JPH02263424A - Chip type solid electrolytic capacitor and manufacture thereof - Google Patents

Chip type solid electrolytic capacitor and manufacture thereof

Info

Publication number
JPH02263424A
JPH02263424A JP1326888A JP32688889A JPH02263424A JP H02263424 A JPH02263424 A JP H02263424A JP 1326888 A JP1326888 A JP 1326888A JP 32688889 A JP32688889 A JP 32688889A JP H02263424 A JPH02263424 A JP H02263424A
Authority
JP
Japan
Prior art keywords
layer
anode
terminal
anode lead
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1326888A
Other languages
Japanese (ja)
Other versions
JPH0821519B2 (en
Inventor
Atsushi Kobayashi
淳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1326888A priority Critical patent/JPH0821519B2/en
Publication of JPH02263424A publication Critical patent/JPH02263424A/en
Publication of JPH0821519B2 publication Critical patent/JPH0821519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • H01G2/065Mountings specially adapted for mounting on a printed-circuit support for surface mounting, e.g. chip capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemically Coating (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To inhibit an increase in a leakage current due to the migration of silver in a moisture-containing atmosphere by a method wherein anode and cathode terminals are formed not by use of a conductive paste but by direct formation of a plated-layer and a solder layer on a layer on a surface which forms the terminals. CONSTITUTION:Alumina powder of a mean particle diameter of about 40 to 50mum is sprayed on the surface of an anode lead 2, a lead 2 implanted surface, which inclines to form an anode terminal 14, and the surface of an insulating resin layer 8 on part of the side surfaces of an element and the surfaces are roughened. After that, a sponge impregnated with a butyl acetate solution consisting of an ashing compound of palladium is brought into contact with the roughened surfaces, whereby after being applied on the surfaces, the sponge is thermally decomposed in an atmosphere of 180 to 200 deg.C and palladium powder is adhered. Then, an electroless plating is performed, an element plated layer 11 is formed and moreover, a solder layer 12 is formed thereon to form a the terminal 14. Thereby, as a silver paste is not used for a conductive paste to be used as a base layer of the electroless plated layer, an increase in a leakage current due to the migration of silver in a moisture-containing atmosphere can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチップ型固体電解コンデンサおよびその製造方
法に関し、特に端子構造の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a chip-type solid electrolytic capacitor and a method for manufacturing the same, and particularly relates to an improvement in the terminal structure.

〔従来の技術〕[Conventional technology]

従来のチップ型固体電解コンデンサは第3図に示すよう
に公知の技術によって製造されたコンデンサ素子を陽極
リード植立面の対向面以外の全外周面を絶縁樹脂を被着
した後、陽極リード植立面、及びその対向面にそれぞれ
導電体層、めっき層29゜30、はんだ層31.32か
らなる陽極端子及び陰極端子を形成して組み立てられる
(例えば実公昭62−14673号公報参照)。
As shown in Figure 3, a conventional chip-type solid electrolytic capacitor is manufactured by coating a capacitor element manufactured by a known technique with an insulating resin on the entire outer circumferential surface except for the surface facing the anode lead implantation surface, and then implanting the anode lead implantation. It is assembled by forming an anode terminal and a cathode terminal consisting of a conductor layer, a plating layer 29, 30, and a solder layer 31, 32 on the vertical surface and the opposing surface, respectively (see, for example, Japanese Utility Model Publication No. 14673/1983).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のチップ型固体電解コンデンサは、陽極端
子形成の際、絶縁樹脂層26上に導電性ペーストを塗布
、硬化させ導電体層27.28を形成した後、順次無電
解めっき層29,30、はんだ層31.32を形成して
いるため下記の問題点を見い出した。
In the conventional chip-type solid electrolytic capacitor described above, when forming an anode terminal, a conductive paste is applied and cured on the insulating resin layer 26 to form the conductive layers 27 and 28, and then the electroless plating layers 29 and 30 are sequentially applied. , the following problems were found because the solder layers 31 and 32 were formed.

(イ)無電解めっき層の下地層として導電性ペーストに
銀ペーストを使用しているので湿気雰囲気中での銀のマ
イグレーションによって漏れ電流が増大する。
(a) Since silver paste is used as the conductive paste as the base layer of the electroless plating layer, leakage current increases due to migration of silver in a humid atmosphere.

(ロ)上記下地層としての銀ペーストの熱膨張率がタン
タル陽極リード2より1桁以上大きいので、陽極リード
2−陽極導電体層27間の接続信頼性が低くはがれ易く
、コンデンサ素子の誘電損失が増大する。
(b) Since the coefficient of thermal expansion of the silver paste as the base layer is more than one order of magnitude larger than that of the tantalum anode lead 2, the connection reliability between the anode lead 2 and the anode conductor layer 27 is low and it easily peels off, resulting in dielectric loss of the capacitor element. increases.

(・・)(ロ)項のため陽極リード2−陽極端子間の接
続信頼性を保つため、熱膨張率が近く接続信頼性がある
陽極リード22−めっき層29間の接続長をある程度数
る必要があり、その結果陽極リード22が長くなり(第
3図33.陽極突出部)自動実装時のハンドリング不良
が増加する。
(...) For item (b), in order to maintain the connection reliability between the anode lead 2 and the anode terminal, the connection length between the anode lead 22 and the plating layer 29, which has a close coefficient of thermal expansion and has a reliable connection, is calculated to a certain extent. As a result, the anode lead 22 becomes longer (FIG. 3, 33. Anode protrusion), which increases handling defects during automatic mounting.

