JPH0766081A - Chip type solid electrolytic capacitor - Google Patents

Chip type solid electrolytic capacitor

Info

Publication number
JPH0766081A
JPH0766081A JP4045088A JP4508892A JPH0766081A JP H0766081 A JPH0766081 A JP H0766081A JP 4045088 A JP4045088 A JP 4045088A JP 4508892 A JP4508892 A JP 4508892A JP H0766081 A JPH0766081 A JP H0766081A
Authority
JP
Japan
Prior art keywords
layer
anode lead
electrolytic capacitor
solid electrolytic
type solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4045088A
Other languages
Japanese (ja)
Other versions
JP2770636B2 (en
Inventor
Hiromichi Taniguchi
博通 谷口
Yoshihiko Saiki
義彦 斎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4045088A priority Critical patent/JP2770636B2/en
Priority to EP93301567A priority patent/EP0559427B1/en
Priority to DE69301407T priority patent/DE69301407T2/en
Priority to US08/025,874 priority patent/US5349496A/en
Publication of JPH0766081A publication Critical patent/JPH0766081A/en
Application granted granted Critical
Publication of JP2770636B2 publication Critical patent/JP2770636B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors

Abstract

PURPOSE:To provide a chip type solid electrolytic capacitor having the improved sticking strength of an anode terminal at the time of mounting a chip type solid electrolytic capacitor of a simple resin encapsulated type on a printed board. CONSTITUTION:An anode terminal consists of two layers of the by turns formed plated layer 6 and soldered layer 7 on an anode lead planted surface while consisting of three layers of the by turns formed conductive layer 4a, plated layer 6 and soldered layer 7 having unevenness of 5 to 20mum on the peripheral part of the anode lead planted surface. Accordingly, the sticking strength at the time of soldered mounting of a chip on a printed board is sharply improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はチップ型固体電解コンデ
ンサに関し、特に陽極端子の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip type solid electrolytic capacitor, and more particularly to the structure of an anode terminal.

【0002】[0002]

【従来の技術】従来のチップ型固体電解コンデンサは図
3に示すように公知の技術によって製造したコンデンサ
素子11の両端に外部陽・陰極リードを接続した後、ト
ランスファーモールド成型により外装して組み立ててい
る。しかしこのタイプのチップ型固体電解コンデンサは
外装樹脂層12と陽・陰極リード接続部に体積をとられ
るために体積効率が低い。そのため体積効率をたかめ小
型化するために図4に示すように導電体層17,めっき
層18,はんだ層19の3層,あるいは図5に示すよう
にめっき層18,はんだ層19の2層からなる陽・陰極
端子を直接素子両端部に形成したチップ型固体電解コン
デンサがある。
2. Description of the Related Art As shown in FIG. 3, a conventional chip type solid electrolytic capacitor is assembled by attaching external positive and negative electrode leads to both ends of a capacitor element 11 manufactured by a publicly known technique, and then packaging it by transfer molding. There is. However, this type of chip-type solid electrolytic capacitor has a low volumetric efficiency because the volume is taken up by the exterior resin layer 12 and the positive / negative electrode lead connecting portion. Therefore, in order to increase the volume efficiency and reduce the size, the conductor layer 17, the plating layer 18, and the solder layer 19 are three layers as shown in FIG. 4, or the plating layer 18 and the solder layer 19 are two layers as shown in FIG. There is a chip type solid electrolytic capacitor in which positive and negative terminals are directly formed on both ends of the element.

