JPH0987840A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH0987840A
JPH0987840A JP24905095A JP24905095A JPH0987840A JP H0987840 A JPH0987840 A JP H0987840A JP 24905095 A JP24905095 A JP 24905095A JP 24905095 A JP24905095 A JP 24905095A JP H0987840 A JPH0987840 A JP H0987840A
Authority
JP
Japan
Prior art keywords
magnetic film
magnetic
film
recording medium
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24905095A
Other languages
Japanese (ja)
Inventor
Osamu Yoshida
修 吉田
Noriyuki Kitaori
典之 北折
Katsumi Sasaki
克己 佐々木
Junko Ishikawa
准子 石川
Katsumi Endo
克巳 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP24905095A priority Critical patent/JPH0987840A/en
Publication of JPH0987840A publication Critical patent/JPH0987840A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a magnetic recording medium having a high output in a wide range by using a specified Fe-Ni alloy and forming a magnetic film having a specified composition ratio on a substrate. SOLUTION: A substrate 1 can be magnetic or nonmagnetic, however the nonmagnetic substrate is generally used. An olefinic resin, polymer, inorg. material and metallic material are exemplified. An Fe-Ni-N-O magnetic layer 21 is formed on the surface of the substrate 1, and a protective film 22 having about 10-200Å thickness is formed on the magnetic film 21. A lubricant layer 23 is formed on the protective film 22. A back coat layer 24 is formed on another side of the substrate 1. The magnetic film 21 contains, by atomic %, 40-80% Fe, 1-14% Ni, 5-40% N and 5-30% O, respectively as the element. A material to be plated in the vapor source to constitute the magnetic film 21 contains 1-17 atomic % Ni and the balance Fe with inevitable impurities. Consequently, a magnetic recording medium excellent in corrosion resistance is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Fe−Ni−N−
O系金属磁性膜を有する磁気記録媒体に関する。
TECHNICAL FIELD The present invention relates to Fe--Ni--N--
The present invention relates to a magnetic recording medium having an O-based metal magnetic film.

【0002】[0002]

【発明が解決しようとする課題】磁性膜を蒸着やスパッ
タ等の乾式メッキ手段で構成した金属薄膜型の磁気記録
媒体が広く知られている。この磁性膜を構成する材料と
して種々のものが有る。例えば、これまでは、主とし
て、Co−NiやCo−Cr系の磁性合金が用いられて
いる。
A metal thin film type magnetic recording medium in which a magnetic film is formed by dry plating means such as vapor deposition or sputtering is widely known. There are various materials for forming the magnetic film. For example, Co-Ni and Co-Cr magnetic alloys have been mainly used so far.

【0003】しかし、Co,Ni,Cr等は価格が高
い。このようなことからFeが注目されて来た。例え
ば、Fe1-X-Y X Y (但し、0.25≦X+Y<
0.60,X>Y)の酸化窒化鉄膜を有する磁気記録媒
体が提案(特開昭61−54023号公報)されてい
る。
However, Co, Ni, Cr, etc. are expensive. Because of this, attention has been paid to Fe. For example, Fe 1-XY N X O Y (however, 0.25 ≦ X + Y <
A magnetic recording medium having an iron oxynitride film of 0.60, X> Y) has been proposed (JP-A-61-54023).

【0004】このものは、磁気特性に優れ、かつ、耐候
性や耐久性に優れたものである。しかし、高域での高い
再生出力が得られていない。又、近年、より厳しい環境
下での使用も多くなっており、一層の耐蝕性が求められ
ている。従って、本発明の目的は、低域から高域にわた
って高い再生出力が得られ、電磁変換特性に優れ、か
つ、耐蝕性に富む磁気記録媒体を提供することである。
This product has excellent magnetic properties, weather resistance and durability. However, the high reproduction output in the high range is not obtained. Further, in recent years, use has been increasing in more severe environments, and further corrosion resistance is required. Therefore, an object of the present invention is to provide a magnetic recording medium which can obtain a high reproduction output from a low range to a high range, is excellent in electromagnetic conversion characteristics, and is excellent in corrosion resistance.

【0005】[0005]

【課題を解決するための手段】前記本発明の目的は、N
iが1〜17at.%、残りが不可避不純物及びFeの
Fe−Ni系合金が用いられ、Fe−Ni−N−O系の
磁性膜が支持体上に設けられてなる磁気記録媒体であっ
て、前記磁性膜中のFeの割合は40〜80at.%、
前記磁性膜中のNiの割合は1〜14at.%、前記磁
性膜中のNの割合は5〜40at.%、前記磁性膜中の
Oの割合は5〜30at.%であることを特徴とする磁
気記録媒体によって達成される。
The object of the present invention is to provide N
i is 1 to 17 at. %, The balance being unavoidable impurities and an Fe—Ni-based alloy of Fe is used, and a magnetic film of Fe—Ni—N—O type is provided on a support. The ratio of Fe is 40 to 80 at. %,
The ratio of Ni in the magnetic film is 1 to 14 at. %, The ratio of N in the magnetic film is 5 to 40 at. %, The proportion of O in the magnetic film is 5 to 30 at. % Of the magnetic recording medium.

【0006】特に、Niが2〜15at.%、残りが不
可避不純物及びFeのFe−Ni系合金が用いられ、イ
オンアシスト蒸着法によりFe−Ni−N−O系の磁性
膜が支持体上に設けられてなる磁気記録媒体であって、
前記磁性膜中のFeの割合は40〜80at.%、前記
磁性膜中のNiの割合は1〜14at.%、前記磁性膜
中のNの割合は5〜40at.%、前記磁性膜中のOの
割合は5〜30at.%、前記磁性膜中のNの割合がO
の割合より多いことを特徴とする磁気記録媒体によって
達成される。
Particularly, Ni is 2 to 15 at. %, The balance being unavoidable impurities and an Fe—Ni based alloy of Fe is used, and a magnetic recording medium in which a Fe—Ni—N—O based magnetic film is provided on a support by an ion assisted deposition method,
The ratio of Fe in the magnetic film is 40 to 80 at. %, The ratio of Ni in the magnetic film is 1 to 14 at. %, The ratio of N in the magnetic film is 5 to 40 at. %, The proportion of O in the magnetic film is 5 to 30 at. %, The ratio of N in the magnetic film is O
Is achieved by a magnetic recording medium.