(ニ)導電性ペース))こよって陽極導電体層27を形
成する際、低粘度のペーストを塗布すると、厚さがばら
ついたり、ペーストが絶縁樹脂層に染みて陽極端子形状
がいびつになったり更には、陰極端子にまで接触してし
まう。そこである程度高粘度のペーストを塗布しなけれ
ばならないので、陽極導電体層27が陽極リード2付近
でかなり厚くなり陽極端子と実装面との角度θが陰極端
子と実装面との角度に比べて小さくなり(第6図参照)
、リフローによる表面実装時に”−ムス)−7現象(又
はマンハッタン現象)が起こりやすくなる。
(d) Conductive paste) Therefore, when forming the anode conductor layer 27, if a low-viscosity paste is applied, the thickness may vary, or the paste may soak into the insulating resin layer, causing the anode terminal shape to be distorted. Furthermore, it even comes into contact with the cathode terminal. Therefore, since it is necessary to apply a paste with a certain degree of viscosity, the anode conductor layer 27 becomes considerably thicker near the anode lead 2, and the angle θ between the anode terminal and the mounting surface is smaller than the angle between the cathode terminal and the mounting surface. (See Figure 6)
, the "-mus"-7 phenomenon (or Manhattan phenomenon) is likely to occur during surface mounting by reflow.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のチップ型固体電解コンデンサは陽極リードが植
立された弁作用金属からなる陽極体上に誘電体酸化被膜
、半導体酸化物層、陰極層を順次形成した素子と、陽極
リード植立面の対向面以外の素子外周面に被着した絶縁
樹脂層と、陽極リード植立面の絶縁樹脂層上に形成した
陽極端子と、陽極リード植立面の対向面上に形成した陰
極端子を有するチップ型固体電解コンデンサにおいて、
少なくとも一方の端子を形成する際、端子形成面に金属
触媒の有機化合物溶液を付着させた後加熱し熱分解させ
て金属触媒を固着させた後、無電解めっきを行い、めっ
き層を形成させ、更にその上にはんだ層を形成して端子
を形成するという特徴を有する。
The chip-type solid electrolytic capacitor of the present invention includes an element in which a dielectric oxide film, a semiconductor oxide layer, and a cathode layer are sequentially formed on an anode body made of a valve metal on which an anode lead is planted, and A chip having an insulating resin layer adhered to the outer peripheral surface of the element other than the opposing surface, an anode terminal formed on the insulating resin layer on the anode lead planting surface, and a cathode terminal formed on the surface opposite the anode lead planting surface. In type solid electrolytic capacitors,
When forming at least one terminal, an organic compound solution of a metal catalyst is attached to the terminal forming surface, and then heated and thermally decomposed to fix the metal catalyst, and then electroless plating is performed to form a plating layer. Furthermore, a solder layer is formed thereon to form a terminal.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明によるチップ型固体電解コンデンサの一
実施例の断面図である。
FIG. 1 is a sectional view of an embodiment of a chip-type solid electrolytic capacitor according to the present invention.

弁作用を有する金属の1つであるタンタル粉末が加圧成
型され真空焼結された陽極体1にはタンタル材の陽極リ
ード2が植立され陽極リード付近に撥水性樹脂層3を形
成される。陽極体1の外周面には酸化膜層100.半導
体酸化物層4.グラファイト層50.第1の導電体層5
1.第2の導電体層52が順次形成さhる。更に陽極リ
ード2付近には被覆樹脂層6が形成された後、陽極体外
周面に第3の導電体層53.第1のめっき層7が順次形
成される。
An anode lead 2 made of tantalum is planted on an anode body 1 in which tantalum powder, which is a metal that has a valve action, is pressure-molded and vacuum sintered, and a water-repellent resin layer 3 is formed near the anode lead. . An oxide film layer 100 is formed on the outer peripheral surface of the anode body 1. Semiconductor oxide layer 4. Graphite layer 50. First conductor layer 5
1. A second conductor layer 52 is sequentially formed. Further, after a coating resin layer 6 is formed near the anode lead 2, a third conductor layer 53 is formed on the outer peripheral surface of the anode body. The first plating layer 7 is sequentially formed.

次に陽極リード植立面の対向面以外の陽極体全外周面に
絶縁樹脂層8が形成された後、陽極iJ−ド植立面の対
向面に第4の導電体層9と第2のめっき層10.はんだ
層12からなる陰極端子13が形成される。更に陽極リ
ード植立面上の絶縁樹脂層上及び陽極リード2上に第3
のめっき層11゜はんだ層12からなる陽極端子14が
形成され、最後に陽極リード2が切断されチップ型固体
電解コンデンサが構成される。
Next, after an insulating resin layer 8 is formed on the entire outer peripheral surface of the anode body other than the surface opposite to the anode lead implantation surface, a fourth conductor layer 9 and a second conductor layer 8 are formed on the opposite surface to the anode iJ-de implantation surface. Plating layer 10. A cathode terminal 13 made of solder layer 12 is formed. Furthermore, a third layer is placed on the insulating resin layer on the anode lead planting surface and on the anode lead 2.
An anode terminal 14 consisting of a plating layer 11 and a solder layer 12 is formed, and finally the anode lead 2 is cut to form a chip type solid electrolytic capacitor.

