JPH0765347A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0765347A
JPH0765347A JP20649293A JP20649293A JPH0765347A JP H0765347 A JPH0765347 A JP H0765347A JP 20649293 A JP20649293 A JP 20649293A JP 20649293 A JP20649293 A JP 20649293A JP H0765347 A JPH0765347 A JP H0765347A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic film
metal magnetic
film
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20649293A
Other languages
Japanese (ja)
Inventor
Noriyuki Kitaori
典之 北折
Osamu Yoshida
修 吉田
Hirohide Mizunoya
博英 水野谷
Akira Shiga
章 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP20649293A priority Critical patent/JPH0765347A/en
Publication of JPH0765347A publication Critical patent/JPH0765347A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic recording medium excellent in C/N characteristics and having high reproduction output by alternately laminating metallic magnetic films based on a specified metal and metallic magnetic films different from the above-mentioned films in magnetic characteristics. CONSTITUTION:Three magnetic films 3a-3c of a Co-based Co-Ni alloy formed by vapor deposition under blown oxygen and magnetic films 4a, 4b of Ni different from the magnetic films 3a-3c in magnetic characteristics are alternately laminated on an undercoat layer 2 on a substrate 1 with a back coat layer 8 to obtain the objective magnetic recording medium. Since the thin Co-Ni films having a high coercive force are independently disposed, the magnetic recording medium has a high C/N and increased reproduction output in a high frequency band.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium.

【0002】[0002]

【発明の背景】磁気テープ等の磁気記録媒体において
は、高密度記録化の要請から、非磁性支持体上に設けら
れる磁性層として、バインダ樹脂を用いた塗布型のもの
ではなく、バインダ樹脂を用いない金属薄膜型のものが
提案されていることは周知の通りである。
BACKGROUND OF THE INVENTION In a magnetic recording medium such as a magnetic tape, due to a demand for high density recording, a binder resin is not used as a magnetic layer provided on a non-magnetic support, instead of a coating type using a binder resin. It is well known that a metal thin film type that is not used has been proposed.

【0003】すなわち、無電解メッキといった湿式メッ
キ手段、真空蒸着、スパッタリングあるいはイオンプレ
ーティングといった乾式メッキ手段により磁性層を構成
した磁気記録媒体が提案されている。そして、この種の
磁気記録媒体は磁性体の充填密度が高いことから、高密
度記録に適したものである。ところで、この種の金属薄
膜型の磁気記録媒体の製造時、例えばCo−Ni合金か
らなる金属磁性膜を成膜する時に酸素ガスを導入し、磁
気特性の改善が図られている。
That is, there has been proposed a magnetic recording medium having a magnetic layer formed by a wet plating means such as electroless plating, or a dry plating means such as vacuum deposition, sputtering or ion plating. Since the magnetic recording medium of this type has a high packing density of magnetic material, it is suitable for high-density recording. By the way, at the time of manufacturing this kind of metal thin film type magnetic recording medium, for example, when forming a metal magnetic film made of a Co—Ni alloy, oxygen gas is introduced to improve the magnetic characteristics.

【0004】しかしながら、この酸素ガス導入による磁
気特性の改善手段は、保磁力を向上させることが出来る
ものの、残留磁束密度を減少させることになり、磁気特
性の大幅な改善は達成できていない。
However, although the means for improving the magnetic characteristics by introducing the oxygen gas can improve the coercive force, it reduces the residual magnetic flux density, and the magnetic characteristics have not been significantly improved.

【0005】[0005]

【発明の開示】本発明の目的は、C/Nといった磁気特
性に優れ、再生出力が高い磁気記録媒体を提供すること
である。この本発明の目的は、Coを主成分とする金属
磁性膜が複数個設けられると共に、これらCoを主成分
とする金属磁性膜の間に前記磁性膜の磁気特性とは異な
る磁気特性の金属磁性膜が設けられてなることを特徴と
する磁気記録媒体によって達成される。
DISCLOSURE OF THE INVENTION It is an object of the present invention to provide a magnetic recording medium having excellent magnetic characteristics such as C / N and high reproduction output. An object of the present invention is to provide a plurality of metal magnetic films containing Co as a main component, and between the metal magnetic films containing Co as a main component, a metal magnetic film having a magnetic property different from that of the magnetic film. This is achieved by a magnetic recording medium characterized by comprising a film.