【0003】[0003]

【発明が解決しようとする課題】前述した従来のチップ
型固体電解コンデンサにはその端子構造により下記に示
す問題点があった。 (1)陽極端子が導電体層17,めっき層18,はんだ
層19の3層からなる場合、陽極リード15との接続を
担う導電体層の熱膨張率が陽極リードよりも1桁以上大
きい導電性ペーストにより形成しているため、陽極リー
ドと導電体層間の電気的接続信頼性が低く、はがれが生
じ易く、コンデンサの誘電損失が増大する。 (2)前記(1)項記載の問題点を解決するため陽極リ
ードと熱膨張率の近いめっき層を陽極リードと接続さ
せ、めっき層,はんだ層の2層により陽極端子を形成す
るものがあるが、この場合外装樹脂層16と陽極端子の
接続が表面の平滑な外装樹脂層16とめっき層により担
われるため接着力が弱くプリント基板上に実装した場合
のチップの固着力が弱い。
The above-mentioned conventional chip type solid electrolytic capacitor has the following problems due to its terminal structure. (1) When the anode terminal is composed of three layers of the conductor layer 17, the plating layer 18, and the solder layer 19, the conductivity of the conductor layer that is responsible for connection with the anode lead 15 is one digit or more larger than that of the anode lead. Since it is formed of a conductive paste, the reliability of electrical connection between the anode lead and the conductor layer is low, peeling easily occurs, and the dielectric loss of the capacitor increases. (2) In order to solve the problem described in the above item (1), there is a method in which a plating layer having a thermal expansion coefficient close to that of the anode lead is connected to the anode lead, and the anode terminal is formed by two layers of the plating layer and the solder layer. However, in this case, since the exterior resin layer 16 and the anode terminal are connected by the exterior resin layer 16 having a smooth surface and the plating layer, the adhesive force is weak and the chip fixing force when mounted on a printed board is weak.

【0004】本発明の目的は簡易樹脂外装型のチップ型
固体電解コンデンサのプリント基板への実装時における
陽極端子の固着強度の向上をはかったチップ型固体電解
コンデンサを提供することにある。
An object of the present invention is to provide a chip-type solid electrolytic capacitor which is improved in the fixing strength of the anode terminal when the simple resin-coated chip-type solid electrolytic capacitor is mounted on a printed board.

【0005】[0005]

【課題を解決するための手段】本発明によるチップ型固
体電解コンデンサは、陽極リードを植立した弁作用金属
からなる陽極体上に酸化皮膜、固体電解質層、陰極導電
体層を順次形成した素子と、陽極リード植立面の対向面
を除く素子全外周面上に被着した絶縁外装樹脂層と、陽
極リード植立面とその周辺部に形成した陽極端子と、陽
極リード植立面の対向面とその周辺部に形成した陰極端
子とをもつチップ型固体電解コンデンサにおいて、陽極
端子が陽極リード植立面上では順次形成されためっき
層,はんだ層の2層からなり、陽極リード植立面の周辺
部上では順次形成された導電体層,めっき層およびはん
だ層の3層からなることを特徴として構成される。
A chip-type solid electrolytic capacitor according to the present invention is an element in which an oxide film, a solid electrolyte layer, and a cathode conductor layer are sequentially formed on an anode body made of valve metal with an anode lead set up. And the insulating outer resin layer deposited on the entire outer peripheral surface of the element except the opposing surface of the anode lead embedding surface, the anode lead embedding surface and the anode terminals formed on the peripheral portion, and the anode lead embedding surface facing each other. In a chip type solid electrolytic capacitor having a surface and a cathode terminal formed on the periphery thereof, the anode terminal is composed of two layers, a plating layer and a solder layer, which are sequentially formed on the anode lead embedding surface. On the peripheral part of the above, it is characterized by comprising three layers of a conductor layer, a plating layer and a solder layer which are sequentially formed.

【0006】[0006]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例のチップ型固体電解コンデ
ンサの断面図である。
The present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a chip type solid electrolytic capacitor of one embodiment of the present invention.

【0007】図1に示すように、公知の技術により陰極
導電体層(図示略)まで形成したコンデンサ素子1にお
いて陽極リード2と陽極リード植立面の対向面を除く全
外周面上に外装樹脂層3を形成する。
As shown in FIG. 1, in a capacitor element 1 in which a cathode conductor layer (not shown) is formed by a known technique, an exterior resin is formed on the entire outer peripheral surface except the opposing surface of the anode lead 2 and the anode lead embedding surface. Form layer 3.

