JP2003279746A - Polarization separation element and manufacturing method thereof - Google Patents

Polarization separation element and manufacturing method thereof

Info

Publication number
JP2003279746A
JP2003279746A JP2002087314A JP2002087314A JP2003279746A JP 2003279746 A JP2003279746 A JP 2003279746A JP 2002087314 A JP2002087314 A JP 2002087314A JP 2002087314 A JP2002087314 A JP 2002087314A JP 2003279746 A JP2003279746 A JP 2003279746A
Authority
JP
Japan
Prior art keywords
polarizer
substrate
polarization
light
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002087314A
Other languages
Japanese (ja)
Inventor
Shojiro Kawakami
彰二郎 川上
Takashi Sato
尚 佐藤
Osamu Ishikawa
理 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002087314A priority Critical patent/JP2003279746A/en
Publication of JP2003279746A publication Critical patent/JP2003279746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a polarization separation element utilizing a photonic crystal polarizer. <P>SOLUTION: Undulate transparent thin films 1 having different refractive indexes 11 are alternately laminated on a slope in a glass board 1 that is formed in a wedge shape to form a polarizer 13. When a wedge angle is set to be θand light is applied from a side where no polarizers are formed, an incident angle to the polarizer becomes θ. TM polarization is transmitted through the polarizer, but is refracted and exits in the direction of ϕ<SB>1</SB>. When the refractive index of air is set to be n<SB>0</SB>and that of the board is set to n, ϕ<SB>1</SB>=sin<SP>-1</SP>(nsinθ/ n<SB>0</SB>)-θ results. Conversely, TE polarization is reflected by the polarizer, reaches the rear surface of the board 10, and is refracted for exiting. In this case, the TE polarization enters the rear surface at an incident angle of 2θ, an emission angle ϕ<SB>2</SB>becomes sin<SP>-1</SP>(nsin2θ/n<SB>0</SB>). As a result, an angle formed by two emission light can be controlled by the values of the refractive index (n) of the board and the wedge angle θ. For example, two beams orthogonally cross each other by setting to n=1.5 and θ=20°. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、直交する二つの
偏光成分を空間的に分離する偏光分離素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization separation element that spatially separates two orthogonal polarization components.

【0002】[0002]

【従来の技術】偏光成分を空間的に分離する偏光子は、
これを用いることで、分離した光に対してそれぞれ処理
操作を施してから再び合成することで偏波無依存型のデ
バイスを構成することができ、光通信の分野で利用され
る。ここで分離方向は、伝搬方向は同じでオフセットを
設けた場合と、伝搬方向を90゜ずらして分離する場合
がある。
2. Description of the Related Art Polarizers that spatially separate polarization components are
By using this, polarization-independent devices can be constructed by subjecting separated lights to respective processing operations and then synthesizing them again, which is used in the field of optical communication. Here, as for the separation direction, there are cases where the propagation directions are the same and an offset is provided, and cases where the propagation directions are shifted by 90 ° and separation is performed.

【0003】このような偏光分離は、従来、通常ルチル
や方解石などの高価な異方性結晶をくさび形あるいはプ
リズム型に精密な研磨加工することで実現されている
が、素子として極めて高価になり、また、小形化が難し
い。
Conventionally, such polarized light separation has been realized by precisely polishing an expensive anisotropic crystal such as rutile or calcite into a wedge shape or a prism shape, but it is extremely expensive as an element. Also, it is difficult to miniaturize.