【0007】又、Feが40〜80at.%,Niが1
〜14at.%,Nが5〜40at.%,Oが5〜30
at.%のFe−Ni−N−O系の磁性膜が設けられて
なる磁気記録媒体の製造方法であって、前記Fe−Ni
−N−O系の磁性膜を構成する為に、蒸発源に置かれる
材料としてNiが1〜17at.%、残りが不可避不純
物及びFeのFe−Ni系合金が用いられ、そしてイオ
ンアシスト蒸着法により前記Fe−Ni−N−O系の磁
性膜が成膜されることを特徴とする磁気記録媒体の製造
方法によって達成される。
Further, Fe is 40 to 80 at. %, Ni is 1
~ 14 at. %, N is 5 to 40 at. %, O is 5 to 30
at. % Fe—Ni—N—O type magnetic film is provided, wherein said Fe—Ni—
Ni as a material to be placed in the evaporation source in order to form a -NO magnetic system is 1 to 17 at. %, The balance being unavoidable impurities and an Fe—Ni based alloy of Fe is used, and the Fe—Ni—N—O based magnetic film is formed by an ion assisted vapor deposition method. This is achieved by the manufacturing method.

【0008】特に、Feが40〜80at.%,Niが
1〜14at.%,Nが5〜40at.%,Oが5〜3
0at.%であり、かつ、Nの割合がOの割合より多い
Fe−Ni−N−O系の磁性膜が設けられてなる磁気記
録媒体の製造方法であって、前記Fe−Ni−N−O系
の磁性膜を構成する為に、蒸発源に置かれる材料として
Niが2〜15at.%、残りが不可避不純物及びFe
のFe−Ni系合金が用いられ、そしてイオンアシスト
蒸着法により前記Fe−Ni−N−O系の磁性膜が成膜
されることを特徴とする磁気記録媒体の製造方法によっ
て達成される。
In particular, Fe is 40 to 80 at. %, Ni is 1 to 14 at. %, N is 5 to 40 at. %, O is 5 to 3
0 at. %, And a Fe—Ni—N—O based magnetic film in which the proportion of N is higher than the proportion of O. A Fe—Ni—N—O based magnetic film is provided. 2 to 15 at.% Ni as a material to be placed in the evaporation source in order to form the magnetic film. %, The rest are inevitable impurities and Fe
Fe-Ni based alloy is used, and the Fe-Ni-N-O based magnetic film is formed by an ion assisted vapor deposition method.

【0009】[0009]

【発明の実施の形態】本発明の磁気記録媒体は、Niが
1〜17at.%、残りが不可避不純物及びFeのFe
−Ni系合金が用いられ、Fe−Ni−N−O系の磁性
膜が支持体上に設けられてなる磁気記録媒体であって、
前記磁性膜中のFeの割合は40〜80at.%、前記
磁性膜中のNiの割合は1〜14at.%、前記磁性膜
中のNの割合は5〜40at.%、前記磁性膜中のOの
割合は5〜30at.%を満たすものである。特に、N
iが1〜17at.%、残りが不可避不純物及びFeの
Fe−Ni系合金が用いられ、イオンアシスト蒸着法に
よりFe−Ni−N−O系の磁性膜が支持体上に設けら
れてなる磁気記録媒体であって、前記磁性膜中のFeの
割合は40〜80at.%、前記磁性膜中のNiの割合
は1〜14at.%、前記磁性膜中のNの割合は5〜4
0at.%、前記磁性膜中のOの割合は5〜30at.
%を満たすものである。又、Niが2〜15at.%、
残りが不可避不純物及びFeのFe−Ni系合金が用い
られ、イオンアシスト蒸着法によりFe−Ni−N−O
系の磁性膜が支持体上に設けられてなる磁気記録媒体で
あって、40at.%≦前記磁性膜中のFeの割合≦8
0at.%,1at.%≦前記磁性膜中のNiの割合≦
14at.%,5at.%<前記磁性膜中のNの割合≦
40at.%,5at.%≦前記磁性膜中のOの割合≦
30at.%,前記磁性膜中のOの割合<前記磁性膜中
のNの割合を満たすものである。
BEST MODE FOR CARRYING OUT THE INVENTION The magnetic recording medium of the present invention contains 1 to 17 at. %, The rest are inevitable impurities and Fe of Fe
A magnetic recording medium comprising a support and a Fe—Ni—N—O magnetic film formed of a —Ni alloy,
The ratio of Fe in the magnetic film is 40 to 80 at. %, The ratio of Ni in the magnetic film is 1 to 14 at. %, The ratio of N in the magnetic film is 5 to 40 at. %, The proportion of O in the magnetic film is 5 to 30 at. % Is satisfied. In particular, N
i is 1 to 17 at. %, The balance being unavoidable impurities and an Fe—Ni based alloy of Fe is used, and a magnetic recording medium in which a Fe—Ni—N—O based magnetic film is provided on a support by an ion assisted deposition method, The ratio of Fe in the magnetic film is 40 to 80 at. %, The ratio of Ni in the magnetic film is 1 to 14 at. %, The ratio of N in the magnetic film is 5 to 4
0 at. %, The proportion of O in the magnetic film is 5 to 30 at.
% Is satisfied. Further, Ni is 2 to 15 at. %,
The rest are unavoidable impurities and Fe—Ni based alloys of Fe are used, and Fe—Ni—N—O is formed by the ion assisted vapor deposition method.
A magnetic recording medium comprising a support and a magnetic film of a series of 40 at. % ≦ Fe ratio in the magnetic film ≦ 8
0 at. %, 1 at. % ≤ Ni ratio in the magnetic film ≤
14 at. %, 5 at. % <Ratio of N in the magnetic film ≤
40 at. %, 5 at. % ≦ O ratio in the magnetic film ≦
30 at. %, The ratio of O in the magnetic film <the ratio of N in the magnetic film.