【0008】次に陽極リード植立面の隣接面の陽極リー
ド植立面近接部にエポキシ樹脂,硬化剤,カーボン粉
末,パラジウム粉末,および粒径が5〜20μmの炭酸
カルシウム粉末を混練し、少量の有機溶剤で希釈したペ
ーストを塗布し、150〜200℃の雰囲気中で30分
間加熱して熱硬化させて第1の導電体層4aを形成す
る。
Next, an epoxy resin, a curing agent, a carbon powder, a palladium powder, and a calcium carbonate powder having a particle size of 5 to 20 μm are kneaded in a portion adjacent to the anode lead embedding surface and in the vicinity of the anode lead embedding surface, and a small amount. The paste diluted with the organic solvent is applied and heated in an atmosphere of 150 to 200 ° C. for 30 minutes to be thermally cured to form the first conductor layer 4a.

【0009】つづいて第1の導電体層4aを形成するの
に使用したものと同じペーストを陽極リード植立面の対
向面とその周辺部に塗布し、150℃〜200℃の雰囲
気中で30分間加熱して熱硬化させて第2の導電体層4
bを形成する。
Subsequently, the same paste as that used to form the first conductor layer 4a is applied to the opposing surface of the anode lead embedding surface and its peripheral portion, and the paste is applied in an atmosphere of 150 ° C to 200 ° C for 30 minutes. The second conductor layer 4 is heated for a minute to be thermoset.
b is formed.

【0010】次に、パラジウムのアミン化合物の酢酸ブ
チル溶液を陽極リード2と陽極リード植立面に塗布し、
185℃,30分の条件で熱分解させて金属触媒である
パラジウムを付着させる。
Then, a butyl acetate solution of an amine compound of palladium is applied to the anode lead 2 and the anode lead embedding surface,
Palladium, which is a metal catalyst, is attached by thermal decomposition at 185 ° C. for 30 minutes.

【0011】次にパラジウムを含む導電体層4a,4b
およびパラジウムを付着させた陽極リード2と陽極リー
ド植立面にめっき層6を形成する。
Next, the conductor layers 4a and 4b containing palladium
Further, the plating layer 6 is formed on the anode lead 2 and the anode lead planting surface to which palladium is attached.

【0012】次にめっき層6上にはんだ層7を形成し、
陽極リード2を切断してチップ型固体電解コンデンサを
構成する。
Next, a solder layer 7 is formed on the plating layer 6,
The anode lead 2 is cut to form a chip type solid electrolytic capacitor.

【0013】この実施例1および陽極端子が表面の平滑
な外装樹脂上に順次形成しためっき層,はんだ層の2層
のみによりなる従来例のチップ型固体電解コンデンサを
各々50p用意してプリント基板にはんだ実装してチッ
プの固着強度を調査した。表1にその結果を示す。
The chip type solid electrolytic capacitor of Example 1 and the conventional example in which the anode terminal is composed of only two layers of a plating layer and a solder layer, which are sequentially formed on an exterior resin having a smooth surface, are prepared on a printed board. Solder mounting was conducted to investigate the chip adhesion strength. The results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】表1より実施例1が固着力において大幅に
改善していることがわかる。
It can be seen from Table 1 that the adhesive strength of Example 1 is greatly improved.

【0016】図2は本発明の他の実施例のチップ型固体
電解コンデンサの断面図である。
FIG. 2 is a sectional view of a chip type solid electrolytic capacitor according to another embodiment of the present invention.