次にこのような構成のチップ型タンタル固体電解コンデ
ンサ(外型寸法長さ5.7mm、 !5.0mm。
Next is a chip-type tantalum solid electrolytic capacitor with such a configuration (external dimensions: length 5.7 mm, !5.0 mm).

厚さ2.5mm)の製造工程についてタンタルからなる
陽極リード2を、タンタル粉末に埋め込みながら加圧・
成型した陽極体lを真空中で高温焼結した後、陽極リー
ド2付近に撥水性樹脂を塗布・加熱することにより撥水
性樹脂層3が形成される。
2.5 mm thick) The anode lead 2 made of tantalum is pressed and pressed while being embedded in tantalum powder.
After the molded anode body 1 is sintered at high temperature in a vacuum, a water-repellent resin is applied near the anode lead 2 and heated, thereby forming a water-repellent resin layer 3.

、次に陽極体1はリン酸水溶液中で化成電圧約40Vに
より陽極酸化され、全外周面にタンタル酸化膜からなる
誘電体酸化被膜層100が形成される(厚さ約0.05
〜0.07μm)。更に陽極体1は硝酸マンガン溶液中
に浸漬した後200〜250℃の雰囲気中で熱分解され
二酸化マンガンからなる半導体酸化物層4が形成される
(厚さ約20〜80μm)。この浸漬及び加熱は、陽極
体1内部の細孔に十分に二酸化マンガンを充填するため
と、陽極体1外周面に強固かつ均一な二酸化マンガンを
形成するために複数回行われる。前述の撥水性樹脂3は
、この工程において硝酸マンガン溶液が陽極リード2に
付着するのを防止するために形成されるものである。
Next, the anode body 1 is anodized in a phosphoric acid aqueous solution at an anodizing voltage of about 40 V, and a dielectric oxide film layer 100 made of tantalum oxide film is formed on the entire outer peripheral surface (with a thickness of about 0.05 V).
~0.07 μm). Further, the anode body 1 is immersed in a manganese nitrate solution and then thermally decomposed in an atmosphere of 200 to 250°C to form a semiconductor oxide layer 4 made of manganese dioxide (approximately 20 to 80 μm thick). This immersion and heating are performed multiple times in order to sufficiently fill the pores inside the anode body 1 with manganese dioxide and to form strong and uniform manganese dioxide on the outer peripheral surface of the anode body 1. The aforementioned water-repellent resin 3 is formed to prevent the manganese nitrate solution from adhering to the anode lead 2 in this step.

次に陽極体1は、水溶性樹脂とグラファイト粉末との混
合水溶液中に浸漬された後、150〜200℃の雰囲気
中で乾燥されて下地導電体層としてのグラファイト層5
0が形成される(厚さ約1〜2μm)。この浸漬乾燥は
、前述の半導体酸化物層4と、後述の第1の導電体層5
1との接触抵抗を低減させるため複数回行われる。
Next, the anode body 1 is immersed in a mixed aqueous solution of a water-soluble resin and graphite powder, and then dried in an atmosphere of 150 to 200°C to form a graphite layer 5 as a base conductor layer.
0 is formed (approximately 1-2 μm thick). This immersion drying is performed on the semiconductor oxide layer 4 described above and the first conductor layer 5 described below.
This is repeated multiple times to reduce the contact resistance with 1.

次にグラファイト粉末、エポキシ樹脂、無機フィラー等
を主成分とする導電性ペーストをブチルセロソルブ等の
有機溶剤で希釈した液に陽極体lを浸漬した後、150
〜200℃の雰囲気で乾燥されて第1の導電体層51が
形成された(約20〜50μm)後、グラファイト粉末
、アクリル樹脂等を主成分とする導電性ペーストを水で
希釈した液に陽極体lを浸漬した後150〜200℃の
雰囲気中で乾燥され第2の導電体層52が形成される(
厚さ約30〜60μm)。更にポリブタジェン樹脂をデ
イスペンサによって陽極リード植立面に塗布後、150
〜200℃の雰囲気中で乾燥されて被覆樹脂層6が形成
される。
Next, the anode body l was immersed in a solution prepared by diluting a conductive paste mainly composed of graphite powder, epoxy resin, inorganic filler, etc. with an organic solvent such as butyl cellosolve.
After drying in an atmosphere of ~200°C to form the first conductive layer 51 (approximately 20 to 50 μm), an anode is added to a solution prepared by diluting a conductive paste mainly composed of graphite powder, acrylic resin, etc. with water. After the body 1 is immersed, it is dried in an atmosphere of 150 to 200°C to form a second conductive layer 52 (
thickness approximately 30-60 μm). Furthermore, after applying polybutadiene resin to the anode lead planting surface using a dispenser,
The coating resin layer 6 is formed by drying in an atmosphere of ~200°C.