【0004】また、偏光分離を行うものとして、ガラス
製のプリズムや平面基板面に、屈折率の異なる誘電体の
多層膜を交互に積層した偏光ビームスプリッタ−も知ら
れている。ここで表面は平坦である。このものでは、膜
のそれぞれの界面でブリュースター角となるように、膜
の構造や、入射角を設定することにより、P偏波(入射
面に平行な偏波)は直進し、S偏波(入射面に垂直な偏
波)は直角方向に反射され、偏光を分離することができ
る。しかし、結晶の複屈折率を利用したプリズム型偏光
子に比べると、分離性能が低い(十数dB)という欠点が
ある。
Further, as a device for separating polarized light, there is also known a polarizing beam splitter in which a glass prism or a flat substrate surface is alternately laminated with multilayer films of dielectric materials having different refractive indexes. Here, the surface is flat. In this structure, by setting the structure of the film and the incident angle so that the Brewster angle is obtained at each interface of the film, the P polarized wave (polarized wave parallel to the incident surface) goes straight and the S polarized wave. (Polarized light perpendicular to the plane of incidence) is reflected in the direction perpendicular to the polarized light, and the polarized light can be separated. However, compared to a prismatic polarizer that uses the birefringence of crystals, it has the drawback of low separation performance (tens of dB).

【0005】[0005]

【発明が解決しようとする課題】本発明は、直交する2
つの偏光成分を空間的に分離する素子であって、安価で
しかも分離性能のよいものを提供することを課題とす
る。
The present invention has two orthogonal
An object of the present invention is to provide an element that spatially separates two polarization components and that is inexpensive and has good separation performance.

【0006】[0006]

【課題を解決するための手段】この発明の偏光分離素子
は、安価な材料(ガラスなど)からなるくさび形プレー
ト(プリズム)と、フォトニック結晶偏光子(特開20
01−83321号公報参照)との組み合わせで実現さ
れる。
A polarization separation element of the present invention comprises a wedge-shaped plate (prism) made of an inexpensive material (such as glass) and a photonic crystal polarizer (Japanese Patent Application Laid-Open No. 20-200200).
No. 01-83321).

【0007】フォトニツク結晶偏光子の概念を説明する
と、図1のような周期的な溝列4を形成したガラス基板
3上に、図2に示すように、透明で高屈折率の媒質と低
屈折率の媒質とを界面の形状を保存しながら、交互に積
層する。各層1、2はx方向とz方向に周期性がある
が、y方向は一様であってもよいし、x軸方向より大き
い長さの周期的または非周期的な構造を有していてもよ
い。このようにして得られた周期構造体にz方向から無
偏波光または楕円偏光を入射すると、溝列と平行な偏波
即ちy偏波と、それに直交するx偏波とに対して、TE
モードまたはTMモードの光がそれぞれ周期構造体の内
部に誘起される。しかし、光の周波数が、TEモードま
たはTMモードのバンドギャップの中にあれば、そのモ
ードは周期構造体の中で伝搬することができず、入射光
は反射または回折される。一方、光の周波数がエネルギ
ーバンド内にあれば、周期構造体の中を光は波動ベクト
ルを保存しながら透過する。従ってこの周期構造体は面
型の偏光子として動作する。
The concept of the photonic crystal polarizer will be explained. As shown in FIG. 2, a transparent medium having a high refractive index and a low refractive index medium are provided on a glass substrate 3 having a periodic groove array 4 as shown in FIG. The medium having a refractive index is alternately laminated while preserving the shape of the interface. Each of the layers 1 and 2 has a periodicity in the x direction and the z direction, but the y direction may be uniform, or has a periodic or aperiodic structure having a length larger than the x axis direction. Good. When non-polarized light or elliptically polarized light is incident on the periodic structure obtained in this way from the z direction, TE is generated with respect to a polarized wave parallel to the groove array, that is, a y polarized wave, and an x polarized wave orthogonal thereto.
Mode light or TM mode light is induced inside the periodic structure. However, if the frequency of the light is in the TE or TM mode bandgap, the mode cannot propagate in the periodic structure and the incident light is reflected or diffracted. On the other hand, if the frequency of the light is within the energy band, the light passes through the periodic structure while preserving the wave vector. Therefore, this periodic structure operates as a planar polarizer.

