JPH1195027A - Polarizing element of multilayer structure - Google Patents

Polarizing element of multilayer structure

Info

Publication number
JPH1195027A
JPH1195027A JP27395297A JP27395297A JPH1195027A JP H1195027 A JPH1195027 A JP H1195027A JP 27395297 A JP27395297 A JP 27395297A JP 27395297 A JP27395297 A JP 27395297A JP H1195027 A JPH1195027 A JP H1195027A
Authority
JP
Japan
Prior art keywords
wavelength
layer
grating
light
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27395297A
Other languages
Japanese (ja)
Inventor
Akira Sato
晃 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP27395297A priority Critical patent/JPH1195027A/en
Publication of JPH1195027A publication Critical patent/JPH1195027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To optionally design the center wavelength and the wavelength range from a vertical wave to oblique wave by stacking a grating layers with grating pitch smaller than the wavelength of applied light, through void layers or dielectric layers, and specifying the thickness of each layer. SOLUTION: Grating layers with a grating pitch smaller than the wavelength of the light are stacked through void layers or dielectric layers, and the thickness of each layer is to be about a quarter of either wavelength of two orthogonal polarized components of the light in each layer. That is, when grating structure is formed of isotropic material, and the grating pitch is made smaller than the wavelength, an effective refractive index in the direction of an arrow mark L (perpendicular to a grating face) differs between polarized light in a TE direction of the electric field and polarized light in a TM direction out of light entering this grating, and the refractive index of polarized light in the TM direction is larger. Such a grating is horizontally sliced and stacked with thin layers of isotropic material (or different material) placed in between, and its stack pitch P is to satisfy the effective refractive index of TE or TM polarized light × P=1/4 wavelength + 1/4 wavelength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は多層構造の偏光素
子,偏光用ビームスプリッタ等の偏光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizing element having a multilayer structure and a polarizing beam splitter.

【0002】[0002]

【従来の技術】偏光素子には一般に複屈折性結晶を利用
したものが用いられている。またブリュースター反射を
利用した等方性物質の多層膜が偏光用ビームスプリッタ
として用いられている。結晶を用いたものは高価であ
り、光学装置の光軸方向の寸法が大きく、光学装置が大
型化し、またビームスプリッタとして用いる場合、直交
二偏光の取出し角が狭いと云う難点がある。多層膜偏光
ビームスプリッタもブリュースター反射を利用している
ので、入射光,反射光,透過光の方向関係がブリュース
ター角によって決まり、光学装置の構成に当り、各種光
学素子の配置に関し制約が大きい。
2. Description of the Related Art In general, a polarizing element using a birefringent crystal is used. In addition, a multilayer film of an isotropic substance using Brewster reflection is used as a polarizing beam splitter. The one using a crystal is expensive, the size of the optical device in the optical axis direction is large, the size of the optical device is large, and when it is used as a beam splitter, there is a drawback that the take-out angle of orthogonal bi-polarized light is narrow. Since the multilayer polarizing beam splitter also uses Brewster reflection, the directional relationship among incident light, reflected light, and transmitted light is determined by the Brewster angle, and in the configuration of an optical device, the arrangement of various optical elements is greatly restricted. .

【0003】[0003]

【発明が解決しようとする課題】本発明は入出射角の関
係や偏光特性(例えば使用可能な波長範囲とか反射率,
透過率の比等)を要求に応じて設計可能な偏光素子を提
供しようとするものである。
SUMMARY OF THE INVENTION The present invention relates to the relationship between the input and output angles and the polarization characteristics (eg, usable wavelength range, reflectance,
It is an object of the present invention to provide a polarizing element whose transmittance can be designed as required.

【0004】[0004]

【課題を解決するための手段】格子間隔が波長より小さ
い格子を間隔をあけ、或いはその間隔に等方性の層を介
在させ、格子と上記間隔の各々の厚さを夫々の層内にお
ける使用光の波長の1/4程度とした積層構造或いは複
屈折性物質膜と等方性物質膜と積層し、各層の厚さを、
層内光波長の1/4程度とし、この積層体の前後に更に
1/8波長厚さで上記複屈折性物質,等方性物質の層を
1〜2層設けた多層膜を提供する。
SUMMARY OF THE INVENTION Gratings with a grating spacing smaller than the wavelength are spaced apart, or an isotropic layer is interposed in the spacing, and the thickness of the grating and each of the spacings is used in each layer. A laminated structure or a birefringent material film and an isotropic material film, each having a thickness of about 光 of the wavelength of light, are laminated.
Provided is a multilayer film in which one or two layers of the birefringent substance and the isotropic substance are further provided with a thickness of about 1/4 of the wavelength of light in the layer, and a thickness of 1/8 wavelength before and after the laminate.