次にグラファイト粉末10〜20%、銅粉末30〜50
%、エポキシ樹脂15〜30%、無機フィラー2〜6%
からなる導電性ペーストをブチルセロソルブ等の有機溶
剤で希釈した液中に、陽極体1を浸漬した後、150〜
200℃の雰囲気中で熱硬化されて第3の導電体層53
が形成される(厚さ約20〜50μm)。なお第3の導
電体層53中の銅粉末は0.5μm程度の粒径で、めっ
き触媒として作用する。また無機フィラーは表面の凹凸
をつくりアンカー効果により後述する第1のめっき層7
の密着力を高める効果がある。この第3の導電体層53
中の銅粉末の量は、少なければめっき触媒の作用がなく
なるが、過度に多くなっても層の強度低下につながり、
また湿気雰囲気中で銅の酸化が起こり抵抗が大きくなる
という現象につながる。従ってグラファイト粉末、銅粉
末、エポキシ樹脂、無機フィラーの固形分の割合が、1
9%、53%、23%、5%という導電性ペーストを使
用した。
Next, graphite powder 10-20%, copper powder 30-50%
%, epoxy resin 15-30%, inorganic filler 2-6%
After immersing the anode body 1 in a solution prepared by diluting a conductive paste consisting of
The third conductor layer 53 is thermally cured in an atmosphere of 200°C.
is formed (about 20-50 μm thick). Note that the copper powder in the third conductor layer 53 has a particle size of about 0.5 μm and acts as a plating catalyst. In addition, the inorganic filler creates unevenness on the surface and has an anchor effect, which will be described later in the first plating layer 7.
It has the effect of increasing the adhesion of the This third conductor layer 53
If the amount of copper powder inside is small, the effect of the plating catalyst will disappear, but if it is too large, it will lead to a decrease in the strength of the layer.
In addition, copper oxidizes in a humid atmosphere, leading to a phenomenon in which resistance increases. Therefore, the solid content of graphite powder, copper powder, epoxy resin, and inorganic filler is 1
Conductive pastes of 9%, 53%, 23%, and 5% were used.

次に約3.5%の塩酸中に1〜2分浸漬した後、純水洗
浄して無電解めっきを行う。この時陽極体1の外周面は
、第1〜3の導電体層、被覆樹脂層6で覆れているので
、めっき反応時のガスから二酸化マンガンからなる半導
体酸化物層4や誘電体酸化被膜層は保護されるめっき液
としては例えばジメチルアミノボランを還元剤とする無
電解ニッケルめっき液(PHが6〜7)を使用し、60
〜65℃で30〜40分のめっきを行い約5μmのニッ
ケルめっきが被着し、第1のめっき層7が形成される。
Next, it is immersed in approximately 3.5% hydrochloric acid for 1 to 2 minutes, then washed with pure water, and electroless plating is performed. At this time, the outer circumferential surface of the anode body 1 is covered with the first to third conductor layers and the coating resin layer 6, so that the semiconductor oxide layer 4 made of manganese dioxide and the dielectric oxide film are removed from the gas during the plating reaction. The layer is protected by using, for example, an electroless nickel plating solution (PH of 6 to 7) using dimethylaminoborane as a reducing agent, and
Plating is carried out at ~65° C. for 30 to 40 minutes to deposit approximately 5 μm of nickel plating, forming the first plating layer 7.

めっき終了後は十分水洗された後、120〜150℃の
雰囲気中で水分の乾燥が行われる。
After plating, the plate is thoroughly washed with water and then dried in an atmosphere at 120 to 150°C.

次に陽極リード植立面の対向面にマスキングをした状態
で粉体状エポキシ樹脂を素子外周面に静電塗装し、10
0〜200℃の雰囲気中で約30秒間仮硬化させた後、
マスキングを除去し100〜200℃の雰囲気中で30
〜60分間加熱し完全硬化させ絶縁樹脂層8を形成され
る(厚さ約100μm)。
Next, while masking the surface opposite to the anode lead planting surface, powdered epoxy resin was electrostatically applied to the outer peripheral surface of the element.
After temporary curing for about 30 seconds in an atmosphere of 0 to 200°C,
Remove the masking and heat in an atmosphere of 100 to 200℃ for 30 minutes.
The insulating resin layer 8 is formed by heating for ~60 minutes and completely curing (thickness: approximately 100 μm).

次に陽極リード2表面と、陽極端子19を形成しようと
する陽極リード植立面と、素子側面の一部の絶縁樹脂層
8の表面に約40〜50μmの平均粒径のアルミナ粉を
吹付けて表面を粗面化した後、パラジウムの7シン化合
物の酢酸ブチル溶液を含浸したスポンジを粗面化した表
面に接触させることにより塗布した後、180〜200
℃の雰囲気中で熱分解させてパラジウム粉末を付着させ
る。絶縁樹脂層8の表面を粗面化するのは、後述の第3
のめっき層11との密着強度を大きくするためである。
Next, alumina powder with an average particle size of about 40 to 50 μm is sprayed onto the surface of the anode lead 2, the anode lead planting surface where the anode terminal 19 is to be formed, and the surface of a part of the insulating resin layer 8 on the side surface of the element. After roughening the surface with
Palladium powder is deposited by thermal decomposition in an atmosphere at ℃. The surface of the insulating resin layer 8 is roughened in the third step described below.
This is to increase the adhesion strength with the plating layer 11.