【0008】フォトニツク結晶偏光子は、溝列の周期L
x、積層方向の周期Lzを調整することで、偏光子として
の動作波長域を設定することができる。低屈折率媒質と
してはSiO2を主成分とする材料が最も一般的であり、透
明波長領域が広く、化学的、熱的、機械的にも安定であ
り、成膜も容易に行なえる。高屈折率材料としては、Si
などの半導体や、TiO2などの酸化物が使用でき、透明波
長範囲が広く、可視光領域でも使用できる。一方、半導
体は、近赤外域に限定されるが、屈折率が大きい利点が
ある。
The photonic crystal polarizer has a groove array period L.
By adjusting x and the cycle Lz in the stacking direction, the operating wavelength range as a polarizer can be set. As the low refractive index medium, a material containing SiO 2 as a main component is the most common, has a wide transparent wavelength region, is chemically, thermally, and mechanically stable, and can be easily formed into a film. Si as a high refractive index material
Semiconductors such as and oxides such as TiO 2 can be used, have a wide transparent wavelength range, and can be used even in the visible light region. On the other hand, semiconductors are limited to the near infrared region, but have the advantage of having a large refractive index.

【0009】作製方法は、まず、図1に示すように、石
英ガラス基板3上に電子ビームリソグラフィとドライエ
ッチングにより周期的な溝4を形成する。符号5は無反
射コーティング層である。この基板上に、SiO2およびSi
のターゲットを用い、バイアス・スパッタリング法によ
り、SiO2層とSi層を交互に積層する(図2)。そのと
き、各層のx軸方向に周期的な凹凸の形状を保存しなが
ら成膜を行なうことが肝要である。基板の上に、図2に
示された規則的な積層構造が生成される理由は、ター
ゲットからの中性粒子の分散入射による堆積、Arイオ
ンの垂直入射によるスパッタエッチング、それと、堆
積粒子の再付着の3つの作用の重ね合わせによって説明
することができる。
In the manufacturing method, first, as shown in FIG. 1, periodic grooves 4 are formed on a quartz glass substrate 3 by electron beam lithography and dry etching. Reference numeral 5 is a non-reflection coating layer. On this substrate, SiO 2 and Si
Using the target of No. 2 , the SiO 2 layer and the Si layer are alternately laminated by the bias sputtering method (FIG. 2). At that time, it is important to form the film while preserving the shape of the periodic unevenness in the x-axis direction of each layer. The reason why the regular layered structure shown in FIG. 2 is formed on the substrate is that the deposition of neutral particles from the target by scattered incidence, the sputter etching by normal incidence of Ar ions, and the re-deposition of deposited particles. It can be explained by the superposition of the three effects of adhesion.

【0010】このような通常のフォトニック結晶偏光子
に光を垂直入射した場合、図3に示すように、透過光と
反射光の伝搬方向の差は180゜である。入射角をθに傾
ければ180−θとなるが、偏光子の特性上θはせいぜい2
0°程度が上限である。
When light is vertically incident on such a normal photonic crystal polarizer, the difference in propagation direction between transmitted light and reflected light is 180 °, as shown in FIG. If the incident angle is inclined to θ, it becomes 180-θ, but θ is at most 2 due to the characteristics of the polarizer.
The upper limit is about 0 °.

【0011】この発明の偏光分離素子は、透明基板と、
その上に屈折率の異なる波状透明薄膜を交互に積層した
偏光子から成る点は従来のフォトニック結晶偏光子と同
じであるが、透明基板の厚みが均一でなく、くさび状に
なっている(請求項1)。このようにくさび型基板を使
用することで、偏光子で反射された光を、基板内部で全
反射させたり、基板の外に出て行くときに、大きな角度
で屈折させたりして、偏光分離角を広範囲に制御するこ
とができる。もちろん、従来の偏光プリズムにつきもの
であったルチルや方解石などの高価な異方性結晶が不要
なので、安価に提供でき、何より小形にできるのが特徴
である。
The polarization separation element of the present invention comprises a transparent substrate,
It is the same as the conventional photonic crystal polarizer in that it consists of a polarizer in which wavy transparent thin films with different refractive indices are alternately laminated on top of it, but the thickness of the transparent substrate is not uniform and it is wedge-shaped ( Claim 1). By using a wedge-shaped substrate in this way, the light reflected by the polarizer can be totally reflected inside the substrate or refracted at a large angle when it goes out of the substrate to separate the polarized light. A wide range of corners can be controlled. Of course, since expensive anisotropic crystals such as rutile and calcite, which have been associated with conventional polarizing prisms, are not required, the feature is that they can be provided at a low cost and above all can be made compact.