【0017】実施例1と同様にして外装樹脂層3まで形
成する。次に陽極リード植立面の隣接面の陽極リード植
立面近接部にエポキシ樹脂、パラジウム粉末、カーボン
粉末、硬化剤および発泡剤を混練し、少量の有機溶剤で
希釈したペーストを塗布して120℃の雰囲気中で1時
間加熱して熱硬化させて第1の多孔質導電体層5aを形
成する。この第1の多孔質導電体層5aは加熱時の発泡
剤の働きにより5〜20μmのピンホールを多数もつ。
The exterior resin layer 3 is formed in the same manner as in Example 1. Next, an epoxy resin, a palladium powder, a carbon powder, a curing agent and a foaming agent are kneaded in a portion adjacent to the anode lead embedding surface and adjacent to the anode lead embedding surface, and a paste diluted with a small amount of an organic solvent is applied to the surface. The first porous conductor layer 5a is formed by heating for 1 hour in an atmosphere of ° C. and thermosetting. The first porous conductor layer 5a has a large number of pinholes of 5 to 20 μm due to the function of the foaming agent during heating.

【0018】次に陽極リード植立面の対向面とその周辺
部に第1の多孔質導電体層5aを形成するのに使用した
ものと同じペーストを塗布し、120℃の雰囲気中で1
時間加熱して第2の多孔質導電体層5bを形成する。
Next, the same paste as that used for forming the first porous conductor layer 5a is applied to the surface opposite to the anode lead embedding surface and its peripheral portion, and the paste is applied in an atmosphere of 120 ° C.
The second porous conductor layer 5b is formed by heating for a time.

【0019】次にパラジウムのアミン化合物の酢酸ブチ
ル溶液を陽極リード2と陽極リード植立面に塗布し、1
85℃,30分の条件で熱分解させて金属触媒であるパ
ラジウムを付着させる。
Then, a butyl acetate solution of an amine compound of palladium is applied to the anode lead 2 and the anode lead embedding surface, and 1
Thermal decomposition is performed under the conditions of 85 ° C. for 30 minutes to attach palladium as a metal catalyst.

【0020】次にパラジウムを含む導電体層5a,5b
およびパラジウムを付着させた陽極リード2と陽極リー
ド植立面にめっき層6を形成し、該めっき層上にはんだ
層7を形成し、陽極リード2を切断してチップ型固体電
解コンデンサを形成する。
Next, the conductor layers 5a and 5b containing palladium
Further, the plating layer 6 is formed on the anode lead 2 and the anode lead embedding surface to which palladium is attached, the solder layer 7 is formed on the plating layer, and the anode lead 2 is cut to form a chip type solid electrolytic capacitor. .

【0021】この実施例2および陽極端子が表面の平滑
な外装樹脂上に順次形成しためっき層,はんだ層の2層
のみによりなる従来例のチップ型固体電解コンデンサを
各々50p用意してプリント基板にはんだ実装してチッ
プの固着強度を調査した。表2にその結果を示す。
The chip type solid electrolytic capacitor of Example 2 and the conventional example, in which the anode terminal is composed of only two layers of a plating layer and a solder layer, which are sequentially formed on an outer resin having a smooth surface, are prepared on a printed board. Solder mounting was conducted to investigate the chip adhesion strength. The results are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】表2より実施例2も実施例1と同様に固着
強度が増大したことを示している。
As shown in Table 2, in Example 2 as well as in Example 1, the fixing strength was increased.

【0024】[0024]

【発明の効果】以上説明したように本発明は陽極端子を
陽極リード植立面上では順次形成しためっき層,はんだ
層の2層としたので高い電気的接続信頼性がえられ、且
つ陽極リード植立面の周辺部上では順次形成した5〜2
0μmの凹凸をもつ導電体層,めっき層,はんだ層の3
層としたのでプリント基板への実装時のチップの固着強
度が向上するという効果を有する。
As described above, according to the present invention, since the anode terminal is composed of the two layers of the plating layer and the solder layer which are sequentially formed on the anode lead embedding surface, high electrical connection reliability can be obtained and the anode lead can be obtained. 5-2 formed in sequence on the periphery of the planting surface
3 layers of conductor layer, plating layer and solder layer with 0 μm unevenness
Since it is a layer, it has the effect of improving the fixing strength of the chip when it is mounted on the printed board.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のチップ型固体電解コンデン
サの断面図である。
FIG. 1 is a cross-sectional view of a chip-type solid electrolytic capacitor according to an embodiment of the present invention.