またパラジウム粉末は絶縁樹脂層上にまばらに付着する
程度にすぎず、パラジウム粒径が約0.01μm程度で
約0.3 p g/crA (約4×10to個/ a
nt )付着する。よって粗面化された絶縁樹脂層8と
第3めっき層11との密着力が低下することもない。こ
の密着力の点で付着したパラジウム粒子同士が接合して
導電層を形成するほどのパラジウム粉末量を用いること
は好ましくない。
In addition, the palladium powder is only sparsely attached to the insulating resin layer, and the palladium particle size is about 0.01 μm and the palladium powder is about 0.3 p g/crA (about 4 x 10 particles/a).
nt) adhere. Therefore, the adhesion between the roughened insulating resin layer 8 and the third plating layer 11 does not deteriorate. In view of this adhesive strength, it is not preferable to use an amount of palladium powder that is such that the attached palladium particles bond with each other to form a conductive layer.

陽極リード植立面の対向面はマスキングを行っているの
で、絶縁樹脂層は形成されず第1のめっき層7が露出し
ているが、その上に第3のめっき層を形成する際に使用
した導電性ペーストを塗布後シートを押し付は余分なペ
ーストを除去した後150〜200℃の雰囲気中で加熱
硬化させることにより第4の導電体層9が形成される(
厚さ約20〜100μm)。
Since the surface opposite to the anode lead planting surface is masked, no insulating resin layer is formed and the first plating layer 7 is exposed, but it is used when forming the third plating layer on top of it. After applying the conductive paste and pressing the sheet, the fourth conductive layer 9 is formed by heating and curing in an atmosphere of 150 to 200° C. after removing excess paste.
thickness approximately 20-100 μm).

次に素子を前述の無電解ニッケルめっき液に陽極リード
2まで浸漬し、60〜65℃、30〜40分のめっきを
行い、第4の導電体層9上と、表面を粗面化しパラジウ
ムを付着させた陽極リード2上及び陽極植立面と素子側
面の一部の絶縁樹脂層上とに、それぞれ第2のめっき層
10.第3のめっき層11が形成される。この時第4の
導電体層9上と粗面化しパラジウムを付着させた絶縁樹
脂層上(陽極端子となる面)以外の絶縁樹脂層上には、
めっき触媒となる銅やパラジウムがないため無電解ニッ
ケルめっきは析出しない。
Next, the element is immersed up to the anode lead 2 in the electroless nickel plating solution mentioned above, and plating is performed at 60 to 65°C for 30 to 40 minutes to roughen the fourth conductor layer 9 and the surface, and then deposit palladium on the fourth conductor layer 9. A second plating layer 10. A third plating layer 11 is formed. At this time, there are
Electroless nickel plating does not deposit because there is no copper or palladium to act as a plating catalyst.

更に素子をフラックスに浸漬した後、固相線280〜3
10℃の銀添加はんだの浴(浴温300〜350℃)に
浸漬する。
After further immersing the element in flux, the solidus line 280~3
Immerse in a 10°C silver-added solder bath (bath temperature 300-350°C).

次に230〜280℃の共晶はんだ浴に浸漬し第2.第
3のめっき層上にはんだ層12が形成され、陰極端子1
3及び陽極端子14が形成される。
Next, it is immersed in a 230-280°C eutectic solder bath. A solder layer 12 is formed on the third plating layer, and the cathode terminal 1
3 and an anode terminal 14 are formed.

最後に余分な陽極リード2をレーザーで切断し、チップ
型タンタル固体電解コンデンサが完成される。
Finally, the excess anode lead 2 is cut off with a laser to complete the chip-type tantalum solid electrolytic capacitor.

尚本実施例では被覆樹脂層6の材料としてポリブタジェ
ン樹脂を使用したが、この材料はめっき反応時に発生す
るガス(主に水素)から誘電体酸化被膜層や半導体酸化
物層4を保護するために使用するものであるから、エポ
キシ、アクリル、ポリエステル、ポリ塩化ビニル、ポリ
プロピレン等の樹脂及びこれらの混合樹脂を使用しても
良い。
In this example, polybutadiene resin was used as the material for the coating resin layer 6, but this material was used to protect the dielectric oxide layer and the semiconductor oxide layer 4 from gas (mainly hydrogen) generated during the plating reaction. Resins such as epoxy, acrylic, polyester, polyvinyl chloride, polypropylene, and mixed resins thereof may be used.

第2図は本発明の実施例2の陰極端子の断面図である。FIG. 2 is a sectional view of a cathode terminal according to a second embodiment of the present invention.