【0012】この偏光分離素子は2つの分光パターンを
有する。請求項2に記載した偏光分離素子は、偏光子と
反対側の面から基板に光を入射すると、一方の偏波が該
偏光子を透過した後、屈折しながら外に出射すると共
に、他方の偏波は偏光子で反射され、基板の偏光子と反
対側の面から、屈折しながら外に出射する。このパター
ンのものでは、くさび角を大きくするにしたがって、2
つの出射光のなす角度を180°から徐々に小さくするこ
とができ、究極的には2つの出射光を直交させることが
可能である(請求項3)。
This polarization separation element has two spectral patterns. In the polarization beam splitting element according to claim 2, when light is incident on the substrate from the surface opposite to the polarizer, one polarized wave passes through the polarizer and then is refracted and emitted to the outside. The polarized wave is reflected by the polarizer and is emitted while refracting from the surface of the substrate opposite to the polarizer. With this pattern, as the wedge angle is increased, 2
The angle formed by the two emitted lights can be gradually reduced from 180 °, and ultimately the two emitted lights can be made orthogonal to each other (claim 3).

【0013】請求項4に記載の偏光分離素子は、偏光子
と反対側の面から基板に光を入射すると、一方の偏波が
偏光子を透過した後、屈折しながら外に出射すると共
に、他方の偏波は偏光子で反射され、基板の偏光子と反
対側の面で全反射し、基板の側面から屈折しながら外に
出射する。このパターンのものでは、くさび角を大きく
するにしたがって、2つの出射光のなす角度がさらに小
さくなり、究極的には、両出射光が平行で、しかも、オ
フセットを有するようにすることができる(請求項
5)。
In the polarization separation element according to the fourth aspect, when light is incident on the substrate from the surface opposite to the polarizer, one polarized wave passes through the polarizer and then is refracted and emitted to the outside. The other polarized wave is reflected by the polarizer, is totally reflected by the surface of the substrate opposite to the polarizer, and is emitted while refracting from the side surface of the substrate. With this pattern, as the wedge angle is increased, the angle formed by the two emitted lights becomes smaller, and ultimately both emitted lights can be made parallel and have an offset ( Claim 5).

【0014】この発明の偏光分離素子は、フォトニツク
結晶偏光子をくさび状の基板上に形成したものである
が、作りやすいように、均一厚みの基板上にフォトニツ
ク結晶偏光子を形成し、その基板に、くさび状に厚みが
変化する同一材料の付加基板を接合するようにしても同
じ作用効果が得られる(請求項6)。または、均一厚み
の基板上にフォトニツク結晶偏光子を形成した後、その
基板を研磨してくさび状にしてもよい(請求項7)。
The polarization splitting element of the present invention is one in which a photonic crystal polarizer is formed on a wedge-shaped substrate. To make it easier, the photonic crystal polarizer is formed on a substrate of uniform thickness, Even if an additional substrate made of the same material whose thickness changes like a wedge is joined to the substrate, the same effect can be obtained (claim 6). Alternatively, the photonic crystal polarizer may be formed on a substrate having a uniform thickness, and then the substrate may be polished into a wedge shape (claim 7).