【0005】[0005]

【発明の実施の形態】図1Bに示すような格子構造を等
方性物質で作り、格子ピッチを波長より小さなものとす
ると、この格子に入射する光で電界がTE方向の偏光と
TM方向の偏光とでは矢印L方向(格子面に垂直)の実
効屈折率が異なりTM方向の偏光の方が屈折率が大き
い。例えばGaAsの場合、波長1.55μm(空気
中)の光に対して格子ピッチD=0.31μm、d/D
=0.4のとき、TM,TE両偏光の屈折率の比は2.
443/1.304=1.873となり、これは方解石
の波長1.55μmにおける比1.106より大きい。
今このような格子を水平にスライスしたものを図1Aに
示すように間に同じ等方性物質(異なっていても可)の
薄層を挟んで重ね、その重積ピッチPをTE或いはTM
何れかの偏光の実効屈折率×P=1/4波長+1/4波
長程度(例1.55μmに対し250nm)とする。そ
の偏光について垂直入射に対する垂直反射が多重反射の
干渉により強め合うこととなり、大きな反射率が得られ
る。それと直交する偏光についてはこのような関係が成
立しないから、反射光はなくなり、透過率が高くなる。
かくして、垂直入反射に対して偏光の直交2成分の分離
が可能となる。勿論積層ピッチを適当にすることで斜入
射に関して直交二偏光を分離させることも可能ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Assuming that a grating structure as shown in FIG. 1B is made of an isotropic material and the grating pitch is smaller than the wavelength, the light incident on the grating causes the electric field to be polarized in the TE direction and in the TM direction. The effective refractive index in the direction of arrow L (perpendicular to the lattice plane) is different from that of polarized light, and the refractive index of the polarized light in the TM direction is larger. For example, in the case of GaAs, the grating pitch D = 0.31 μm, d / D for light having a wavelength of 1.55 μm (in air).
= 0.4, the ratio between the refractive indices of both the TM and TE polarized lights is 2.
443 / 1.304 = 1.873, which is larger than the ratio of calcite at a wavelength of 1.55 μm of 1.106.
Now, such a grid is horizontally sliced, with a thin layer of the same isotropic substance (may be different) interposed therebetween as shown in FIG. 1A, and the stacking pitch P is set to TE or TM.
The effective refractive index of any polarized light × P = approximately 波長 wavelength + / wavelength (e.g., 250 nm for 1.55 μm). With respect to the polarized light, the vertical reflection with respect to the normal incidence is strengthened by the interference of multiple reflections, and a large reflectance is obtained. Since such a relationship does not hold for polarized light orthogonal to the polarized light, there is no reflected light and the transmittance increases.
Thus, it is possible to separate two orthogonal components of polarized light with respect to vertical incident reflection. Of course, it is also possible to separate the orthogonally polarized light with respect to oblique incidence by setting the stacking pitch appropriately.

【0006】図2は異方性物質Aと等方性物質Iを交互
積層した多層膜で、各層ともその層内の波長に関し、1
/4波長の厚さであり、特に光入射端には異方性物質の
1/8波長層を設け、光出射端面には1/8波長厚さの
異方性物質層を設け、それに等方性物質基板IBを接触
させることで、単に1/4波長厚さの交互積層膜より一
層偏光特性が向上することが見出された。
FIG. 2 shows a multilayer film in which an anisotropic substance A and an isotropic substance I are alternately laminated.
In particular, a 8 wavelength layer of an anisotropic substance is provided at the light incident end, and an 異 方 性 wavelength thick anisotropic substance layer is provided at the light exit end face. It has been found that by bringing the anisotropic substance substrate IB into contact, the polarization characteristics are further improved as compared with the case of merely having a quarter-wave thickness alternately laminated film.