【0006】尚、この本発明の磁気記録媒体における複
数個設けられたCoを主成分とする金属磁性膜のうち、
支持体から遠ざかる金属磁性膜ほど保磁力が大きなよう
にCoを主成分とする金属磁性膜が構成されてなること
が好ましい。又、Coを主成分とする金属磁性膜の厚さ
が100〜2000Åであることが好ましい。特に、こ
のようなCoを主成分とする金属磁性膜の膜厚は、支持
体に一番近い金属磁性膜の膜厚を1とすると、上層の膜
厚が1〜1/10の厚さになるよう構成されてなること
が好ましい。そして、このようなCoを主成分とする金
属磁性膜はCo−Ni系合金で構成させることが出来
る。特に、Coを主成分とする金属磁性膜をCo−Ni
系合金で構成させた場合には、このCo−Ni系合金磁
性膜のうち支持体から遠ざかる金属磁性膜ほどNi含有
量を少なくさせることが好ましい。例えば、Coを主成
分とする金属磁性膜をCo−Ni系合金で構成させた場
合、Co−Ni系合金磁性膜のうち支持体に一番近いC
o−Ni系金属磁性膜のNi含有量が6〜20wt%で
あって、遠ざかるにつれてNi含有量が少なくなり、一
番遠い金属磁性膜のNi含有量が5〜19wt%である
よう構成されてなることが好ましい。
Among a plurality of metal magnetic films containing Co as a main component, provided in the magnetic recording medium of the present invention,
It is preferable that the metal magnetic film containing Co as a main component is formed such that the coercive force increases as the metal magnetic film moves away from the support. Further, the thickness of the metal magnetic film containing Co as a main component is preferably 100 to 2000Å. In particular, the film thickness of such a metal magnetic film containing Co as a main component is such that the film thickness of the upper layer is 1 to 1/10 when the film thickness of the metal magnetic film closest to the support is 1. It is preferable that it is configured as follows. Further, such a metal magnetic film containing Co as a main component can be made of a Co—Ni based alloy. In particular, a metal magnetic film containing Co as a main component is formed of Co-Ni.
When it is made of a system alloy, it is preferable to reduce the Ni content in the metal magnetic film of the Co—Ni alloy magnetic film that is farther from the support. For example, when the metal magnetic film containing Co as a main component is made of a Co—Ni-based alloy, C which is the closest to the support in the Co—Ni-based alloy magnetic film.
The o-Ni-based metal magnetic film has a Ni content of 6 to 20 wt%, the Ni content decreases as the distance increases, and the farthest metal magnetic film has a Ni content of 5 to 19 wt%. It is preferable that

【0007】又、Coを主成分とする金属磁性膜の間に
設けられる金属磁性膜の厚さは100〜500Åである
ことが好ましく、そしてこのような金属磁性膜はNiで
構成させることが出来る。以下、本発明について更に詳
しく説明する。図1に本発明になる磁気記録媒体の概略
断面図を示す。
Further, the thickness of the metal magnetic film provided between the metal magnetic films containing Co as a main component is preferably 100 to 500Å, and such a metal magnetic film can be made of Ni. . Hereinafter, the present invention will be described in more detail. FIG. 1 shows a schematic sectional view of a magnetic recording medium according to the present invention.

【0008】同図中、1は非磁性の支持体であり、この
支持体1はポリエチレンテレフタレート等のポリエステ
ル、ポリアミド、ポリイミド、ポリスルフォン、ポリカ
ーボネート、ポリプロピレン等のオレフィン系の樹脂、
セルロース系の樹脂、塩化ビニル系の樹脂といった高分
子材料、ガラスやセラミック等の無機系材料、アルミニ
ウム合金などの金属材料が用いられる。
In the figure, 1 is a non-magnetic support, and this support 1 is an olefin resin such as polyester such as polyethylene terephthalate, polyamide, polyimide, polysulfone, polycarbonate or polypropylene,
Polymer materials such as cellulose resins and vinyl chloride resins, inorganic materials such as glass and ceramics, and metal materials such as aluminum alloys are used.