【0010】又、本発明の磁気記録媒体の製造方法は、
Feが40〜80at.%,Niが1〜14at.%,
Nが5〜40at.%,Oが5〜30at.%のFe−
Ni−N−O系の磁性膜が設けられてなる磁気記録媒体
の製造方法であって、前記Fe−Ni−N−O系の磁性
膜を構成する為に、蒸発源に置かれる材料としてNiが
1〜17at.%、残りが不可避不純物及びFeのFe
−Ni系合金が用いられ、そしてイオンアシスト蒸着法
により前記Fe−Ni−N−O系の磁性膜が成膜され
る。特に、40at.%≦磁性膜中のFeの割合≦80
at.%,1at.%≦磁性膜中のNiの割合≦14a
t.%,5at.%<磁性膜中のNの割合≦40at.
%,5at.%≦磁性膜中のOの割合≦30at.%,
磁性膜中のOの割合≦磁性膜中のNの割合を満たすFe
−Ni−N−O系の磁性膜が設けられてなる磁気記録媒
体の製造方法であって、前記Fe−Ni−N−O系の磁
性膜を構成する為に、蒸発源に置かれる材料としてNi
が2〜15at.%、残りが不可避不純物及びFeのF
e−Ni系合金が用いられ、そしてイオンアシスト蒸着
法により前記Fe−Ni−N−O系の磁性膜が成膜され
る。
The method of manufacturing the magnetic recording medium of the present invention is
Fe is 40 to 80 at. %, Ni is 1 to 14 at. %,
N is 5 to 40 at. %, O is 5 to 30 at. % Fe-
A method of manufacturing a magnetic recording medium provided with a Ni—N—O based magnetic film, wherein Ni is used as a material placed in an evaporation source to form the Fe—Ni—N—O based magnetic film. Is 1 to 17 at. %, The rest are inevitable impurities and Fe of Fe
A —Ni-based alloy is used, and the Fe—Ni—N—O-based magnetic film is formed by an ion assisted deposition method. In particular, 40 at. % ≦ Fe ratio in magnetic film ≦ 80
at. %, 1 at. % ≦ Ni ratio in magnetic film ≦ 14a
t. %, 5 at. % <Ratio of N in magnetic film ≤ 40 at.
%, 5 at. % ≦ O ratio in magnetic film ≦ 30 at. %,
Fe satisfying the ratio of O in the magnetic film ≦ the ratio of N in the magnetic film
A method of manufacturing a magnetic recording medium provided with a —Ni—N—O based magnetic film, wherein a material placed in an evaporation source for forming the Fe—Ni—N—O based magnetic film Ni
Is 2 to 15 at. %, The rest are inevitable impurities and Fe F
An e-Ni based alloy is used, and the Fe-Ni-N-O based magnetic film is formed by an ion assisted deposition method.

【0011】本発明の磁気記録媒体は、例えば成膜速度
が大きな蒸着法を例にとって説明すると次のようにな
る。先ず、例えば全金属成分中Fe+Niが95〜9
8.5wt%(所謂、純度が95〜98.5wt%)、
Au,Pt,Agの合計量が0〜0.05wt%(0で
あることに越したことはないが、不可避不純物として多
少含まれる場合が有る。又、含有するにしても、Auと
PtとAgの合計量を出来るだけ少なく、例えば0.0
5wt%以下に抑える)、残りがその他の金属成分(例
えば、Co,Mn,Cr等)であるFe+Ni系合金
(Fe+Ni合金)材料を、斜め蒸着装置のルツボの中
に入れる。このような純度(95〜98.5wt%)の
合金材料を用いたのは、純度が99.95wt%以上と
言った高純度のものを用いる場合に比べて遙に安価であ
るからによる。尚、純度が98.5wt%以上の高純度
のものを用いるのを排除するものではない。そして、斜
め蒸着装置内を所定の真空度に排気すると共に、電子銃
あるいはその他の手段によりFe−Ni合金材料を蒸発
させ、走行する支持上にFe−Ni合金粒子を付着・堆
積させる。この付着・堆積に際しては、Fe−Ni合金
粒子あるいは堆積面に向けて窒素ガス(又は窒素イオ
ン)や酸素ガス(又は酸素イオン)等を照射し、非磁性
の支持体上に設ける磁性膜をFe−Ni−N−O系膜と
する。この成膜に際し、窒素ガス(又は窒素イオン)と
酸素ガス(又は酸素イオン)との関係を調整する。
The magnetic recording medium of the present invention will be described as follows, for example, by using an evaporation method with a high film formation rate as an example. First, for example, Fe + Ni is 95 to 9 in all metal components.
8.5 wt% (so-called purity is 95 to 98.5 wt%),
The total amount of Au, Pt, and Ag is 0 to 0.05 wt% (It is good that it is 0, but it may be contained as an unavoidable impurity to some extent. The total amount of Ag is as small as possible, for example 0.0
A Fe + Ni-based alloy (Fe + Ni alloy) material, which is 5 wt% or less) and the rest is other metal components (eg, Co, Mn, Cr, etc.), is put into the crucible of the oblique vapor deposition apparatus. The reason why the alloy material having such a purity (95 to 98.5 wt%) is used is that it is much cheaper than the case where a high-purity alloy material having a purity of 99.95 wt% or more is used. It should be noted that the use of a high-purity material having a purity of 98.5 wt% or more is not excluded. Then, the inside of the oblique vapor deposition apparatus is evacuated to a predetermined vacuum degree, the Fe—Ni alloy material is evaporated by an electron gun or other means, and the Fe—Ni alloy particles are attached and deposited on the running support. During this attachment / deposition, the Fe-Ni alloy particles or the deposition surface is irradiated with nitrogen gas (or nitrogen ions), oxygen gas (or oxygen ions), etc., and the magnetic film provided on the non-magnetic support is Fe. -Ni-NO system film. During this film formation, the relationship between nitrogen gas (or nitrogen ions) and oxygen gas (or oxygen ions) is adjusted.