【0007】図1に示す構造は例えば次のようにして作
られる。図3に示すようにGaAs基板1にAlAs層
2を数原子層形成し(a)、その上にGaAs層3を形
成(b)、ホトレジストをコートして、ホログラフィッ
ク露光波で格子パターンを焼付け現像して格子パターン
のマスク4を形成(c)、これをイオンビームエッチン
グで垂直方向にエッチングしてGaAsの格子を作る
(d)。このときAlAs層はGaAsに比し、エッチ
ングレートが極めて低いので、殆どエッチングされず、
GaAsだけの格子が得られる。こゝでGaAs層3の
厚さが使用波長のGaAs格子内実効波長で1/4波長
となるように形成されている。次にGaAs基板1をエ
ッチングしてGaAs基板1とAlAs層を合わせた層
の厚さが使用光のその層内の実効波長の1/4になるよ
うにし、このような格子状層を所要層積重ねることで
(e)図1の構造が得られる。
The structure shown in FIG. 1 is manufactured, for example, as follows. As shown in FIG. 3, several atomic layers of an AlAs layer 2 are formed on a GaAs substrate 1 (a), a GaAs layer 3 is formed thereon (b), a photoresist is coated, and a lattice pattern is printed by a holographic exposure wave. By developing, a mask 4 having a lattice pattern is formed (c), and this is vertically etched by ion beam etching to form a GaAs lattice (d). At this time, since the etching rate of the AlAs layer is extremely lower than that of GaAs, the AlAs layer is hardly etched.
A GaAs-only lattice is obtained. Here, the thickness of the GaAs layer 3 is formed to be 実 効 wavelength as the effective wavelength in the GaAs lattice of the used wavelength. Next, the GaAs substrate 1 is etched so that the thickness of the combined layer of the GaAs substrate 1 and the AlAs layer becomes 4 of the effective wavelength of the used light in the layer. By stacking, (e) the structure of FIG. 1 is obtained.

【0008】図2の多層膜は次のようにして作られる。
図4に示すように単結晶基板11を用意し、その上にエ
ピタキシャル成長法で複屈折性物質の単結晶層12を使
用波長の1/4の厚さに成長させる(a)。その上に等
方性物質層13を1/4波長厚さに蒸着法等で形成する
(b)。その上に他の等方性物質層14を機械的強度が
得られる厚さに形成し(c)、基板11を溶解除去する
(d)。これに(a)〜(b)の工程までで得られた積
層体を向き合わせて接着する(e)。この接着は相互表
面が原子層レベルで平坦であれば接触させるだけで吸着
する。そうでない場合はアルコールによって吸着する。
以下(e)の後基板11の部分を溶解し去り、(a)〜
(b)で作られた積層体を単位として(e)の基板11
を溶解した後に接着(吸着)し(f)、と云う工程を所
定回数繰返す。
The multilayer film shown in FIG. 2 is manufactured as follows.
As shown in FIG. 4, a single-crystal substrate 11 is prepared, and a single-crystal layer 12 of a birefringent substance is grown thereon by an epitaxial growth method so as to have a thickness of 1/4 of the wavelength used (a). An isotropic material layer 13 is formed thereon to a quarter wavelength thickness by a vapor deposition method or the like (b). Another isotropic material layer 14 is formed thereon to a thickness that can provide mechanical strength (c), and the substrate 11 is dissolved and removed (d). The laminates obtained in the steps (a) and (b) are bonded to each other facing each other (e). This adhesion is absorbed only by contact if the mutual surfaces are flat at the atomic layer level. Otherwise, it is adsorbed by alcohol.
Hereinafter, after (e), the portion of the substrate 11 is dissolved away, and (a) to
The substrate 11 of (e) in units of the laminate made in (b)
Is dissolved (adhesion) (adsorption), and the step of (f) is repeated a predetermined number of times.