【0009】支持体1面上には磁性層の密着性を向上さ
せる為のアンダーコート層2が設けられている。すなわ
ち、表面の粗さを適度に粗すことにより乾式メッキによ
り構成される磁性層の密着性を向上させ、さらに磁気記
録媒体表面の表面粗さを適度なものとして走行性を改善
する為、例えばSiO2 等の粒子を含有させた厚さが
0.005〜0.1μmの塗膜を設けることによってア
ンダーコート層2が構成されている。
An undercoat layer 2 for improving the adhesion of the magnetic layer is provided on the surface of the support 1. That is, in order to improve the adhesion of the magnetic layer formed by dry plating by appropriately roughening the surface roughness and further improve the runnability by making the surface roughness of the magnetic recording medium surface moderate, for example, The undercoat layer 2 is formed by providing a coating film containing particles such as SiO 2 and having a thickness of 0.005 to 0.1 μm.

【0010】アンダーコート層2の上には、例えば斜め
蒸着装置によって金属薄膜型の第1の金属磁性膜3aが
設けられる。例えば、10-4〜10-6Torr程度の真
空雰囲気下でCo−Ni(80%−20%)合金を抵抗
加熱、高周波加熱、電子ビーム加熱などにより蒸発さ
せ、支持体1のアンダーコート層2面上に堆積(蒸着)
させることにより、第1の金属(Co−Ni(80%−
20%)合金)磁性膜3aが400〜700Å厚形成さ
れる。
On the undercoat layer 2, a metal thin film type first metal magnetic film 3a is provided by, for example, an oblique vapor deposition apparatus. For example, in a vacuum atmosphere of about 10 −4 to 10 −6 Torr, a Co—Ni (80% -20%) alloy is evaporated by resistance heating, high frequency heating, electron beam heating, etc., and the undercoat layer 2 of the support 1 is evaporated. Deposition on the surface (vapor deposition)
The first metal (Co-Ni (80%-
20%) alloy) Magnetic film 3a is formed with a thickness of 400 to 700Å.

【0011】上記のようにして従来の金属磁性膜の厚さ
よりも薄くした第1の金属磁性膜3aが構成された後、
この第1の金属磁性膜3a上に金属磁性膜3aの磁気特
性とは異なる第2の金属磁性膜、例えばNi膜4aが1
50〜300Å厚さ設けられる。この第2の金属磁性膜
4aの成膜の手法は、第1の金属磁性膜3aと同様な手
法が採用されても、異なる手法が採用されても良い。
After the first metal magnetic film 3a having a thickness smaller than that of the conventional metal magnetic film is formed as described above,
A second metal magnetic film having a magnetic characteristic different from that of the metal magnetic film 3a, for example, a Ni film 4a is formed on the first metal magnetic film 3a.
It has a thickness of 50 to 300Å. The method of forming the second metal magnetic film 4a may be the same as that of the first metal magnetic film 3a or may be different.

【0012】この後、第1の金属磁性膜3aの成膜と同
様な手法を用い、そしてCo−Ni(90%−10%)
合金を用いて、第2の金属磁性膜4aの上に第3の金属
(Co−Ni(90%−10%)合金)磁性膜3bを4
00〜700Å厚形成する。そして、この後、第3の金
属磁性膜3bの上に第2の金属磁性膜(Ni膜)4aの
成膜手法と同様な手法で第4の金属磁性膜(Ni膜)4
bが150〜300Å厚さ設けられる。
Thereafter, the same method as that for forming the first metal magnetic film 3a is used, and Co--Ni (90% -10%) is used.
An alloy is used to form a third metal (Co—Ni (90% -10%) alloy) magnetic film 3b on the second metal magnetic film 4a.
Form a thickness of 00 to 700Å. Then, thereafter, the fourth metal magnetic film (Ni film) 4 is formed on the third metal magnetic film 3b by the same method as the method for forming the second metal magnetic film (Ni film) 4a.
b is provided with a thickness of 150 to 300Å.