【図2】本発明の他の実施例のチップ型固体電解コンデ
ンサの断面図である。
FIG. 2 is a sectional view of a chip-type solid electrolytic capacitor of another embodiment of the present invention.

【図3】従来のトランスファーモールド成型により外装
したチップ型固体電解コンデンサの一例の断面図であ
る。
FIG. 3 is a cross-sectional view of an example of a chip-type solid electrolytic capacitor which is packaged by conventional transfer molding.

【図4】従来の陽・陰極端子を直接素子両端部に形成し
たチップ型固体電解コンデンサの一例の断面図である。
FIG. 4 is a cross-sectional view of an example of a chip-type solid electrolytic capacitor in which conventional positive and negative terminals are directly formed on both ends of the element.

【図5】従来の陽・陰極端子を直接素子両端部に形成し
たチップ型固体電解コンデンサの他の一例の断面図であ
る。
FIG. 5 is a cross-sectional view of another example of a chip-type solid electrolytic capacitor in which positive and negative electrode terminals are directly formed on both ends of the element.

【符号の説明】[Explanation of symbols]

1 コンデンサ素子 2 陽極リード 3 外装樹脂層 4a 第1の導電体層 4b 第2の導電体層 5a 第1の多孔質導電体層 5b 第2の多孔質導電体層 6 めっき層 7 はんだ層 11 コンデンサ素子 12 外装樹脂層 13 外部陰極リード 14 外部陽極リード 15 陽極リード 16 外装樹脂層 17 導電体層 18 めっき層 19 はんだ層 DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Anode lead 3 Exterior resin layer 4a First conductor layer 4b Second conductor layer 5a First porous conductor layer 5b Second porous conductor layer 6 Plating layer 7 Solder layer 11 Capacitor Element 12 Exterior resin layer 13 External cathode lead 14 External anode lead 15 Anode lead 16 Exterior resin layer 17 Conductor layer 18 Plating layer 19 Solder layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陽極リードを植立した弁作用金属からな
る陽極体上に酸化皮膜、固体電解質層、陰極導電体層を
順次形成した素子と、陽極リード植立面の対向面を除く
素子全外周面上に被着した絶縁外装樹脂層と、陽極リー
ド植立面とその周辺部に形成した陽極端子と、陽極リー
ド植立面の対向面とその周辺部に形成した陰極端子とを
もつチップ型固体電解コンデンサにおいて、陽極端子が
陽極リード植立面上では順次形成されためっき層,はん
だ層の2層からなり、陽極リード植立面の周辺部上では
順次形成された導電体層,めっき層およびはんだ層の3
層からなることを特徴とするチップ型固体電解コンデン
サ。
1. An element in which an oxide film, a solid electrolyte layer, and a cathode conductor layer are sequentially formed on an anode body made of valve metal having an anode lead planted thereon, and all the elements except a surface opposite to the anode lead planting surface. A chip having an insulating exterior resin layer deposited on the outer peripheral surface, an anode lead forming surface and an anode terminal formed on the peripheral portion thereof, and a surface facing the anode lead forming surface and a cathode terminal formed on the peripheral portion. -Type solid electrolytic capacitor, the anode terminal is composed of two layers, a plating layer and a solder layer, which are sequentially formed on the anode lead planting surface, and a conductor layer and a plating, which are sequentially formed on the periphery of the anode lead planting surface. 3 layers and solder layers
A chip-type solid electrolytic capacitor characterized by comprising layers.
【請求項2】 前記導電体層が多孔質導電体層であるこ
とを特徴とする請求項1記載のチップ型固体電解コンデ
ンサ。
2. The chip-type solid electrolytic capacitor according to claim 1, wherein the conductor layer is a porous conductor layer.
JP4045088A 1992-03-03 1992-03-03 Chip type solid electrolytic capacitor Expired - Lifetime JP2770636B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4045088A JP2770636B2 (en) 1992-03-03 1992-03-03 Chip type solid electrolytic capacitor
EP93301567A EP0559427B1 (en) 1992-03-03 1993-03-02 Chip-type solid electrolytic capacitor
DE69301407T DE69301407T2 (en) 1992-03-03 1993-03-02 Solid electrolytic capacitor in chip design
US08/025,874 US5349496A (en) 1992-03-03 1993-03-03 Chip-type solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4045088A JP2770636B2 (en) 1992-03-03 1992-03-03 Chip type solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0766081A true JPH0766081A (en) 1995-03-10
JP2770636B2 JP2770636B2 (en) 1998-07-02