【0012】尚、蒸発源に置くFe−Ni合金材料とし
て純度が100wt%のものを用いる訳ではないから、
成膜される金属磁性膜中にFeやNi以外の金属元素が
含まれる。例えば、Co,Mn,Cr等が含まれる。
又、微量ではあるが、Au,Pt,Ag等が0.05w
t%以下含まれる場合が有る。しかし、いずれにせよ、
FeやNi以外の金属元素の含有量は約5wt%以下で
あるから、これらの金属元素による変動は僅かであり、
Fe,Ni,N,Oで規定した。
Since the Fe--Ni alloy material placed in the evaporation source does not have a purity of 100 wt%,
The metal magnetic film formed contains a metal element other than Fe and Ni. For example, Co, Mn, Cr, etc. are included.
Also, although it is a trace amount, Au, Pt, Ag, etc. are 0.05 w
It may be contained at t% or less. But anyway,
Since the content of metal elements other than Fe and Ni is about 5 wt% or less, the variation due to these metal elements is slight,
Specified by Fe, Ni, N, O.

【0013】ところで、イオンアシスト蒸着法によりF
e−Ni−N−O系磁性膜を成膜するに際して、二元蒸
着法を用いれば、Fe−Ni合金を用いなくても良い。
しかし、このようにして得られたFe−Ni−N−O系
磁性膜は、本発明のような高域での高い再生出力が得ら
れなかった。この理由は次のように考えられた。Fe−
Ni合金は、FeとNiとを溶融することによって得ら
れていることから、FeとNiとはミクロ的にも混じり
合ったものと考えられる。そして、蒸発源に置かれた材
料がFe−Ni合金である場合、これからの蒸発粒子も
Fe−Ni粒子であり、堆積した膜をミクロ的に観察し
てもFe−Ni粒子が堆積したものである。つまり、蒸
発源に置かれたFe−Ni合金からの堆積Fe−Ni−
N−O系磁性膜をμmオーダーでのミクロ的観察及びc
mオーダーでのマクロ的観察いずれにあっても、Fe−
Ni−N−O系磁性膜における堆積Fe−Ni粒子は、
Fe−Ni合金粒子からなっている。
By the way, F by the ion assisted vapor deposition method
When forming the e-Ni-N-O magnetic film, the Fe-Ni alloy may not be used if the binary vapor deposition method is used.
However, the Fe—Ni—N—O type magnetic film thus obtained did not provide a high reproduction output in the high range as in the present invention. The reason for this was considered as follows. Fe-
Since the Ni alloy is obtained by melting Fe and Ni, it is considered that Fe and Ni are also microscopically mixed with each other. When the material placed in the evaporation source is a Fe-Ni alloy, the evaporated particles in the future are also Fe-Ni particles, and even if the deposited film is observed microscopically, Fe-Ni particles are deposited. is there. That is, the deposited Fe-Ni- from the Fe-Ni alloy placed in the evaporation source.
Microscopic observation of the N-O magnetic film on the order of μm and c
Fe- in any macroscopic observation in the m-order
The deposited Fe—Ni particles in the Ni—N—O system magnetic film are
It consists of Fe-Ni alloy particles.

【0014】これに対して、一つの蒸発源にはFeを、
もう一つの蒸発源にはNiを置き、二元蒸着法を用いた
場合、Fe−Ni−N−O系磁性膜が得られているもの
の、これをμmオーダーで観察すると、意図した組成の
Fe−Ni合金粒子のものとは異なっていた。このよう
なことから、蒸発源に置く材料が合金であるか否かによ
り、得られたFe−Ni−N−O系磁性膜が微視的な状
態では相違しており、Fe−Ni合金からのFe−Ni
−N−O系磁性膜のX線回折パターンと金属Feと金属
Niからの二元蒸着によるFe−Ni−N−O系磁性膜
のX線回折パターンとを比べると、Fe−Ni合金から
のFe−Ni−N−O系磁性膜はピークの半値幅が小さ
く、そして飽和磁束密度も大きく、これに起因して本発
明の磁性膜は高域でも再生出力が高いと考えられ、か
つ、窒化が効率よく行われ、生産性および耐蝕性に富む
ものとなる。
On the other hand, one evaporation source is Fe,
When Ni is placed as another evaporation source and a binary vapor deposition method is used, a Fe—Ni—N—O system magnetic film is obtained, but when this is observed on the order of μm, Fe of the intended composition is obtained. -Different from that of Ni alloy particles. From this, the obtained Fe-Ni-N-O-based magnetic film differs in a microscopic state depending on whether or not the material placed in the evaporation source is an alloy. Fe-Ni
Comparing the X-ray diffraction pattern of the --N--O system magnetic film with the X-ray diffraction pattern of the Fe--Ni--N--O system magnetic film formed by binary vapor deposition from metallic Fe and metal Ni, the Fe--Ni alloy The Fe-Ni-N-O-based magnetic film has a small peak full width at half maximum and a large saturation magnetic flux density. Due to this, the magnetic film of the present invention is considered to have a high reproduction output even in a high range, and the nitriding Is efficiently performed, and the productivity and the corrosion resistance are high.