【0013】この後、第1の金属磁性膜3aの成膜と同
様な手法を用い、そしてCo−Ni(95%−5%)合
金を用いて、第4の金属磁性膜4bの上に第5の金属
(Co−Ni(95%−5%)合金)磁性膜3cを40
0〜700Å厚形成する。上記の金属磁性膜の成膜に際
しては、酸素を供給して行う。特に、第5の金属磁性膜
3cが一番上の金属磁性膜であるとした場合には、少な
くともこの金属磁性膜の形成時には酸素が吹き付けられ
ている。
After that, a method similar to that of forming the first metal magnetic film 3a is used, and a Co--Ni (95% -5%) alloy is used to form a second film on the fourth metal magnetic film 4b. 5 metal (Co-Ni (95% -5%) alloy) magnetic film 3c
Form 0 to 700Å thickness. Oxygen is supplied when forming the above-mentioned metal magnetic film. Particularly, when the fifth metal magnetic film 3c is the uppermost metal magnetic film, oxygen is blown at least at the time of forming this metal magnetic film.

【0014】この後も、必要に応じて同様に構成させ
る。但し、3層〜5層(Co−Ni合金磁性膜は2〜3
層)程度が実際的である。勿論、これ以上の層構成であ
っても良い。つまり、従来のCo−Ni合金磁性膜を、
一膜の厚さが薄い複数のCo−Ni合金磁性膜で構成
し、そして各Co−Ni合金磁性膜は支持体から遠ざか
るにつれてNi含有量を減らして保磁力が大きなように
なすと共に、Co−Ni合金磁性膜の間にはNi膜を設
け、各々の磁性膜が分離・独立するように構成させたの
である。
After this, the same construction is made if necessary. However, 3 to 5 layers (2 to 3 for Co-Ni alloy magnetic film)
Layer) degree is practical. Of course, a layered structure having more layers than this may be used. That is, the conventional Co-Ni alloy magnetic film is
Each Co-Ni alloy magnetic film is composed of a plurality of thin Co-Ni alloy magnetic films, and each Co-Ni alloy magnetic film reduces the Ni content as the distance from the support increases so that the coercive force becomes large. A Ni film was provided between the Ni alloy magnetic films, and the respective magnetic films were separated and independent.

【0015】そして、このように磁性膜を構成させてい
ると、C/N特性が向上し、再生出力も高くなったので
ある。5は第5の金属磁性膜3cの上に設けられた潤滑
剤層である。すなわち、潤滑剤を含有させた塗料を所定
の手段で塗布することにより、約5〜50Å、好ましく
は約10〜30Å程度の厚さの潤滑剤層5が設けられ
る。
When the magnetic film is formed in this way, the C / N characteristic is improved and the reproduction output is also increased. Reference numeral 5 is a lubricant layer provided on the fifth metal magnetic film 3c. That is, the lubricant layer 5 having a thickness of about 5 to 50 Å, preferably about 10 to 30 Å is provided by applying a coating material containing a lubricant by a predetermined means.

【0016】6は、基板1の他面に設けられたカーボン
ブラック等を含有させたバックコート層である。以下、
具体的な実施例を挙げて説明する。
Reference numeral 6 is a back coat layer provided on the other surface of the substrate 1 and containing carbon black or the like. Less than,
A specific example is given and demonstrated.

【0017】[0017]

【実施例】【Example】

〔実施例1〕厚さ10μmのアンダーコート層が設けら
れたPETフィルムを斜め蒸着装置に装着し、又、酸化
マグネシウム製のルツボにCo−Ni(80%−20
%)合金を入れ、そして30kWの電子銃を作動させて
Co−Ni(80%−20%)合金を蒸発させ、2m/
分の走行速度で走行しているPETフィルムにCo−N
i(80%−20%)合金粒子を蒸着させ、厚さ500
Åの第1の金属磁性膜3aを設けた。
Example 1 A PET film provided with an undercoat layer having a thickness of 10 μm was mounted on an oblique vapor deposition apparatus, and a crucible made of magnesium oxide was coated with Co—Ni (80% -20%).
%) Alloy and activated a 30 kW electron gun to evaporate the Co-Ni (80% -20%) alloy to 2 m /
Co-N on PET film running at a running speed of
i (80% -20%) alloy particles are deposited to a thickness of 500
The Å first metal magnetic film 3a is provided.

【0018】この後、この第1の金属磁性膜3a上に、
厚さが150Åの第2の金属磁性膜膜(Ni膜)4aを
設けた。続いて、この第2の金属磁性膜4aの上に、C
o−Ni(90%−10%)合金を用いて、Co−Ni
(90%−10%)合金粒子を蒸着させ、厚さ500Å
の第3の金属磁性膜3bを設けた。
After this, on the first metal magnetic film 3a,
A second metal magnetic film film (Ni film) 4a having a thickness of 150Å was provided. Then, C is formed on the second metal magnetic film 4a.
Using an o-Ni (90% -10%) alloy, Co-Ni
(90% -10%) Evaporate alloy particles to a thickness of 500Å
The third metal magnetic film 3b was provided.