本実施例は、前述の実施例が陽極端子導出の際に金属触
媒の有機化合物を熱分解させた後無電解ニッケルめっき
を行っていたのに対し、陰極端子導出の際にもこの方法
を用いて行う。すなわち絶縁樹脂層8形成後、表面を粗
面化した陽極リード及び陽極リード植立面とその対向面
にパラジウムの7シン化合物の酢酸ブチル溶液を実施例
1と同様の方法で塗布し180〜200℃の雰囲気中で
熱分解させてパラジウムを付着させる。次に前述の60
〜65℃無電解ニッケルめっき液に30〜40分間陽極
リード2まで浸漬して無電解ニッケル層すなわち第2の
めっき層10.第3のめっき層11を形成する。本実施
例では前述の実施例で使用したM4の導電体層9を使用
しないので陰極端子13を約20〜100μm薄くする
ことができ、チップ型固体電解コンデンザを更に小型化
するという利点と、工定数を減らすことにより製造原価
を低減させるという利点がある。
In this example, unlike the previous example in which electroless nickel plating was performed after thermally decomposing the organic compound of the metal catalyst when deriving the anode terminal, this method was also used when deriving the cathode terminal. I will do it. That is, after forming the insulating resin layer 8, a butyl acetate solution of a palladium 7-synth compound was applied to the anode lead having a roughened surface, the anode lead implanted surface, and the opposing surface in the same manner as in Example 1 to give a coating of 180 to 200%. Palladium is deposited by thermal decomposition in an atmosphere at ℃. Next, the aforementioned 60
The electroless nickel layer, that is, the second plating layer 10. A third plating layer 11 is formed. In this example, since the M4 conductor layer 9 used in the previous example is not used, the cathode terminal 13 can be made thinner by about 20 to 100 μm, which has the advantage of further miniaturizing the chip type solid electrolytic capacitor. There is an advantage of reducing manufacturing costs by reducing the number of constants.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、陽陰極端子形成の際、導
電性ペーストを使用せず、直接端子形成面層上にめっき
層、はんだ層を形成するので下記の効果がある。
As explained above, the present invention does not use a conductive paste when forming anode and cathode terminals, and forms a plating layer and a solder layer directly on the terminal forming surface layer, so that the following effects can be obtained.

(i)  湿気雰囲気中での銀のマイグレーションによ
る漏れ電流の増大が抑えられる(第4図(a)参照)。
(i) Increase in leakage current due to silver migration in a humid atmosphere is suppressed (see FIG. 4(a)).

(11)陽極リード−陽極端子間の接続信頼性が向上し
、温度サイクル試験時の誘電損失増大が抑えられる(第
4図(b)参照)。
(11) The reliability of the connection between the anode lead and the anode terminal is improved, and an increase in dielectric loss during a temperature cycle test is suppressed (see FIG. 4(b)).

(iii)  陽極リード長を短くすることが可能にな
り(第4図(c)参照)、自動実装時のハンドリング不
良が低減する。
(iii) It becomes possible to shorten the anode lead length (see FIG. 4(c)), and handling defects during automatic mounting are reduced.

Gv)  陽極端子形状が陰極端子形状に近くなり、両
者と実装面とめなす角度θをほぼ同程度することができ
るのでリフローによる表面実装の際ツームストーン現象
(又はマンノ八ツタン現象)を抑えられる。
Gv) The shape of the anode terminal becomes close to the shape of the cathode terminal, and the angle θ between the two and the mounting surface can be made to be approximately the same, so that the tombstone phenomenon (or the man-no-hitter phenomenon) can be suppressed during surface mounting by reflow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のチップ型固体電解コンデンサの基板実
装面に平行な断面図(以下平面断面図と略す)、第2図
は本発明の第2の実施例によるチップ型固体電解コンデ
ンサの陰極端子の平面断面図、第3図は従来のチップ型
固体電解コンデンサの平面断面図、第4図(a)は、本
発明の第1の実施例と、従来のチップ型固体電解コンデ
ンサのプレッシャ・クツカー試験(121℃ 2気圧)
での漏れ電流の変化を比較するためのグラフ、第4図(
b)は温度サイクル試験(−55℃−125℃)での誘
電損失の変化を比較するためのグラフ、第4図(C)は
陽極リード長(コンデンサ素子の陽極側層から陽極リー
ド先端までの長さ)を比較するためのグラフ、第5図は
第1図の陽極部分の基板実装面に垂直な側面断面図、第
6図は第3図の陽極部分の側面断面図である。 1・・・・・・陽極体、100・・・・・・誘電体酸化
被膜層、2・・・・・・陽極リード、3・・・・・・澄
水性樹脂層、4・・・・・・半導体酸化物層、50・・
・・・・グラファイト層、51・・・・・・第1の導電
体層、52・・・・・・第2の導電体層、53・・・・
・・第3の導電体層、6・・・・・・被覆樹脂層、7・
・・・・・第1のめっき層、8・・・・・・絶縁樹脂層
、9・・・・・・第4の導電体層、10・・・・・・第
2のめっき層、11・・・・・・第3のめっき層、12
・・・・・・はんだ層、13・・・・・・陰極端子、1
4・・・・・・陽極端子、21・・・・・・陽極体、2
2・・・・・・陽極リード、23・・・・・・誘電体酸
化被膜層、24・・・・・・半導体酸化物層、25・・
・・・・陰極層、26・・・・・・絶縁樹脂層、27・
・・・・・陽極導電体層、28・・・・・・陰極導電体
層、29・・・・・・めっき層、30・・・・・・めっ
き層、31・・・・・・はんだ層、32・・・・・・は
んだ層、33・・・・・・陽極突出部。 代理人 弁理士  内 原   晋 箒 凹 箒4 面(0−) 第4 T!II(b) 茅 M(C)
FIG. 1 is a cross-sectional view parallel to the board mounting surface of a chip-type solid electrolytic capacitor of the present invention (hereinafter abbreviated as a plane cross-sectional view), and FIG. 2 is a cathode of a chip-type solid electrolytic capacitor according to a second embodiment of the present invention. FIG. 3 is a plan sectional view of a terminal, FIG. 3 is a plan sectional view of a conventional chip-type solid electrolytic capacitor, and FIG. Kutzker test (121℃ 2 atm)
Figure 4 is a graph for comparing changes in leakage current at
b) is a graph for comparing changes in dielectric loss during temperature cycle tests (-55°C to 125°C), and Figure 4 (C) is a graph showing the anode lead length (from the anode side layer of the capacitor element to the anode lead tip). FIG. 5 is a side cross-sectional view of the anode portion of FIG. 1 perpendicular to the board mounting surface, and FIG. 6 is a side cross-sectional view of the anode portion of FIG. 3. DESCRIPTION OF SYMBOLS 1... Anode body, 100... Dielectric oxide film layer, 2... Anode lead, 3... Clear water resin layer, 4... ...Semiconductor oxide layer, 50...
...Graphite layer, 51...First conductor layer, 52...Second conductor layer, 53...
...Third conductor layer, 6...Coating resin layer, 7.
...First plating layer, 8...Insulating resin layer, 9...Fourth conductor layer, 10...Second plating layer, 11 ...Third plating layer, 12
...Solder layer, 13...Cathode terminal, 1
4... Anode terminal, 21... Anode body, 2
2... Anode lead, 23... Dielectric oxide film layer, 24... Semiconductor oxide layer, 25...
... Cathode layer, 26 ... Insulating resin layer, 27.
... Anode conductor layer, 28 ... Cathode conductor layer, 29 ... Plating layer, 30 ... Plating layer, 31 ... Solder Layer, 32...Solder layer, 33...Anode protrusion. Agent Patent Attorney Uchihara Shin Houki Concave Houki 4th side (0-) 4th T! II(b) Kaya M(C)