【0015】[0015]

【発明の実施の形態】図4に示す偏光分離素子は、くさ
び状に形成し石英ガラス基板10の斜面に溝列14を形
成し、その上に、屈折率の異なる波状透明薄膜11、1
2を交互に積層して偏光子13を形成したものである。
くさび角をθとし、偏光子13を形成していない側から
光を入射すると、偏光子に対する入射角はθとなる。TM
偏波は、偏光子を透過するが、そのとき屈折してφ1
方向に出て行く。空気の屈折率をn0、基板の屈折率をn
とすると、φ1=sin-1(n sinθ/n0)−θとなる。一
方、TE偏波は偏光子で反射され、基板10の裏面に到達
し、屈折して外に出て行く。このとき入射角2θで裏面
に入射するため、出射角φ2=sin-1(n sin2θ/n0)とな
る。
BEST MODE FOR CARRYING OUT THE INVENTION The polarization separation element shown in FIG. 4 is formed in a wedge shape, and a groove array 14 is formed on a slope of a quartz glass substrate 10, on which a wavy transparent thin film 11 having a different refractive index is provided.
The polarizer 13 is formed by alternately stacking two layers.
When the wedge angle is θ and light is incident from the side where the polarizer 13 is not formed, the incident angle with respect to the polarizer is θ. TM
The polarized light passes through the polarizer, but is then refracted and goes out in the direction of φ 1 . The refractive index of air is n 0 , and the refractive index of the substrate is n
Then, φ 1 = sin −1 (n sin θ / n 0 ) −θ. On the other hand, the TE polarized light is reflected by the polarizer, reaches the back surface of the substrate 10, is refracted, and goes out. At this time, since the light is incident on the back surface at the incident angle 2θ, the exit angle φ 2 = sin −1 (n sin2θ / n 0 ).

【0016】したがって、基板の屈折率n、くさび角θ
の値によって2つの出射光のなす角を制御することがで
きる。例えば、n=1.5、θ=20°とすると、2つのビー
ムは直交する。
Therefore, the refractive index n of the substrate and the wedge angle θ
The angle between the two emitted lights can be controlled by the value of. For example, if n = 1.5 and θ = 20 °, the two beams are orthogonal.

【0017】図4の薄膜11、12の波の方向は紙面と
平行であるが、図6のように紙面垂直方向にしてもよ
い。この場合は、透過または反射する偏波の方向が入れ
替わることになる。
Although the wave directions of the thin films 11 and 12 in FIG. 4 are parallel to the paper surface, they may be perpendicular to the paper surface as shown in FIG. In this case, the directions of the transmitted and reflected polarized waves are switched.

【0018】図4の偏光分離素子はくさび状の基板10
に溝列4を設け、その上に偏光子を積層したが、別の製
法として、均一厚みの基板上に溝列を設け、その上に偏
光子を形成した後、基板を研磨してくさび状にしてもよ
い。さらには、図7に示すように、均一厚みの基板10
a上に溝列を設けて偏光子13を形成し、その後、基板
10aに、くさび状に厚みが変化する、同一材料の付加
基板10bを接着剤で接合してもよい。こうすれば、場
合によっては作り易い。
The polarization separation element shown in FIG. 4 is a wedge-shaped substrate 10.
The groove array 4 was provided on the substrate, and the polarizer was laminated on the groove array. However, as another manufacturing method, the groove array was provided on the substrate of uniform thickness, the polarizer was formed on the groove array, and then the substrate was polished to form a wedge shape. You may Furthermore, as shown in FIG. 7, the substrate 10 having a uniform thickness is used.
A groove array may be provided on a to form the polarizer 13, and then the additional substrate 10b of the same material, the thickness of which changes like a wedge, may be bonded to the substrate 10a with an adhesive. This makes it easier to make in some cases.