【0015】本発明で用いるイオンアシスト蒸着装置
(特に、イオンアシスト斜め蒸着装置)を図1に示す。
図1中、1支持体、2aは支持体1の供給側ロール、2
bは支持体1の巻取側ロール、3は冷却キャンロール、
4は遮蔽板、5はルツボ、6はNiが2〜15at.
%、残りが不可避不純物及びFeのFe−Ni合金、7
は電子銃、8は真空容器、9は酸素ガス供給ノズル、1
0はイオン銃である。尚、酸素ガス供給ノズル9から酸
素ガス等のO活性種を照射する代わりに、一個のイオン
銃10によって窒素イオン及び酸素イオンを共に照射す
るようにしたり、二個のイオン銃から別々に窒素イオン
と酸素イオンとを照射するようにしても良い。そして、
ルツボ5に置く材料を特定のFe−Ni合金とした他
は、通常のイオンアシスト斜め蒸着に準じて行わせるこ
とによって、本発明になるFe−Ni−N−O系磁性膜
が得られる。
FIG. 1 shows an ion assisted vapor deposition apparatus (in particular, an ion assisted oblique vapor deposition apparatus) used in the present invention.
In FIG. 1, 1 support 2a is a supply side roll of the support 1 and 2a
b is a roll on the winding side of the support 1, 3 is a cooling can roll,
4 is a shielding plate, 5 is a crucible, 6 is Ni at 2 to 15 at.
%, The balance is unavoidable impurities and Fe-Ni alloy of Fe, 7
Is an electron gun, 8 is a vacuum container, 9 is an oxygen gas supply nozzle, 1
0 is an ion gun. Instead of irradiating the oxygen gas supply nozzle 9 with O-activated species such as oxygen gas, one ion gun 10 may be used to irradiate both nitrogen ions and oxygen ions, or two ion guns may be used to separately supply nitrogen ions. And oxygen ions may be irradiated. And
The Fe—Ni—N—O system magnetic film according to the present invention can be obtained by performing the same method as the ordinary ion-assisted oblique vapor deposition except that the material placed in the crucible 5 is a specific Fe—Ni alloy.

【0016】このようにして得られた本発明になる磁気
記録媒体を図2に示す。図2中、1は支持体である。こ
の支持体1は磁性を有するものでも非磁性のものでも良
いが、一般的には、非磁性のものである。例えば、ポリ
エチレンテレフタレート等のポリエステル、ポリアミ
ド、ポリイミド、ポリスルフォン、ポリカーボネート、
ポリプロピレン等のオレフィン系の樹脂、セルロース系
の樹脂、塩化ビニル系の樹脂といった高分子材料、ガラ
スやセラミック等の無機系材料、アルミニウム合金など
の金属材料が用いられる。支持体1面上には磁性膜の密
着性を向上させる為のアンダーコート層が必要に応じて
設けられる。すなわち、表面の粗さを適度に粗すことに
よりイオンアシスト斜め蒸着で構成される磁性膜の密着
性を向上させ、さらに磁気記録媒体表面の表面粗さを適
度なものとして走行性を改善する為、例えばSiO2
の粒子を含有させた厚さが0.01〜0.5μmの塗膜
を設けることによってアンダーコート層が構成されてい
る。
The magnetic recording medium according to the present invention thus obtained is shown in FIG. In FIG. 2, 1 is a support. The support 1 may be magnetic or non-magnetic, but is generally non-magnetic. For example, polyester such as polyethylene terephthalate, polyamide, polyimide, polysulfone, polycarbonate,
Polymer materials such as olefin resins such as polypropylene, cellulose resins and vinyl chloride resins, inorganic materials such as glass and ceramics, and metal materials such as aluminum alloys are used. An undercoat layer for improving the adhesion of the magnetic film is provided on the surface of the support 1 as needed. That is, to improve the adhesion of the magnetic film formed by ion-assisted oblique vapor deposition by appropriately roughening the surface roughness, and further to improve the runnability by making the surface roughness of the magnetic recording medium surface moderate. The undercoat layer is formed by providing a coating film containing particles such as SiO 2 and having a thickness of 0.01 to 0.5 μm.

【0017】アンダーコート層の上には、図1に示した
イオンアシスト斜め蒸着装置によって保磁力Hcが10
00Oe以上、特に1200〜1600Oe、飽和磁束
密度Bsが4000〜7000G、Feが40〜80a
t.%,Niが1〜14at.%,Nが5〜40at.
%,Oが5〜30at.%、特に40at.%≦Feの
割合≦80at.%,1at.%≦Niの割合≦14a
t.%,5at.%≦Nの割合≦40at.%,5a
t.%≦Oの割合≦30at.%,Oの割合<Nの割合
を満たすFe−Ni−N−O系の金属薄膜型の磁性膜2
1が1500〜2500Å、特に1800〜2200Å
厚形成される。斜め蒸着の際の最小入射角は30°〜8
0°、望ましくは約45°〜70°である。
A coercive force Hc of 10 is formed on the undercoat layer by the ion assisted oblique vapor deposition apparatus shown in FIG.
00 Oe or more, particularly 1200 to 1600 Oe, saturation magnetic flux density Bs 4000 to 7000 G, Fe 40 to 80 a
t. %, Ni is 1 to 14 at. %, N is 5 to 40 at.
%, O is 5 to 30 at. %, Especially 40 at. % ≦ Fe ratio ≦ 80 at. %, 1 at. % ≦ Ni ratio ≦ 14a
t. %, 5 at. % ≦ N ratio ≦ 40 at. %, 5a
t. % ≦ O ratio ≦ 30 at. %, O ratio <N ratio Fe—Ni—N—O based metal thin film type magnetic film 2
1 is 1500-2500Å, especially 1800-2200Å
It is formed thick. The minimum incident angle in oblique deposition is 30 ° to 8
It is 0 °, preferably about 45 ° to 70 °.

【0018】22は、Fe−Ni−N−O系磁性膜21
の上に設けられた厚さが10〜200Å程度の保護膜で
ある。この保護膜22は、例えばダイヤモンドライクカ
ーボン、グラファイト等のカーボン膜、酸化珪素、炭化
珪素などの含珪素膜などで構成される。これらの中で
も、ダイヤモンドライクカーボンが好ましい。23は、
保護膜22の上に設けられた潤滑剤層である。すなわ
ち、炭化水素系の潤滑剤やパーフルオロポリエーテル等
のフッ素系潤滑剤、特にフッ素系潤滑剤を含有させた塗
料を所定の手段で塗布することにより、約2〜50Å、
好ましくは約10〜30Å程度の厚さの潤滑剤層23が
設けられる。
Reference numeral 22 denotes an Fe-Ni-NO magnetic system film 21.
It is a protective film with a thickness of about 10 to 200Å provided on the top surface. The protective film 22 is composed of, for example, a carbon film such as diamond-like carbon or graphite, or a silicon-containing film such as silicon oxide or silicon carbide. Among these, diamond-like carbon is preferable. 23 is
This is a lubricant layer provided on the protective film 22. That is, about 2 to 50Å by applying a coating agent containing a hydrocarbon-based lubricant or a fluorine-based lubricant such as perfluoropolyether, particularly a fluorine-based lubricant, by a predetermined means,
A lubricant layer 23 having a thickness of preferably about 10 to 30Å is provided.