Claims (2)

【特許請求の範囲】[Claims] (1)陽極リードが植立された弁作用金属からなる陽極
体上に、誘電体酸化被膜層,半導体酸化物層,陰極層を
順次形成した素子と、陽極リード植立面の対応面以外の
素子外周面に被着した絶縁樹脂層と陽極リード植立面の
絶縁樹脂層上に形成した陽極端子と、陽極リード植立面
の対向面上に形成した陰極端子を有するチップ型固体電
解コンデンサにおいて、前記陽極端子は前記絶縁樹脂層
を下地層とする無電界めっき層上にはんだ層を形成して
構成されていることを特徴とするチップ型固体電解コン
デンサ。
(1) An element in which a dielectric oxide film layer, a semiconductor oxide layer, and a cathode layer are sequentially formed on an anode body made of a valve metal on which an anode lead is planted, and a surface other than the surface on which the anode lead is planted In a chip type solid electrolytic capacitor having an insulating resin layer adhered to the outer peripheral surface of the element, an anode terminal formed on the insulating resin layer on the anode lead planting surface, and a cathode terminal formed on the opposite surface of the anode lead planting surface. . A chip type solid electrolytic capacitor, wherein the anode terminal is constructed by forming a solder layer on an electroless plating layer with the insulating resin layer as a base layer.
(2)陽極リードが植立された弁作用金属からなる陽極
体上に、誘電体酸化被膜層,半導体酸化物層,陰極層を
順次形成する工程と、陽極リード植立面の対向面以外の
素子外周面に絶縁樹脂層を被着させる工程と、少なくと
も一方の端子を形成する際、端子形成面に金属触媒の有
機化合物溶液を付着させた後加熱し熱分解させることに
より金属触媒を固着させた後無電解めっきによりめっき
層を形成した後はんだ層を形成する工程を含むことを特
徴とするチップ型固体電解コンデンサの製造方法。
(2) A step of sequentially forming a dielectric oxide film layer, a semiconductor oxide layer, and a cathode layer on the anode body made of valve metal on which the anode lead is planted, and In the process of depositing an insulating resin layer on the outer peripheral surface of the element, and in forming at least one terminal, the metal catalyst is fixed by attaching an organic compound solution of a metal catalyst to the terminal forming surface and then heating and thermally decomposing it. A method for producing a chip-type solid electrolytic capacitor, the method comprising: forming a plating layer by electroless plating, and then forming a solder layer.
JP1326888A 1988-12-15 1989-12-15 Chip type solid electrolytic capacitor and manufacturing method thereof Expired - Lifetime JPH0821519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1326888A JPH0821519B2 (en) 1988-12-15 1989-12-15 Chip type solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-317961 1988-12-15
JP31796188 1988-12-15
JP1326888A JPH0821519B2 (en) 1988-12-15 1989-12-15 Chip type solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02263424A true JPH02263424A (en) 1990-10-26
JPH0821519B2 JPH0821519B2 (en) 1996-03-04

Family

ID=18093928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326888A Expired - Lifetime JPH0821519B2 (en) 1988-12-15 1989-12-15 Chip type solid electrolytic capacitor and manufacturing method thereof

Country Status (2)