【0019】この後、この第3の金属磁性膜3b上に、
厚さが150Åの第4の金属磁性膜膜(Ni膜)4bを
設けた。続いて、この第4の金属磁性膜4bの上に、C
o−Ni(95%−5%)合金を用いて、Co−Ni
(95%−5%)合金粒子を蒸着させ、厚さ500Åの
第5の金属磁性膜3cを設けた。尚、この時にも、Co
−Ni合金粒子の蒸着時に酸素が吹き付けられている。
Then, on the third metal magnetic film 3b,
A fourth metal magnetic film (Ni film) 4b having a thickness of 150Å was provided. Then, C is formed on the fourth metal magnetic film 4b.
Using an o-Ni (95% -5%) alloy, Co-Ni
(95% -5%) alloy particles were vapor-deposited to form a fifth metal magnetic film 3c having a thickness of 500Å. Even at this time, Co
-Oxygen is blown during the deposition of the Ni alloy particles.

【0020】この後、第5の金属磁性膜3cの表面に潤
滑剤を塗布し、又、PETフィルムの他面にバックコー
ト層を形成し、図1に示す如くの磁気記録媒体を得た。 〔実施例2〕実施例1において、第2の金属磁性膜膜4
a、及び第4の金属磁性膜膜4bの厚さを300Åとし
た他は同様に行い、磁気記録媒体を得た。
Then, a lubricant was applied to the surface of the fifth metal magnetic film 3c, and a back coat layer was formed on the other surface of the PET film to obtain a magnetic recording medium as shown in FIG. [Second Embodiment] In the first embodiment, the second metal magnetic film 4 is formed.
A magnetic recording medium was obtained in the same manner except that the thicknesses of a and the fourth metal magnetic film 4b were set to 300Å.

【0021】〔実施例3〕実施例1において、第1の金
属磁性膜膜3a、第3の金属磁性膜膜3b、及び第5の
金属磁性膜膜3cの厚さを800Åとした他は同様に行
い、磁気記録媒体を得た。 〔実施例4〕厚さ10μmのアンダーコート層が設けら
れたPETフィルムを斜め蒸着装置に装着し、又、酸化
マグネシウム製のルツボにCo−Ni(80%−20
%)合金を入れ、そして30kWの電子銃を作動させて
Co−Ni(80%−20%)合金を蒸発させ、2m/
分の走行速度で走行しているPETフィルムにCo−N
i(80%−20%)合金粒子を蒸着させ、厚さ150
0Åの第1の金属磁性膜3aを設けた。
[Third Embodiment] The same as the first embodiment except that the thicknesses of the first metal magnetic film 3a, the third metal magnetic film 3b, and the fifth metal magnetic film 3c are set to 800 Å. Then, a magnetic recording medium was obtained. [Example 4] A PET film provided with an undercoat layer having a thickness of 10 µm was mounted on an oblique vapor deposition apparatus, and a crucible made of magnesium oxide was coated with Co-Ni (80% -20).
%) Alloy and activated a 30 kW electron gun to evaporate the Co-Ni (80% -20%) alloy to 2 m /
Co-N on PET film running at a running speed of
i (80% -20%) alloy particles are deposited to a thickness of 150
A 0Å first metal magnetic film 3a was provided.

【0022】この後、この第1の金属磁性膜3a上に、
厚さが150Åの第2の金属磁性膜膜(Ni膜)4aを
設けた。続いて、この第2の金属磁性膜4aの上に、C
o−Ni(90%−10%)合金を用いて、Co−Ni
(90%−10%)合金粒子を蒸着させ、厚さ300Å
の第3の金属磁性膜3bを設けた。この時にも、Co−
Ni合金粒子の蒸着時に酸素が吹き付けられている。
Thereafter, on the first metal magnetic film 3a,
A second metal magnetic film film (Ni film) 4a having a thickness of 150Å was provided. Then, C is formed on the second metal magnetic film 4a.
Using an o-Ni (90% -10%) alloy, Co-Ni
(90% -10%) Alloy particles are vapor-deposited to a thickness of 300Å
The third metal magnetic film 3b was provided. Also at this time, Co-
Oxygen is blown during the deposition of the Ni alloy particles.