【0019】24は、支持体1の他面に設けられたカー
ボンブラック等を含有させた厚さが0.1〜1μm程度
のバックコート層である。尚、バックコート層24は、
Al−Cu合金等の金属を蒸着させて形成したものであ
っても良い。本発明のFe−Ni−N−O系磁性膜は一
層であっても、二層以上のものでも良い。Fe−Ni−
N−O系磁性膜が二層以上ある場合には、上層側にある
Fe−Ni−N−O系磁性膜の組成が上記要件を満たし
ておれば良い。又、Fe−Ni−N−O系磁性膜以外の
磁性膜が設けられていても良い。このような場合にも、
Fe−Ni−N−O系磁性膜が最上層に設けられていれ
ば良い。
Reference numeral 24 is a back coat layer having a thickness of about 0.1 to 1 μm, which is provided on the other surface of the support 1 and contains carbon black or the like. The back coat layer 24 is
It may be formed by vapor-depositing a metal such as an Al-Cu alloy. The Fe—Ni—N—O magnetic film of the present invention may have a single layer or two or more layers. Fe-Ni-
When there are two or more N—O based magnetic films, the composition of the Fe—Ni—N—O based magnetic film on the upper layer side should satisfy the above requirements. Further, a magnetic film other than the Fe-Ni-N-O based magnetic film may be provided. Even in this case,
It suffices if the Fe—Ni—N—O magnetic film is provided on the uppermost layer.

【0020】そして、上記のように構成させた磁気記録
媒体は、耐蝕性、及び電磁変換特性に優れたものであっ
た。
The magnetic recording medium configured as described above was excellent in corrosion resistance and electromagnetic conversion characteristics.

【0021】[0021]

【実施例1】図1に示されるイオンアシスト斜め蒸着装
置に6.3μm厚のPETフィルム1を装着し、5×1
-6Torrの真空雰囲気下においてPETフィルム1
が走行させられている。酸化マグネシウム製のルツボ5
にFe−Ni(Fe;98at.%,Ni;2at.
%)合金6が入っており、10kwの電子銃7を作動さ
せてFe−Niを蒸発させ、PETフィルム1にFe−
Ni合金粒子を蒸着させた。この時、イオン銃10に窒
素ガスを5sccmの割合で供給すると共に、酸素ガス
供給ノズル9から酸素ガスを6sccmの割合で供給し
た。
Example 1 A PET film 1 having a thickness of 6.3 μm was mounted on the ion-assisted oblique vapor deposition apparatus shown in FIG.
PET film 1 in a vacuum atmosphere of 0 -6 Torr
Is being driven. Crucible 5 made of magnesium oxide
Fe-Ni (Fe; 98 at.%, Ni; 2 at.
%) Alloy 6 is contained, and the 10 kw electron gun 7 is operated to evaporate Fe-Ni, so that the PET film 1 has Fe-
Ni alloy particles were deposited. At this time, nitrogen gas was supplied to the ion gun 10 at a rate of 5 sccm, and oxygen gas was supplied from the oxygen gas supply nozzle 9 at a rate of 6 sccm.

【0022】そして、Fe−Ni−N−O系金属磁性膜
が成膜された後、このFe−Ni−N−O系金属磁性膜
上にダイヤモンドライクカーボン膜を100Å厚設け
た。更に、この上に、パーフルオロポリエーテル(FO
MBLIN ZDOL モンテカチーニ社製)をフッ素
系不活性液体(フロリナート FC−77 住友3M社
製)に0.05wt%となるよう希釈した塗料を用い
て、ダイコーティング方式により乾燥膜厚が20Åとな
るよう金属磁性膜上に塗布し、105℃で乾燥させた。
After the Fe-Ni-N-O-based metal magnetic film was formed, a diamond-like carbon film was provided on the Fe-Ni-N-O-based metal magnetic film to a thickness of 100 Å. Furthermore, on top of this, perfluoropolyether (FO
MBLIN ZDOL (made by Montecatini Co.) is diluted with a fluorine-based inert liquid (Fluorinert FC-77 Sumitomo 3M Co., Ltd.) so as to have a concentration of 0.05 wt%, and a metal is formed by a die coating method so that a dry film thickness becomes 20 liters. It was applied onto the magnetic film and dried at 105 ° C.

【0023】又、Fe−Ni−N−O系金属磁性膜とは
反対側のPETフィルム1裏面に、平均粒径が40nm
のカーボンブラックと平均粒径が80nmのカーボンブ
ラックとを2:1の割合で混ぜ、ウレタン系樹脂と塩化
ビニル系樹脂とのバインダ樹脂中に分散させたバックコ
ート用塗料をダイコーティング方式により乾燥膜厚が
0.5μmとなるよう塗布し、乾燥させた。
On the back surface of the PET film 1 opposite to the Fe-Ni-N-O type metal magnetic film, the average particle size is 40 nm.
Of carbon black having a mean particle size of 80 nm is mixed at a ratio of 2: 1 and dispersed in a binder resin of urethane resin and vinyl chloride resin to form a back coat paint by a dry coating method by a die coating method. It was applied to a thickness of 0.5 μm and dried.

【0024】そして、8mm幅にスリットし、図2に示
されるタイプの8mmVTR用磁気テープ(磁性膜の厚
さ;1860Å、保磁力Hc;1170Oe、飽和磁束
密度Bs;6000G)を得た。
Then, it was slit into a width of 8 mm to obtain a magnetic tape for 8 mm VTR of the type shown in FIG. 2 (thickness of magnetic film; 1860Å, coercive force Hc; 1170 Oe, saturation magnetic flux density Bs; 6000 G).