Family

ID=12709569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4045088A Expired - Lifetime JP2770636B2 (en) 1992-03-03 1992-03-03 Chip type solid electrolytic capacitor

Country Status (4)

Country Link
US (1) US5349496A (en)
EP (1) EP0559427B1 (en)
JP (1) JP2770636B2 (en)
DE (1) DE69301407T2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682478B2 (en) * 1994-12-12 1997-11-26 日本電気株式会社 Chip-shaped solid electrolytic capacitor and manufacturing method thereof
KR100244159B1 (en) * 1995-03-03 2000-02-01 사토 게니치로 A solid electrolytic capacitor
US6197241B1 (en) * 1997-08-06 2001-03-06 Bc Components Holdings B.V. Method of making an electrolytic capacitor cover
MXPA01002547A (en) * 1998-09-10 2004-06-03 Starck H C Gmbh Paste for producing sintered refractory metal layers, notably earth acid metal electrolytic capacitors or anodes.
US6324051B1 (en) * 1999-10-29 2001-11-27 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
JP4613416B2 (en) * 2000-11-28 2011-01-19 日本電気株式会社 Semiconductor device and mounting method thereof
US6678149B2 (en) * 2002-03-28 2004-01-13 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method of manufacturing the capacitor
WO2004003948A1 (en) * 2002-06-27 2004-01-08 Dainippon Ink And Chemicals, Inc. Formed product for electrolytic capacitor anode element, formed product with substrate, method for manufacture thereof and method for manufacturing electrolytic capacitor anode element
US6870727B2 (en) * 2002-10-07 2005-03-22 Avx Corporation Electrolytic capacitor with improved volumetric efficiency
JP4566593B2 (en) * 2003-04-14 2010-10-20 昭和電工株式会社 Sintered body electrode and solid electrolytic capacitor using the sintered body electrode
US7085127B2 (en) * 2004-03-02 2006-08-01 Vishay Sprague, Inc. Surface mount chip capacitor
US7088573B2 (en) * 2004-03-02 2006-08-08 Vishay Sprague, Inc. Surface mount MELF capacitor
WO2005120143A1 (en) * 2004-06-03 2005-12-15 Matsushita Electric Industrial Co., Ltd. Electronic component
US7495892B2 (en) * 2005-04-27 2009-02-24 Showa Denko K.K. Solid electrolytic capacitor
JP4914769B2 (en) * 2007-05-31 2012-04-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Conductive paste for solid electrolytic capacitor electrode and method for producing electrode of solid electrolytic capacitor using the conductive paste
KR100917027B1 (en) * 2007-12-17 2009-09-10 삼성전기주식회사 Solid electrolytic condenser and method for manufacturing the same
KR100939765B1 (en) * 2007-12-17 2010-01-29 삼성전기주식회사 Solid electrolytic condenser and method for manufacturing the same
US8199462B2 (en) * 2008-09-08 2012-06-12 Avx Corporation Solid electrolytic capacitor for embedding into a circuit board
US8075640B2 (en) 2009-01-22 2011-12-13 Avx Corporation Diced electrolytic capacitor assembly and method of production yielding improved volumetric efficiency
US8279583B2 (en) * 2009-05-29 2012-10-02 Avx Corporation Anode for an electrolytic capacitor that contains individual components connected by a refractory metal paste
US8441777B2 (en) * 2009-05-29 2013-05-14 Avx Corporation Solid electrolytic capacitor with facedown terminations
US8218292B2 (en) * 2009-07-31 2012-07-10 Avx Corporation Dry powder stencil printing of solid electrolytic capacitor components
US8139344B2 (en) * 2009-09-10 2012-03-20 Avx Corporation Electrolytic capacitor assembly and method with recessed leadframe channel
JP5330191B2 (en) * 2009-10-27 2013-10-30 サン電子工業株式会社 Solid electrolytic capacitor and manufacturing method thereof
KR102104919B1 (en) * 2013-02-05 2020-04-27 삼성전자주식회사 Semiconductor package and method of manufacturing the same
US9545008B1 (en) 2016-03-24 2017-01-10 Avx Corporation Solid electrolytic capacitor for embedding into a circuit board
JP7300616B2 (en) * 2017-09-28 2023-06-30 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method thereof
KR102080653B1 (en) 2018-05-23 2020-02-24 삼성전기주식회사 Coil component
CN114566387A (en) * 2018-12-26 2022-05-31 株式会社村田制作所 Electrolytic capacitor and method for manufacturing the same
JP2021192408A (en) * 2020-06-05 2021-12-16 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and manufacturing method of the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203194A (en) * 1978-07-17 1980-05-20 Sprague Electric Company Batch method for making solid-electrolyte capacitors
US5036434A (en) * 1988-12-15 1991-07-30 Nec Corporation Chip-type solid electrolytic capacitor and method of manufacturing the same
JP2748548B2 (en) * 1989-05-15 1998-05-06 日本電気株式会社 Chip type solid electrolytic capacitor
JP2596194B2 (en) * 1990-08-07 1997-04-02 日本電気株式会社 Chip type solid electrolytic capacitor
JP2541357B2 (en) * 1990-10-29 1996-10-09 日本電気株式会社 Manufacturing method of chip type solid electrolytic capacitor
JP3000691B2 (en) * 1991-02-20 2000-01-17 日本電気株式会社 Chip type solid electrolytic capacitor

