushita Electric Industrial Co., Ltd. Optical device
EP1248124A3 (en) * 2001-04-04 2004-11-03 Matsushita Electric Industrial Co., Ltd. Photonic crystal and related optical devices
US6735354B2 (en) 2001-04-04 2004-05-11 Matsushita Electric Industrial Co., Ltd. Optical device
JP2009139973A (en) * 2002-07-13 2009-06-25 Autocloning Technology:Kk Polarization analyzer
EP1560044A1 (en) * 2002-07-13 2005-08-03 Autocloning Technology Ltd. Polarization analyzer
EP1560044A4 (en) * 2002-07-13 2008-03-19 Autocloning Technology Ltd Polarization analyzer
WO2004008196A1 (en) * 2002-07-13 2004-01-22 Autocloning Technology Ltd. Polarization analyzer
US7589895B2 (en) 2003-10-07 2009-09-15 Nalux Co., Ltd. Polarizing element and optical system including polarizing element
JP4843819B2 (en) * 2003-10-07 2011-12-21 ナルックス株式会社 Polarizing element and optical system including polarizing element
CN100410695C (en) * 2003-11-28 2008-08-13 日本板硝子株式会社 Multilayered structure and manufacturing method thereof
JP2005321562A (en) * 2004-05-07 2005-11-17 Canon Inc Polarization separation element and optical system having the same
JP4537115B2 (en) * 2004-05-07 2010-09-01 キヤノン株式会社 Polarization separation prism
JP2007114375A (en) * 2005-10-19 2007-05-10 Ricoh Opt Ind Co Ltd Light irradiation device, liquid crystal display apparatus and liquid crystal projection apparatus
JP2007139814A (en) * 2005-11-14 2007-06-07 Matsushita Electric Ind Co Ltd Retardation element
JP2008008990A (en) * 2006-06-27 2008-01-17 Ricoh Co Ltd Wavelength plate, image projector, and optical pick-up
JP2009116077A (en) * 2007-11-07 2009-05-28 Ricoh Opt Ind Co Ltd Wavelength plate using photonic crystal and method of manufacturing the same
US8879151B2 (en) 2008-12-22 2014-11-04 3M Innovative Properties Company Internally patterned multilayer optical films using spatially selective birefringence reduction
US8982462B2 (en) 2008-12-22 2015-03-17 3M Innovative Properties Company Multilayer optical films having side-by-side mirror/polarizer zones
US9964677B2 (en) 2008-12-22 2018-05-08 3M Innovative Properties Company Multilayer optical films suitable for bi-level internal patterning
US9651725B2 (en) 2008-12-22 2017-05-16 3M Innovative Properties Company Multilayer optical films having side-by-side mirror/polarizer zones
US9651726B2 (en) 2008-12-22 2017-05-16 3M Innovative Properties Company Multilayer optical films having side-by-side polarizer/polarizer zones
US9575233B2 (en) 2008-12-22 2017-02-21 3M Innovative Properties Company Internally patterned multilayer optical films using spatially selective birefringence reduction
US9291757B2 (en) 2008-12-22 2016-03-22 3M Innovative Properties Company Multilayer optical films having side-by-side polarizer/polarizer zones
US9019607B2 (en) 2008-12-22 2015-04-28 3M Innovative Properties Company Multilayer optical films suitable for bi-level internal patterning
US8792165B2 (en) 2008-12-22 2014-07-29 3M Innovative Properties Company Internally patterned multilayer optical films with multiple birefringent layers
JP2010156896A (en) * 2008-12-26 2010-07-15 Photonic Lattice Inc Multi-value wavelength plate
JP2010164752A (en) * 2009-01-15 2010-07-29 Ricoh Co Ltd Optical element, optical pickup, optical information processing device, optical attenuator, polarization conversion element, projector optical system, and optical equipment
JP2010230857A (en) * 2009-03-26 2010-10-14 Fujifilm Corp Polarization conversion device and polarized illumination optical device, and liquid crystal projector
JP2010230856A (en) * 2009-03-26 2010-10-14 Fujifilm Corp Polarization conversion device an polarized illumination optical device, and liquid crystal projector
US8866172B2 (en) 2009-10-22 2014-10-21 Nec Corporation Light emitting element and image display apparatus using the light emitting element
US8643050B2 (en) 2009-10-22 2014-02-04 Nec Corporation Light emitting element and image display apparatus using the light emitting element
CN102576792A (en) * 2009-10-22 2012-07-11 日本电气株式会社 Light emitting element and image display device using the light emitting element
JP2010152391A (en) * 2010-03-05 2010-07-08 Canon Inc Polarization splitting element
US9016883B2 (en) 2010-03-11 2015-04-28 Nec Corporation Polarized light emitting element for display apparatus
US8807769B2 (en) 2010-04-06 2014-08-19 Nec Corporation Wavelength plate, light emitting element, and image display device using the light emitting element
KR101051372B1 (en) * 2010-04-19 2011-07-22 주식회사 엘엠에스 Waveplate for blue-ray disk

Similar Documents

Publication Publication Date Title
JP2001051122A (en) Double refraction periodic structure, phase plate, diffraction grating type polarizing beam splitter and their manufacture
JP3288976B2 (en) Polarizer and its manufacturing method
US5029988A (en) Birefringence diffraction grating type polarizer
JP4950234B2 (en) Ellipsometer
JP2703930B2 (en) Birefringent diffraction grating polarizer
JP4294264B2 (en) Integrated optical element
Sato et al. Photonic crystals for the visible range fabricated by autocloning technique and their application
WO2007077652A1 (en) Polarizing element and method for fabricating same
JP3493149B2 (en) Polarizer, method of manufacturing the same, and waveguide optical device using the same
JP2012159802A (en) Optical element, optical pickup, optical information processor, optical attenuator, polarization conversion element, projector optical system, isolator and optical instrument
JP2001083321A (en) Polarizer and method for its production
JP4975162B2 (en) Self-cloning photonic crystal for ultraviolet light
JP3616349B2 (en) Magneto-optic crystal plate with polarizing element
JP2003344808A (en) Polarization independent optical isolator and optical circulator
JP2003227931A (en) Polarizer incorporating optical component, method of manufacturing the same and method of combining linearly polarized wave using the same
TWI797616B (en) Optical device and method of manufacturing the same
JP2003279746A (en) Polarization separation element and manufacturing method thereof
JP5171214B2 (en) Method for producing wave plate using photonic crystal
JPH04256904A (en) Polarizing element
JP3879246B2 (en) Polarizing optical element
JP2003315737A (en) Optical isolator
JP5508295B2 (en) 1/4 wave plate for optical pickup
JPH09102138A (en) Optical head device and its production
JPH04104103A (en) Polarized light separating element and production thereof
JPH02156205A (en) Double refractive diffraction grating type polarizer and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090916