【0009】図5は図1に示す構造体の特性例を示す。
この例はGaAsを用いたもので、積層構造は下式で表
現される。 GaAs/[(1/4)(F・B)/(1/4)(GaAs)]×6 (1/4)(F・B)/GaAs こゝでF・Bは図1の格子構造部分を意味し、(1/
4)は1/4波長層、×6はF・BとGaAsの各1/
4波長層を一組として6組(層数としては12層)積層
することを意味し、1/4波長層積層部は両端面とも格
子層で、更に各々、その上にGaAsの層が適当厚を設
けられて機械的強度を保たせてある。図5から見られる
ように波長1.50μmを中心に1.3〜1.7μmの
波長範囲でTE光反射率略100%TM光反射率略0%
となっている。反射率0%と云うことは透過率も略10
0%であることを意味している。
FIG. 5 shows a characteristic example of the structure shown in FIG.
This example uses GaAs, and the laminated structure is expressed by the following equation. GaAs / [(1/4) (FB) / (1/4) (GaAs)] × 6 (1/4) (FB) / GaAs where FB is the lattice structure portion of FIG. Means (1 /
4) is a 1/4 wavelength layer, and x6 is 1 / F of FB and GaAs.
This means that four sets of four wavelength layers are stacked and six sets (12 layers as the number of layers) are stacked, and the quarter wavelength layer stacking part is a lattice layer on both end faces, and a GaAs layer is appropriately formed thereon. Thickness is provided to maintain mechanical strength. As can be seen from FIG. 5, the TE light reflectance is approximately 100% and the TM light reflectance is approximately 0% in a wavelength range of 1.3 to 1.7 μm centering on the wavelength 1.50 μm.
It has become. A reflectance of 0% means that the transmittance is about 10%.
0%.

【0010】図6は異方性,等方性物質の1/4波長層
の交互積層膜の特性を示し、異方性物質は方解石、等方
性物質は酸化チタンで、膜の構成式は下記の通り。 空気/(1/8)(CaCO3 )/[(1/4)(Ti
2 )/(1/4)(CaCO3 )]×20/(1/
4)(TiO2 )/(1/8)(CaCO3 )/TiO
2 この積層膜は片側が空気で反対側が酸化チタンで、これ
が支持基板を兼ねている。膜の入射端面は共に方解石
で、その外の媒質が一方は空気、他方がTiO2 と見る
ことができる。TM偏光の中心波長1.55μmとした
もので、1.32〜1.4μm中心1.35μmでTE
光の反射率略100%、TM光の反射率20〜60%透
過率は80〜40%である。
FIG. 6 shows the characteristics of an alternately laminated film having a quarter-wavelength layer of an anisotropic and isotropic material. The anisotropic material is calcite, the isotropic material is titanium oxide, and the composition formula of the film is as follows. As below. Air / (1/8) (CaCO 3 ) / [(1/4) (Ti
O 2 ) / (1 /) (CaCO 3 )] × 20 / (1 /
4) (TiO 2 ) / (1/8) (CaCO 3 ) / TiO
2 This laminated film is air on one side and titanium oxide on the other side, which also serves as a support substrate. Both the incident end faces of the film are calcite, and the other medium can be seen as air on one side and TiO 2 on the other. The center wavelength of the TM polarized light is 1.55 μm, and the center is 1.32 to 1.4 μm.
The reflectance of light is approximately 100%, the reflectance of TM light is 20 to 60%, and the transmittance is 80 to 40%.

【0011】第7図は半導体レーザーに構造偏光素子を
応用したもので、BはGaAs基板で、Sがレーザー
部、両側の突起が並んだ部分Pが偏光素子部である。こ
の素子は格子層と空気層の交互配列で、図1の例の誘電
体層の所を空気層としたものに相当し、振動電界が図矢
印(上下方向)の偏光に対し高い反射率を呈するように
してあり、この振動方向の偏光に対して共振が成立する
ようにしてあるので、出射光は電界がこの方向の偏光だ
けのレーザビームが得られる。
FIG. 7 shows a structure in which a structural polarization element is applied to a semiconductor laser, wherein B is a GaAs substrate, S is a laser part, and a part P on which projections on both sides are arranged is a polarization element part. This element has an alternating arrangement of a lattice layer and an air layer, and corresponds to a dielectric layer in the example of FIG. 1 in which an air layer is used. Since the resonance is established with respect to the polarized light in this vibration direction, the emitted light is a laser beam whose electric field is only polarized in this direction.