【0023】この後、第3の金属磁性膜3bの表面に潤
滑剤を塗布し、又、PETフィルムの他面にバックコー
ト層を形成し、磁気記録媒体を得た。 〔比較例1〕厚さ10μmのアンダーコート層が設けら
れたPETフィルムを斜め蒸着装置に装着し、又、酸化
マグネシウム製のルツボにCo−Ni(80%−20
%)合金を入れ、そして30kWの電子銃を作動させて
Co−Niを蒸発させ、2m/分の走行速度で走行して
いるPETフィルムにCo−Ni粒子を厚さ1800Å
蒸着させた。尚、Co−Ni合金粒子の蒸着時に酸素は
吹き付けられている。
Then, a lubricant was applied to the surface of the third metal magnetic film 3b, and a back coat layer was formed on the other surface of the PET film to obtain a magnetic recording medium. [Comparative Example 1] A PET film provided with an undercoat layer having a thickness of 10 µm was attached to an oblique vapor deposition apparatus, and Co-Ni (80% -20%) was attached to a crucible made of magnesium oxide.
%) Alloy, and actuate a 30 kW electron gun to evaporate Co-Ni and deposit Co-Ni particles on a PET film running at a running speed of 2 m / min to a thickness of 1800Å.
It was vapor-deposited. It should be noted that oxygen was blown during the deposition of the Co—Ni alloy particles.

【0024】この後、金属磁性膜の表面に潤滑剤を塗布
し、又、PETフィルムの他面にバックコート層を形成
し、磁気記録媒体を得た。 〔特性〕上記各例で得られた磁気記録媒体の再生特性及
び耐蝕性について調べたので、その結果を下記の表−1
に示す。
After that, a lubricant was applied to the surface of the metal magnetic film, and a back coat layer was formed on the other surface of the PET film to obtain a magnetic recording medium. [Characteristics] The reproducing characteristics and the corrosion resistance of the magnetic recording media obtained in the above examples were examined, and the results are shown in Table 1 below.
Shown in.

【0025】 表−1 再 生 出 力(dB) C/N(dB) ΔBs(%) 1MHz 7MHz 実施例1 −0.5 +4.6 5.0 5 実施例2 −0.3 +4.4 4.7 4 実施例3 +0.2 +4.9 5.2 4 実施例4 +0.2 +2.6 3.9 4 比較例1 0 0 0 3 これによれば、Coを主成分とする金属磁性膜が複数個
設けられると共に、これらCoを主成分とする金属磁性
膜の間に前記磁性膜の磁気特性とは異なる磁気特性の金
属磁性膜が設けられてなる本発明の磁気記録媒体は、C
/Nが高く、かつ、高域での再生出力が高いことが判
る。
Table-1 Regenerated power (dB) C / N (dB) ΔBs (%) 1 MHz 7 MHz Example 1 -0.5 +4.6 5.0 5 Example 2 -0.3 +4.4 4 0.7 4 Example 3 +0.2 +4.9 5.2 4 Example 4 +0.2 +2.6 3.9 4 Comparative Example 1 0 0 0 3 According to this, a metal magnetic film containing Co as a main component. The magnetic recording medium of the present invention is provided with a plurality of metal magnetic films having a magnetic characteristic different from that of the magnetic film between the metal magnetic films containing Co as a main component.
It can be seen that / N is high and the reproduction output in the high range is high.

【0026】[0026]

【効果】高域での再生出力が高く、C/Nも高い特長が
奏される。
[Effect] High playback output in the high frequency range and high C / N.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁気記録媒体の概略断面図である。FIG. 1 is a schematic cross-sectional view of a magnetic recording medium.