Country Link
US (1) US5036434A (en)
JP (1) JPH0821519B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6785124B2 (en) * 2002-05-20 2004-08-31 Rohm Co., Ltd. Capacitor element for solid electrolytic capacitor, process of making the same and solid electrolytic capacitor utilizing the capacitor element
JP2007173303A (en) * 2005-12-19 2007-07-05 Nichicon Corp Chip type solid electrolytic capacitor
WO2014188833A1 (en) * 2013-05-19 2014-11-27 株式会社村田製作所 Solid electrolytic capacitor and method for manufacturing same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596194B2 (en) * 1990-08-07 1997-04-02 日本電気株式会社 Chip type solid electrolytic capacitor
JP2541357B2 (en) * 1990-10-29 1996-10-09 日本電気株式会社 Manufacturing method of chip type solid electrolytic capacitor
US5390074A (en) * 1991-09-30 1995-02-14 Matsushita Electric Industrial Co., Ltd. Chip-type solid electrolytic capacitor and method of manufacturing the same
JP2770636B2 (en) * 1992-03-03 1998-07-02 日本電気株式会社 Chip type solid electrolytic capacitor
JP2586381B2 (en) * 1993-07-05 1997-02-26 日本電気株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP3506733B2 (en) * 1993-07-09 2004-03-15 ローム株式会社 Structure of surface mounted electronic components with safety fuse
JP3801660B2 (en) * 1994-05-30 2006-07-26 ローム株式会社 Method for manufacturing capacitor element for tantalum solid electrolytic capacitor
JP2682478B2 (en) * 1994-12-12 1997-11-26 日本電気株式会社 Chip-shaped solid electrolytic capacitor and manufacturing method thereof
JP3231689B2 (en) * 1997-12-04 2001-11-26 富山日本電気株式会社 Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
JP2001085273A (en) * 1999-09-10 2001-03-30 Matsushita Electric Ind Co Ltd Chip-type solid-state electrolytic capacitor
US6324051B1 (en) * 1999-10-29 2001-11-27 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
US7085127B2 (en) * 2004-03-02 2006-08-01 Vishay Sprague, Inc. Surface mount chip capacitor
JP4226002B2 (en) * 2005-12-27 2009-02-18 ルビコン株式会社 Manufacturing method of multilayer film capacitor
EP1840915A1 (en) * 2006-03-31 2007-10-03 Kemet Electronics Corporation Capacitor element and method for manufacturing the capacitor element
US8310816B2 (en) * 2009-05-21 2012-11-13 Kemet Electronics Corporation Solid electrolytic capacitors with improved reliability
WO2015118901A1 (en) * 2014-02-07 2015-08-13 株式会社村田製作所 Capacitor
CN107221440A (en) * 2017-06-15 2017-09-29 苏州圣咏电子科技有限公司 A kind of solid capacitor
CN110942918B (en) * 2018-09-21 2022-08-12 钰冠科技股份有限公司 Stacked capacitor, manufacturing method thereof and silver colloid layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071410B2 (en) * 1985-07-13 1995-01-11 株式会社リコー Transfer method and apparatus in electrophotographic copying machine
JPS62293608A (en) * 1986-06-12 1987-12-21 日本電気株式会社 Manufacture of solid electrolytic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6785124B2 (en) * 2002-05-20 2004-08-31 Rohm Co., Ltd. Capacitor element for solid electrolytic capacitor, process of making the same and solid electrolytic capacitor utilizing the capacitor element
JP2007173303A (en) * 2005-12-19 2007-07-05 Nichicon Corp Chip type solid electrolytic capacitor
WO2014188833A1 (en) * 2013-05-19 2014-11-27 株式会社村田製作所 Solid electrolytic capacitor and method for manufacturing same
JPWO2014188833A1 (en) * 2013-05-19 2017-02-23 株式会社村田製作所 Solid electrolytic capacitor and manufacturing method thereof
US9978531B2 (en) 2013-05-19 2018-05-22 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor and method for manufacturing same

Also Published As

Publication number Publication date
US5036434A (en) 1991-07-30
JPH0821519B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JPH02263424A (en) Chip type solid electrolytic capacitor and manufacture thereof
JP2770636B2 (en) Chip type solid electrolytic capacitor
US4794491A (en) Solid electrolyte capacitor
JPH0499011A (en) Chip type solid-state electrolytic capacitor
US5168434A (en) Fuse-incorporated, chip-type solid electrolytic capacitor
US5254137A (en) Method of producing chip-type solid-electrolyte capacitor
CN100337302C (en) Low-pressure discharge lamp and method for manufacturing same
JP2522405B2 (en) Chip type solid electrolytic capacitor
JPH04216608A (en) Manufacture of solid electrolytic capacitor
JP2973504B2 (en) Chip type solid electrolytic capacitor
JP2748548B2 (en) Chip type solid electrolytic capacitor
JP2504182B2 (en) Solid electrolytic capacitor
JP2001196266A (en) Method of manufacturing chip-like electronic component
JP2946657B2 (en) Chip type solid electrolytic capacitor
JP2748490B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2541357C (en)
JPH0731532Y2 (en) Chip type solid electrolytic capacitor
JP3000691B2 (en) Chip type solid electrolytic capacitor
JPH09246101A (en) Chip solid electrolytic capacitor
JPH0258210A (en) Chip type solid electrolytic capacitor and manufacture thereof
JPS60160606A (en) Method of producing solid electrolytic condenser
JPH0453218A (en) Vapor deposition film capacitor
JPH0239414A (en) Chip-shaped electronic part
JPH073910B2 (en) Manufacturing method of ceramic wiring substrate
JPS61121389A (en) Ceramic wiring board