【0019】図5に示す偏光分離素子は、全反射を利用
できるようにしたものである。同図では、図4と同じ部
材には同一符号を付した。基板の上面と右側面のなす角
度をθ2とする。偏光子を形成していない側から光を入
射すると、偏光子に対する入射角はθ1となる。TM偏波
は、偏光子を透過し、そのとき屈折してφ1=sin-1(nsi
1/n0)−θ1で伝搬する。一方、TE偏波は偏光子で反
射され、基板の裏面に到達する。このとき入射角は2θ1
となり全反射をおこす。その後、側面に到達し、出射角
φ2=θ2−sin-1(n sin(θ2−2θ1)/n0)となる。した
がって、基板の屈折率n、くさび角θ1、θ2との値によ
って2つのビ一ムのなす角を制御することができる。例
えば、n=2.53、θ1=20°、θ2=40°とすると、2つ
のビームの伝搬方向は一致する。
The polarization beam splitting element shown in FIG. 5 is adapted to utilize total reflection. In the figure, the same members as those in FIG. 4 are designated by the same reference numerals. The angle between the upper surface of the substrate and the right side surface is θ 2 . When light is incident from the side on which the polarizer is not formed, the incident angle on the polarizer is θ 1 . TM polarized light passes through the polarizer and is refracted at that time, φ 1 = sin -1 (nsi
Propagation occurs at nθ 1 / n 0 ) −θ 1 . On the other hand, the TE polarized light is reflected by the polarizer and reaches the back surface of the substrate. At this time, the incident angle is 2θ 1
Next, it causes total reflection. After that, the light reaches the side surface and the emission angle φ 2 = θ 2 −sin −1 (n sin (θ 2 −2θ 1 ) / n 0 ). Therefore, the angle formed by the two beams can be controlled by the values of the refractive index n of the substrate and the wedge angles θ 1 and θ 2 . For example, when n = 2.53, θ 1 = 20 °, and θ 2 = 40 °, the propagation directions of the two beams match.

【0020】図5のものは波の方向が紙面と平行である
が、紙面垂直方向でもよい。この場合は、透過または反
射する偏波の方向が入れ替わることになる。
In FIG. 5, the wave direction is parallel to the paper surface, but it may be perpendicular to the paper surface. In this case, the directions of the transmitted and reflected polarized waves are switched.

【実施例】図4および図5に示す偏光分離素子を次の方
法で製造した。まず、基板表面にフォトリソグラフィー
とドライエッチング法により微細な溝列を加工した。そ
のパターンは周期が0.5μm、凹部と凸部は1:1、深さは
約0.2μmであった。次にバイアススパッタ装置を用い
て、SiとSiO2の交互多層膜を自己クローニング法により
積層した。周期は570nmで10周期、Si層とSiO2層の厚さ
の割合は3:7である。また成膜条件は、SiO2の成膜に対
してはArガス圧6mTorr、ターゲット高周波電力600W、基
板高周波電力100W、Siの成膜に対し、Arガス圧1mTorr、
ターゲット高周波電力600Wであった。こうして鋸歯状の
表面形状が形成された。
EXAMPLE The polarization separation element shown in FIGS. 4 and 5 was manufactured by the following method. First, a fine groove array was processed on the substrate surface by photolithography and dry etching. The pattern had a period of 0.5 μm, the concave and convex portions were 1: 1 and the depth was about 0.2 μm. Next, using a bias sputtering apparatus, alternating multilayer films of Si and SiO 2 were laminated by the self-cloning method. The period is 570 nm, 10 periods, and the thickness ratio of the Si layer and the SiO 2 layer is 3: 7. The deposition conditions are Ar gas pressure 6 mTorr for SiO 2 deposition, target high-frequency power 600 W, substrate high-frequency power 100 W, and Ar gas pressure 1 mTorr for Si deposition.
The target high frequency power was 600W. In this way, a serrated surface shape was formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 フォトニック結晶偏光子を形成する基板の概
念図である。
FIG. 1 is a conceptual diagram of a substrate forming a photonic crystal polarizer.

【図2】 フォトニック結晶偏光子本体の概念図であ
る。
FIG. 2 is a conceptual diagram of a photonic crystal polarizer body.

【図3】 フォトニック結晶偏光子に光を当てたときに
作用を示す。
FIG. 3 shows the action when light is applied to the photonic crystal polarizer.

【図4】 偏光分離素子の断面図である。FIG. 4 is a sectional view of a polarization beam splitting element.