【0012】[0012]

【発明の効果】本発明によれば、従来の偏光素子では不
可能であった垂直入射反射について直交二偏光の分離と
云うことさえも可能であり、格子ピッチと積層間隔,誘
電体層の厚さ及び積層回数等、設計上の自由度が多く、
垂直入射から斜入射まで、使用中心波長,使用できる波
長範囲等選択的に設計可能で、色々な要求にかなり自由
に答えることができて、偏光を扱う装置の構成上、小型
化,簡単化等に寄与する所大である。
According to the present invention, the separation of orthogonally polarized light from the normal incidence reflection, which was impossible with the conventional polarizing element, is possible. The grating pitch, the stacking interval, and the thickness of the dielectric layer are also possible. There are many degrees of freedom in design, such as
From vertical incidence to oblique incidence, it is possible to selectively design the center wavelength used, usable wavelength range, etc., and it can respond to various requirements quite freely. It is a big contributor to

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を説明する図FIG. 1 illustrates an embodiment of the present invention.

【図2】本発明の他の実施形態を示す図FIG. 2 is a diagram showing another embodiment of the present invention.

【図3】図1に示す実施形態の製作法を示す図FIG. 3 is a view showing a manufacturing method of the embodiment shown in FIG. 1;

【図4】上記図2の実施形態の製作法を示す図FIG. 4 is a view showing a manufacturing method of the embodiment of FIG. 2;

【図5】図1の実施形態の特性を示す図FIG. 5 is a diagram showing characteristics of the embodiment of FIG. 1;

【図6】図2の実施形態の特性を示す図FIG. 6 is a diagram showing characteristics of the embodiment of FIG. 2;

【図7】本発明の更に他の実施形態を示す斜視図FIG. 7 is a perspective view showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 GaAs基板 2 AlAs層 3 GaAs層 4 格子パターンのマスク 11 単結晶基板 12 複屈折物質層 13 等方性物質層 DESCRIPTION OF SYMBOLS 1 GaAs substrate 2 AlAs layer 3 GaAs layer 4 Mask of lattice pattern 11 Single crystal substrate 12 Birefringent material layer 13 Isotropic material layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 格子ピッチが使用光波長より小さい格子
層を空隙層或いは透電体層を介して重積し、各層の厚さ
を夫々の層中における使用光の二つの直交偏光成分の何
れかの波長の1/4程度としたことを特徴とする多層構
造偏光素子。
1. A grating layer having a grating pitch smaller than a wavelength of light to be used is stacked via a gap layer or a conductive layer, and the thickness of each layer is determined by any one of two orthogonal polarization components of the light to be used in each layer. A multilayer structure polarizing element characterized in that the wavelength is about 程度 of the wavelength.
【請求項2】 異方性透電体層と等方性透電体層を各層
とも使用する光の直交偏光2成分の何れかのその各層中
の波長の1/4程度とし、この積層体の前後各面に1/
8波長厚さの異方性透電体層を設けたことを特徴とする
多層構造偏光素子。
2. The laminate according to claim 1, wherein the anisotropic conductive layer and the isotropic conductive layer each have a thickness of about 4 of the wavelength of each of the two orthogonally polarized light components used in each layer. 1 /
A multilayer polarizing element comprising an anisotropic conductive layer having a thickness of eight wavelengths.
JP27395297A 1997-09-18 1997-09-18 Polarizing element of multilayer structure Pending JPH1195027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27395297A JPH1195027A (en) 1997-09-18 1997-09-18 Polarizing element of multilayer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27395297A JPH1195027A (en) 1997-09-18 1997-09-18 Polarizing element of multilayer structure

Publications (1)

Publication Number Publication Date
JPH1195027A true JPH1195027A (en) 1999-04-09

Family

ID=17534866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27395297A Pending JPH1195027A (en) 1997-09-18 1997-09-18 Polarizing element of multilayer structure

Country Status (1)