【0025】[0025]

【実施例2〜4】実施例1において、ルツボ5に入れる
Fe−Ni合金、イオン銃10に導入する窒素ガス量、
及び酸素ガス供給ノズル9に導入する酸素ガス量を表−
1のものとした以外は実施例1に準じて行い、8mmV
TR用磁気テープを作製した。 表−1 Fe−Ni合金(at.%) 窒素ガス量 酸素ガス量 Fe Ni (sccm) (sccm) 実施例2 95 5 7 8 実施例3 90 10 14 15 実施例4 85 15 35 10
Examples 2 to 4 In Example 1, the Fe-Ni alloy put in the crucible 5, the amount of nitrogen gas introduced into the ion gun 10,
And the amount of oxygen gas introduced into the oxygen gas supply nozzle 9
8 mmV was performed according to Example 1 except that
A magnetic tape for TR was produced. Table-1 Fe-Ni alloy (at.%) Nitrogen gas amount Oxygen gas amount FeNi (sccm) (sccm) Example 2 95 5 7 8 Example 3 90 10 14 15 Example 4 85 15 35 35 10

【0026】[0026]

【比較例1〜3】実施例1において、ルツボ5に入れる
Fe−Ni合金、イオン銃10に導入する窒素ガス量、
及び酸素ガス供給ノズル9に導入する酸素ガス量を表−
2のものとした以外は実施例1に準じて行い、8mmV
TR用磁気テープを作製した。 表−2 Fe−Ni合金(at.%) 窒素ガス量 酸素ガス量 Fe Ni (sccm) (sccm) 比較例1 100(Feのみ) 7 11 比較例2 50 50 35 7 比較例3 80 20 50 7
[Comparative Examples 1 to 3] In Example 1, the Fe-Ni alloy contained in the crucible 5, the amount of nitrogen gas introduced into the ion gun 10,
And the amount of oxygen gas introduced into the oxygen gas supply nozzle 9
8 mmV was performed according to Example 1 except that
A magnetic tape for TR was produced. Table-2 Fe-Ni alloy (at%) Nitrogen gas amount Oxygen gas amount Fe Ni (sccm) (sccm) Comparative Example 1 100 (Fe only) 7 11 Comparative Example 2 50 50 35 7 Comparative Example 3 80 20 507

【0027】[0027]

【比較例4,5】実施例1,4において、Fe−Ni合
金を用いる代わりに、金属Feと金属Niとを用い、か
つ、二元蒸着を用いた以外は実施例1,4に準じて行
い、8mmVTR用磁気テープを作製した。尚、金属F
eと金属Niとの使用割合は、該当する実施例で用いた
合金におけるFeとNiとの組成比と同じにした。
Comparative Examples 4 and 5 According to Examples 1 and 4, except that metallic Fe and metallic Ni were used instead of using the Fe-Ni alloy and binary vapor deposition was used in Examples 1 and 4. Then, a magnetic tape for 8 mm VTR was produced. The metal F
The use ratio of e and metallic Ni was the same as the composition ratio of Fe and Ni in the alloy used in the corresponding examples.

【0028】[0028]

【特性】上記各例で得た磁気テープについて、Fe−N
i−N−O系磁性膜の膜組成、及び保磁力Hc、飽和磁
束密度Bsを調べたので、その結果を表−3に示す。 表−3 膜組成(at.%) Hc Bs Fe Ni N O (Oe) (G) 実施例1 80 2 10 8 1170 6000 実施例2 71 5 14 10 1280 5600 実施例3 58 7 20 15 1310 4900 実施例4 51 9 30 10 1420 4700 比較例1 80 − 5 15 650 7000 比較例2 30 30 30 10 1150 3800 比較例3 40 10 40 10 1350 2800 比較例4 80 2 10 8 1190 5400 比較例5 51 9 30 10 1340 4500 又、上記各例の磁気テープの耐蝕性ΔBs(60℃、9
0%RHの環境下に1週間放置し、飽和磁束密度Bsの
低下で表示)、及び1〜15MHzでの再生出力を調べ
たので、その結果を表−4に示す。
[Characteristics] Regarding the magnetic tapes obtained in the above examples, Fe-N
The film composition, the coercive force Hc, and the saturation magnetic flux density Bs of the i-N-O magnetic film were examined, and the results are shown in Table-3. Table-3 Film composition (at%) Hc Bs Fe Ni 2 N 2 O (Oe) (G) Example 1 80 2 10 8 1170 6000 Example 2 71 5 14 10 1280 5600 Example 3 587 20 15 13 1310 4900 Implementation Example 4 51 9 30 10 1420 4700 Comparative Example 1 80-5 15 650 7000 Comparative Example 2 30 30 30 10 10 1150 3800 Comparative Example 3 40 10 40 10 1350 2800 Comparative Example 4 80 2 10 8 1190 5400 Comparative Example 5 51 9 30 10 1340 4500 Further, the corrosion resistance ΔBs (60 ° C., 9
The sample was left for 1 week in an environment of 0% RH, and the reproduction output at 1 to 15 MHz was examined, and the results are shown in Table-4.

【0029】 表−4 耐蝕性ΔBs 再生出力(dB) (%) 1MHz 5MHz 10MHz 15MHz 実施例1 3 +5 +6 +5 +4 実施例2 3 +4 +5 +5 +5 実施例3 2 +3 +4 +6 +6 実施例4 1 +3 +4 +5 +5 比較例1 17 +4 0 −2 −4 比較例2 3 +2 +1 −1 −2 比較例3 2 0 0 0 0 比較例4 5 +3 +4 +3 +2 比較例5 3 0 +1 +2 +2Table-4 Corrosion resistance ΔBs reproduction output (dB) (%) 1 MHz 5 MHz 10 MHz 15 MHz Example 1 3 +5 +6 +5 +4 Example 2 3 +4 +5 +5 +5 Example 3 2 +3 +4 +6 +6 Example 4 1 +3 +4 +5 +5 Comparative Example 1 17 +4 0 -2 -4 Comparative Example 2 3 +2 +1 -1 -2 Comparative Example 3 2 0 0 0 0 Comparative Example 4 5 +3 +4 +3 +2 Comparative Example 5 3 0 +1 +2 +2

【0030】[0030]

【発明の効果】低域から高域にわたる広い範囲で出力が
高く、かつ、耐蝕性に優れたものである。
The output is high in a wide range from the low range to the high range and the corrosion resistance is excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気記録媒体の製造装置の概略図FIG. 1 is a schematic view of an apparatus for manufacturing a magnetic recording medium of the present invention.