【符号の説明】[Explanation of symbols]

1 支持体 3a,3b,3c Co−Ni合金磁性膜 4a,4b Ni磁性膜 5 潤滑剤層 6 バックコート層 1 Supports 3a, 3b, 3c Co-Ni alloy magnetic film 4a, 4b Ni magnetic film 5 Lubricant layer 6 Back coat layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 志賀 章 栃木県芳賀郡市貝町大字赤羽2606 花王株 式会社情報科学研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Shiga 2606 Akabane, Kai-cho, Haga-gun, Tochigi Prefecture Kao Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Coを主成分とする金属磁性膜が複数個
設けられると共に、これらCoを主成分とする金属磁性
膜の間に前記磁性膜の磁気特性とは異なる磁気特性の金
属磁性膜が設けられてなることを特徴とする磁気記録媒
体。
1. A plurality of metal magnetic films containing Co as a main component are provided, and a metal magnetic film having magnetic properties different from those of the magnetic films is provided between the metal magnetic films containing Co as a main component. A magnetic recording medium characterized by being provided.
【請求項2】 複数個設けられたCoを主成分とする金
属磁性膜のうち、支持体から遠ざかる金属磁性膜ほど保
磁力が大きなようにCoを主成分とする金属磁性膜が構
成されてなることを特徴とする請求項1の磁気記録媒
体。
2. A metal magnetic film containing Co as a main component is formed so that, out of a plurality of metal magnetic films containing Co as a main component, the metal magnetic film farther from the support has a larger coercive force. The magnetic recording medium according to claim 1, wherein:
【請求項3】 Coを主成分とする金属磁性膜の厚さが
100〜2000Åであることを特徴とする請求項1ま
たは請求項2の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the thickness of the metallic magnetic film containing Co as a main component is 100 to 2000 Å.
【請求項4】 Coを主成分とする金属磁性膜の膜厚
は、支持体に一番近い金属磁性膜の膜厚を1とすると、
上層の膜厚が1〜1/10の厚さになるよう構成されて
なることを特徴とする請求項1〜請求項3の磁気記録媒
体。
4. The film thickness of the metal magnetic film containing Co as a main component is set such that the film thickness of the metal magnetic film closest to the support is 1.
4. The magnetic recording medium according to claim 1, wherein the upper layer has a thickness of 1 to 1/10.
【請求項5】 Coを主成分とする金属磁性膜がCo−
Ni系合金で構成されてなることを特徴とする請求項1
〜請求項4の磁気記録媒体。
5. The metal magnetic film containing Co as a main component is Co--
2. A Ni-based alloy as a constituent.
~ The magnetic recording medium according to claim 4.
【請求項6】 Coを主成分とする金属磁性膜がCo−
Ni系合金で構成されてなり、このCo−Ni系合金磁
性膜のうち支持体から遠ざかる金属磁性膜ほどNi含有
量が少なくなるよう構成されてなることを特徴とする請
求項1〜請求項5の磁気記録媒体。
6. The metal magnetic film containing Co as a main component is Co--
6. A Ni-based alloy magnetic film, wherein a metal magnetic film of the Co—Ni-based alloy magnetic film that is farther from the support has a smaller Ni content. Magnetic recording medium.
【請求項7】 Coを主成分とする金属磁性膜がCo−
Ni系合金で構成されてなり、このCo−Ni系合金磁
性膜のうち支持体に一番近い金属磁性膜のNi含有量が
6〜20wt%であって、遠ざかるにつれてNi含有量
が少なくなり、一番遠い金属磁性膜のNi含有量が5〜
19wt%であるよう構成されてなることを特徴とする
請求項1〜請求項6の磁気記録媒体。
7. The metal magnetic film containing Co as a main component is Co--
Of the Co-Ni alloy magnetic film, the Ni content of the metal magnetic film closest to the support is 6 to 20 wt%, and the Ni content decreases as the distance increases. The farthest metal magnetic film has a Ni content of 5 to
The magnetic recording medium according to claim 1, wherein the magnetic recording medium is configured to have a content of 19 wt%.
【請求項8】 Coを主成分とする金属磁性膜の間に設
けられる金属磁性膜の厚さが100〜500Åであるこ
とを特徴とする請求項1の磁気記録媒体。
8. The magnetic recording medium according to claim 1, wherein the thickness of the metal magnetic film provided between the metal magnetic films containing Co as a main component is 100 to 500 Å.
【請求項9】 Coを主成分とする金属磁性膜の間に設
けられる金属磁性膜がNiで構成されてなることを特徴
とする請求項1または請求項8の磁気記録媒体。
9. The magnetic recording medium according to claim 1, wherein the metal magnetic film provided between the metal magnetic films containing Co as a main component is made of Ni.
JP20649293A 1993-08-20 1993-08-20 Magnetic recording medium Pending JPH0765347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20649293A JPH0765347A (en) 1993-08-20 1993-08-20 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20649293A JPH0765347A (en) 1993-08-20 1993-08-20 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0765347A true JPH0765347A (en) 1995-03-10