【図5】 全反射も利用した偏光分離素子の断面図であ
る。
FIG. 5 is a cross-sectional view of a polarization separation element that also utilizes total reflection.

【図6】 図4の薄膜の波の方向を90゜ずらしたもので
ある。
6 is a diagram in which the wave directions of the thin film of FIG. 4 are shifted by 90 °.

【図7】 偏光分離素子の基板を張り合わせ構造とした
ものである。
FIG. 7 shows a structure in which the substrates of the polarization beam splitting element are bonded together.

【符号の説明】[Explanation of symbols]

10 基板 11 薄膜 12 薄膜 13 偏光子 14 溝列 10 substrates 11 thin film 12 thin film 13 Polarizer 14 groove rows

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 尚 宮城県仙台市太白区富沢南1−2−5 ボ ナール富沢302 (72)発明者 石川 理 宮城県宮城郡七ヶ浜町汐見台南2−21−8 Fターム(参考) 2H049 BA05 BA45 BC01 4G059 AA08 AA11 AB01 AB09 AB11 AC01 AC09 BB01 GA02 GA04 GA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Nao Sato             1-2-5 Tomizawa Minami, Taihaku Ward, Sendai City, Miyagi Prefecture             Nar Tomizawa 302 (72) Inventor Osamu Ishikawa             2-21-8 Shiomidainan, Shichigahama-cho, Miyagi-gun, Miyagi Prefecture F-term (reference) 2H049 BA05 BA45 BC01                 4G059 AA08 AA11 AB01 AB09 AB11                       AC01 AC09 BB01 GA02 GA04                       GA14

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 透明基板と、その上に屈折率の異なる波
状透明薄膜を交互に積層した偏光子から成り、該基板は
厚みが均一でなく、くさび状であることを特徴とする偏
光分離素子。
1. A polarization splitting element comprising a transparent substrate and a polarizer in which wavy transparent thin films having different refractive indices are alternately laminated on the transparent substrate, and the substrate is not uniform in thickness but wedge-shaped. .
【請求項2】 該偏光子と反対側の面から該基板に光を
入射すると、直交する2つの偏光成分のうちの一方の偏
波が該偏光子を透過した後、屈折しながら外に出射する
と共に、他方の偏波は該偏光子で反射され、該基板の該
偏光子と反対側の面から、屈折しながら外に出射するよ
うに構成された請求項1に記載の偏光分離素子。
2. When light is incident on the substrate from a surface opposite to the polarizer, one of two orthogonal polarization components passes through the polarizer and then exits while refracting. The polarized light separating element according to claim 1, wherein the other polarized light is reflected by the polarizer and is emitted to the outside while refracting from the surface of the substrate opposite to the polarizer.
【請求項3】 両出射光のなす角度が90゜である請求
項2に記載の偏光分離素子。
3. The polarization beam splitting element according to claim 2, wherein an angle formed by the two outgoing lights is 90 °.
【請求項4】 該偏光子と反対側の面から該基板に光を
入射すると、直交する2つの偏光成分のうちの一方の偏
波が該偏光子を透過した後、屈折しながら外に出射する
と共に、他方の偏波は該偏光子で反射され、該基板の該
偏光子と反対側の面で全反射し、該基板の側面から屈折
しながら外に出射するように構成された請求項1に記載
の偏光分離素子。
4. When light is incident on the substrate from a surface opposite to the polarizer, one polarized light of two orthogonal polarization components passes through the polarizer and then is refracted and emitted outside. And the other polarized wave is reflected by the polarizer, is totally reflected by the surface of the substrate opposite to the polarizer, and is emitted from the side surface of the substrate while being refracted. The polarization separation element according to 1.
【請求項5】 両出射光が平行で、しかも、オフセット
を有する請求項4に記載の偏光分離素子。
5. The polarization separation element according to claim 4, wherein both emitted lights are parallel to each other and have an offset.
【請求項6】 均一厚みの基板上に偏光子を積層した
後、その基板にくさび状に厚みが変化する付加基板を接
合した請求項1、2、3、4または5に記載の偏光分離
素子の製造法。
6. The polarization beam splitting element according to claim 1, wherein the polarizer is laminated on a substrate having a uniform thickness, and an additional substrate having a wedge-shaped thickness is bonded to the substrate. Manufacturing method.
【請求項7】 均一厚みの基板上に偏光子を積層した
後、その基板をくさび状に研磨した請求項1、2、3、
4または5に記載の偏光分離素子の製造法。
7. The method according to claim 1, wherein the polarizer is laminated on a substrate having a uniform thickness, and then the substrate is polished into a wedge shape.
4. The method for manufacturing the polarization separation element according to 4 or 5.
JP2002087314A 2002-03-27 2002-03-27 Polarization separation element and manufacturing method thereof Pending JP2003279746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087314A JP2003279746A (en) 2002-03-27 2002-03-27 Polarization separation element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087314A JP2003279746A (en) 2002-03-27 2002-03-27 Polarization separation element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2003279746A true JP2003279746A (en) 2003-10-02