Country Link
JP (1) JPH1195027A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091040A3 (en) * 2001-05-04 2003-07-03 Ut Battelle Llc Sub-wavelength efficient polarization filter (swep filter)
EP1369714A1 (en) * 2002-06-04 2003-12-10 Canon Kabushiki Kaisha Polarizing optical component and method of manufacturing same
DE10327963A1 (en) * 2003-06-19 2005-01-05 Carl Zeiss Jena Gmbh Polarization beam splitter for microscopy or projection system or UV lithography using grid array with parallel grid lines formed by multi-layer system with alternating non-metallic dielectric layers with differing optical characteristics
WO2005008302A1 (en) * 2003-07-22 2005-01-27 National University Corporation Tokyo University Of Agriculture And Technology Reflection type polarizer, laminate optical member and liquid crystal display unit
EP1420275A4 (en) * 2001-08-24 2005-11-16 Asahi Glass Co Ltd Multi-layer diffraction type polarizer and liquid crystal element
US7369186B2 (en) 2004-11-04 2008-05-06 Canon Kabushiki Kaisha Polarizing beam splitter featuring stacked grating layers and display including the same
JP2008292591A (en) * 2007-05-22 2008-12-04 Ricoh Co Ltd Polarization illumination device and projection image display device
JP2014127576A (en) * 2012-12-26 2014-07-07 Ricoh Co Ltd Surface light emitting laser array, optical scanner, and image forming apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091040A3 (en) * 2001-05-04 2003-07-03 Ut Battelle Llc Sub-wavelength efficient polarization filter (swep filter)
EP1420275A4 (en) * 2001-08-24 2005-11-16 Asahi Glass Co Ltd Multi-layer diffraction type polarizer and liquid crystal element
EP1369714A1 (en) * 2002-06-04 2003-12-10 Canon Kabushiki Kaisha Polarizing optical component and method of manufacturing same
US7009768B2 (en) 2002-06-04 2006-03-07 Canon Kabushiki Kaisha Optical component and method of manufacturing same
DE10327963A1 (en) * 2003-06-19 2005-01-05 Carl Zeiss Jena Gmbh Polarization beam splitter for microscopy or projection system or UV lithography using grid array with parallel grid lines formed by multi-layer system with alternating non-metallic dielectric layers with differing optical characteristics
WO2005008302A1 (en) * 2003-07-22 2005-01-27 National University Corporation Tokyo University Of Agriculture And Technology Reflection type polarizer, laminate optical member and liquid crystal display unit
US7369186B2 (en) 2004-11-04 2008-05-06 Canon Kabushiki Kaisha Polarizing beam splitter featuring stacked grating layers and display including the same
JP2008292591A (en) * 2007-05-22 2008-12-04 Ricoh Co Ltd Polarization illumination device and projection image display device
JP2014127576A (en) * 2012-12-26 2014-07-07 Ricoh Co Ltd Surface light emitting laser array, optical scanner, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4688394B2 (en) Embedded wire grid polarizer for the visible spectrum
JP4800437B2 (en) Broadband wire grid polarizer for the visible spectrum
JP3288976B2 (en) Polarizer and its manufacturing method
JP2005534981A (en) Precision phase lag device and method of manufacturing the same
JP4294264B2 (en) Integrated optical element
EP1510838A1 (en) Polarization beam splitter, optical system and image displaying apparatus using the same
WO1989008278A1 (en) Polarizing isolation apparatus and optical isolator using the same
JP2001051122A (en) Double refraction periodic structure, phase plate, diffraction grating type polarizing beam splitter and their manufacture
WO2002025325A1 (en) Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element
JPH1195027A (en) Polarizing element of multilayer structure
JP2009092730A (en) Polarization conversion element
JP2973254B2 (en) Birefringent structure
JPH08254611A (en) Beam splitter
JP2000131522A (en) Polarizer and its production and waveguide type optical device using the same
JP2001083321A (en) Polarizer and method for its production
CN1182217A (en) Multiple-film polarizing beam splitter utilizing birefraction film
JP4392195B2 (en) Polarization conversion element and method for manufacturing the same
JP2006058506A (en) Laminated structure and its manufacturing method, optical element, and optical product
JP3616349B2 (en) Magneto-optic crystal plate with polarizing element
JP2006058506A5 (en)
JP3879246B2 (en) Polarizing optical element
JP2003279746A (en) Polarization separation element and manufacturing method thereof
JPH06130224A (en) Polarizing beam splitter
JPH03188412A (en) Faraday rotor integrated with polarizer
JP2017083719A (en) Polarizing element and projection image display device having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

A977 Report on retrieval

Effective date: 20070105

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080304

Free format text: JAPANESE INTERMEDIATE CODE: A02