Family

ID=16524273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20649293A Pending JPH0765347A (en) 1993-08-20 1993-08-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0765347A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10781524B2 (en) 2014-09-18 2020-09-22 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US10808322B2 (en) * 2013-03-15 2020-10-20 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
US10844504B2 (en) 2013-03-15 2020-11-24 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US10961635B2 (en) 2005-08-12 2021-03-30 Modumetal, Inc. Compositionally modulated composite materials and methods for making the same
US11118280B2 (en) 2013-03-15 2021-09-14 Modumetal, Inc. Nanolaminate coatings
US11180864B2 (en) 2013-03-15 2021-11-23 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11242613B2 (en) 2009-06-08 2022-02-08 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
US11286575B2 (en) 2017-04-21 2022-03-29 Modumetal, Inc. Tubular articles with electrodeposited coatings, and systems and methods for producing the same
US11293272B2 (en) 2017-03-24 2022-04-05 Modumetal, Inc. Lift plungers with electrodeposited coatings, and systems and methods for producing the same
US11365488B2 (en) 2016-09-08 2022-06-21 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
US11519093B2 (en) 2018-04-27 2022-12-06 Modumetal, Inc. Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation
US11692281B2 (en) 2014-09-18 2023-07-04 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961635B2 (en) 2005-08-12 2021-03-30 Modumetal, Inc. Compositionally modulated composite materials and methods for making the same
US11242613B2 (en) 2009-06-08 2022-02-08 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
US11180864B2 (en) 2013-03-15 2021-11-23 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US10844504B2 (en) 2013-03-15 2020-11-24 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US11118280B2 (en) 2013-03-15 2021-09-14 Modumetal, Inc. Nanolaminate coatings
US11168408B2 (en) 2013-03-15 2021-11-09 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US10808322B2 (en) * 2013-03-15 2020-10-20 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
US11851781B2 (en) 2013-03-15 2023-12-26 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US10781524B2 (en) 2014-09-18 2020-09-22 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US11560629B2 (en) 2014-09-18 2023-01-24 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US11692281B2 (en) 2014-09-18 2023-07-04 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11365488B2 (en) 2016-09-08 2022-06-21 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
US11293272B2 (en) 2017-03-24 2022-04-05 Modumetal, Inc. Lift plungers with electrodeposited coatings, and systems and methods for producing the same
US11286575B2 (en) 2017-04-21 2022-03-29 Modumetal, Inc. Tubular articles with electrodeposited coatings, and systems and methods for producing the same
US11519093B2 (en) 2018-04-27 2022-12-06 Modumetal, Inc. Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation

Similar Documents

Publication Publication Date Title
JPS5883328A (en) Magnetic recording medium
JPH0765347A (en) Magnetic recording medium
JPS5883327A (en) Magnetic recording medium
US6037069A (en) Magnetic recording medium
JPH0765346A (en) Magnetic recording medium
JPS62128019A (en) Magnetic recording medium
JPH0766511B2 (en) Magnetic recording medium
JPH08306028A (en) Magnetic recording medium and its production
JPH09274719A (en) Magnetic recording medium
JPH0887738A (en) Magnetic recording medium
JPH0987840A (en) Magnetic recording medium and its production
JPH06103552A (en) Magnetic recording medium and its production
JPH0785445A (en) Magnetic recording medium and manufacture thereof
JPH07334836A (en) Magnetic recording medium
JPH09282633A (en) Magnetic recording medium
JPH06139543A (en) Magnetic recording medium and its production
JPH0991663A (en) Magnetic recording medium and its production
JPH09270121A (en) Magnetic recording medium
JPH0845054A (en) Magnetic recording medium and its production
JPH0765372A (en) Method and device for producing magnetic recording medium
JPH09134516A (en) Magnetic recording medium
JPH07244841A (en) Magnetic recording medium, method and apparatus for manufacturing the medium
JPH0991665A (en) Magnetic recording medium
JPH06104114A (en) Magnetic recording medium and its production
JPH06103572A (en) Device and method for producing magnetic recording medium