Family

ID=29233550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087314A Pending JP2003279746A (en) 2002-03-27 2002-03-27 Polarization separation element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2003279746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100405095C (en) * 2004-12-24 2008-07-23 清华大学 Two-dimensional photor crystal polarization beam dividing device
US7495375B2 (en) 2005-09-19 2009-02-24 Industrial Technology Research Institute Polarized light emitting device
JP2020141396A (en) * 2019-02-28 2020-09-03 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100405095C (en) * 2004-12-24 2008-07-23 清华大学 Two-dimensional photor crystal polarization beam dividing device
US7495375B2 (en) 2005-09-19 2009-02-24 Industrial Technology Research Institute Polarized light emitting device
JP2020141396A (en) * 2019-02-28 2020-09-03 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensor
JP7493932B2 (en) 2019-02-28 2024-06-03 三星電子株式会社 Image Sensor

Similar Documents

Publication Publication Date Title
JP4688394B2 (en) Embedded wire grid polarizer for the visible spectrum
Sato et al. Photonic crystals for the visible range fabricated by autocloning technique and their application
US7265834B2 (en) Polarization analyzer
JP3288976B2 (en) Polarizer and its manufacturing method
JP4294264B2 (en) Integrated optical element
US20130188254A1 (en) Thin film optical filters with an integral air layer
US11619770B2 (en) Zoned optical waveplate
JP2005534981A (en) Precision phase lag device and method of manufacturing the same
JP2001051122A (en) Double refraction periodic structure, phase plate, diffraction grating type polarizing beam splitter and their manufacture
JPH0366642B2 (en)
JP2007101859A (en) Polarized beam splitter and method of manufacturing same
WO2004113974A1 (en) Polarizer and polarization separation element
CN112526656A (en) Four-direction depolarization beam splitter prism and preparation method thereof
JP2003279746A (en) Polarization separation element and manufacturing method thereof
JP3493149B2 (en) Polarizer, method of manufacturing the same, and waveguide optical device using the same
JP2001083321A (en) Polarizer and method for its production
JPH1195027A (en) Polarizing element of multilayer structure
JP4975162B2 (en) Self-cloning photonic crystal for ultraviolet light
JP3616349B2 (en) Magneto-optic crystal plate with polarizing element
JPH04256904A (en) Polarizing element
JP2003114326A (en) Polarized beam splitter and optical apparatus using the polarized beam splitter
JPH0682623A (en) Light beam separating element and its production
JP2741731B2 (en) Polarizer
JP3879246B2 (en) Polarizing optical element
JP2003344808A (en) Polarization independent optical isolator and optical circulator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20031031

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050412

A521 Written amendment

Effective date: 20050412

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Effective date: 20050630

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080212

A131 Notification of reasons for refusal

Effective date: 20080325

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080722

Free format text: JAPANESE INTERMEDIATE CODE: A02