【図2】本発明の磁気記録媒体の概略図FIG. 2 is a schematic diagram of a magnetic recording medium of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 41/20 H01F 41/20 (72)発明者 石川 准子 栃木県芳賀郡市貝町大字赤羽2606 花王株 式会社情報科学研究所内 (72)発明者 遠藤 克巳 栃木県芳賀郡市貝町大字赤羽2606 花王株 式会社情報科学研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01F 41/20 H01F 41/20 (72) Inventor Junko Ishikawa 2606 Akabane, Kai Town, Haga-gun, Tochigi Prefecture Kao Co., Ltd. Information Science Research Institute (72) Inventor Katsumi Endo 2606 Akabane, Kaigacho, Haga-gun, Tochigi Prefecture Kao Co., Ltd. Information Science Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Niが1〜17at.%、残りが不可避
不純物及びFeのFe−Ni系合金が用いられ、Fe−
Ni−N−O系の磁性膜が支持体上に設けられてなる磁
気記録媒体であって、 前記磁性膜中のFeの割合は40〜80at.%、 前記磁性膜中のNiの割合は1〜14at.%、 前記磁性膜中のNの割合は5〜40at.%、 前記磁性膜中のOの割合は5〜30at.% であることを特徴とする磁気記録媒体。
1. Ni of 1 to 17 at. %, The balance is unavoidable impurities and Fe-Ni based alloys of Fe are used.
A magnetic recording medium comprising a Ni—N—O based magnetic film provided on a support, wherein the ratio of Fe in the magnetic film is 40-80 at. %, The ratio of Ni in the magnetic film is 1 to 14 at. %, The ratio of N in the magnetic film is 5 to 40 at. %, The proportion of O in the magnetic film is 5 to 30 at. % Is a magnetic recording medium.
【請求項2】 磁性膜中のNの割合がOの割合より多い
ことを特徴とする請求項1の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the ratio of N in the magnetic film is higher than the ratio of O.
【請求項3】 Feが40〜80at.%,Niが1〜
14at.%,Nが5〜40at.%,Oが5〜30a
t.%のFe−Ni−N−O系の磁性膜が設けられてな
る磁気記録媒体の製造方法であって、 前記Fe−Ni−N−O系の磁性膜を構成する為に、蒸
発源に置かれる材料としてNiが1〜17at.%、残
りが不可避不純物及びFeのFe−Ni系合金が用いら
れ、 そしてイオンアシスト蒸着法により前記Fe−Ni−N
−O系の磁性膜が成膜されることを特徴とする磁気記録
媒体の製造方法。
3. Fe of 40 to 80 at. %, Ni is 1 to
14 at. %, N is 5 to 40 at. %, O is 5 to 30a
t. % Fe—Ni—N—O type magnetic film is provided, and a magnetic recording medium is provided on an evaporation source to form the Fe—Ni—N—O type magnetic film. As a material to be burned, Ni is 1 to 17 at. %, The balance being unavoidable impurities and Fe—Ni-based alloys of Fe, and Fe—Ni—N by the ion assisted deposition method.
A method of manufacturing a magnetic recording medium, which comprises forming an -O-based magnetic film.
【請求項4】 磁性膜中のNの割合がOの割合より多い
ことを特徴とする請求項3の磁気記録媒体の製造方法。
4. The method of manufacturing a magnetic recording medium according to claim 3, wherein the ratio of N in the magnetic film is higher than that of O.
JP24905095A 1995-09-27 1995-09-27 Magnetic recording medium and its production Pending JPH0987840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24905095A JPH0987840A (en) 1995-09-27 1995-09-27 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24905095A JPH0987840A (en) 1995-09-27 1995-09-27 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPH0987840A true JPH0987840A (en) 1997-03-31

Family

ID=17187274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24905095A Pending JPH0987840A (en) 1995-09-27 1995-09-27 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPH0987840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401402C (en) * 2006-09-20 2008-07-09 中国科学院上海光学精密机械研究所 Inorganic recording material for blue light recordable storage and its preparing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401402C (en) * 2006-09-20 2008-07-09 中国科学院上海光学精密机械研究所 Inorganic recording material for blue light recordable storage and its preparing method

Similar Documents

Publication Publication Date Title
JP2761859B2 (en) Magnetic recording media
JPH0987840A (en) Magnetic recording medium and its production
US4588636A (en) Magnetic recording medium
US20030224216A1 (en) Magnetic recording medium and process for producing same
JPH0991663A (en) Magnetic recording medium and its production
JPH0974014A (en) Magnetic recording medium and manufacturing thereof
JP2976699B2 (en) Magnetic recording medium and manufacturing method thereof
JP2729544B2 (en) Magnetic recording medium and method of manufacturing the same
JPH0927110A (en) Magnetic recording medium and its production
JPH06103552A (en) Magnetic recording medium and its production
JP2008033996A (en) Magnetic recording medium
JPH087252A (en) Magnetic recording medium and its production
JPH07254127A (en) Magnetic recording medium and its production
JPH0991670A (en) Magnetic recording medium
JPH0954932A (en) Magnetic recording medium
JPH0785445A (en) Magnetic recording medium and manufacture thereof
JPH05159266A (en) Magnetic recording medium
JPH07320265A (en) Apparatus for production of magnetic recording medium and production method therefor
JPH08194944A (en) Method and system for producing magnetic recording medium
JPH09198644A (en) Magnetic recording medium
JPH09147346A (en) Magnetic recording medium
JPH0963055A (en) Production of magnetic recording medium
JPS5974607A (en) Magnetic recording medium
JPH09204631A (en) Magnetic recording medium
JPH08180358A (en) Magnetic recording medium