Also Published As

Publication number Publication date
EP0559427A1 (en) 1993-09-08
DE69301407D1 (en) 1996-03-14
EP0559427B1 (en) 1996-01-31
JP2770636B2 (en) 1998-07-02
US5349496A (en) 1994-09-20
DE69301407T2 (en) 1996-09-19

Similar Documents

Publication Publication Date Title
JPH0766081A (en) Chip type solid electrolytic capacitor
JPS61159722A (en) Solid electrolytic capacitor for mounting surface
JPH02263424A (en) Chip type solid electrolytic capacitor and manufacture thereof
JP2001267181A (en) Chip type solid electrolytic capacitor
JP2541357B2 (en) Manufacturing method of chip type solid electrolytic capacitor
JPS5934130Y2 (en) Chip type solid electrolytic capacitor
JP2002299161A (en) Composite electronic component
JPH04256306A (en) Chip type solid electrolytic capacitor with fuse and manufacture thereof
JPH0499308A (en) Solid electrolytic capacitor
JP2748548B2 (en) Chip type solid electrolytic capacitor
JP3168584B2 (en) Solid electrolytic capacitors
JP2003197485A (en) Chip solid electrolytic capacitor and manufacturing method therefor
JP3000691B2 (en) Chip type solid electrolytic capacitor
JPH04276613A (en) Fabrication of solid electrolytic capacitor
JP3060764B2 (en) Chip type solid electrolytic capacitor
JPH0731532Y2 (en) Chip type solid electrolytic capacitor
JP2639014B2 (en) Chip type solid electrolytic capacitor
JP2003197484A (en) Chip solid electrolytic capacitor and manufacturing method therefor
JP2946657B2 (en) Chip type solid electrolytic capacitor
JP2996314B2 (en) Solid electrolytic capacitors
JP2778441B2 (en) Chip type solid electrolytic capacitor and method of manufacturing the same
JPH1012492A (en) Manufacture of chip-type solid electrolytic capacitor
JP2955312B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0397212A (en) Chip type solid-state electrolytic capacitor
JPH0239414A (en) Chip-shaped electronic part

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980317