JPH076520U - Bearing device - Google Patents
Bearing deviceInfo
- Publication number
- JPH076520U JPH076520U JP4034493U JP4034493U JPH076520U JP H076520 U JPH076520 U JP H076520U JP 4034493 U JP4034493 U JP 4034493U JP 4034493 U JP4034493 U JP 4034493U JP H076520 U JPH076520 U JP H076520U
- Authority
- JP
- Japan
- Prior art keywords
- magnetic fluid
- magnetic
- bearing
- magnet
- bearing device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000011553 magnetic fluid Substances 0.000 claims abstract description 75
- 239000000696 magnetic material Substances 0.000 claims description 3
- 230000001050 lubricating effect Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 5
- 239000000314 lubricant Substances 0.000 abstract description 4
- 230000000717 retained effect Effects 0.000 abstract description 2
- 238000007789 sealing Methods 0.000 abstract 2
- 230000001105 regulatory effect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 238000005461 lubrication Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Landscapes
- Sliding-Contact Bearings (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
(57)【要約】
【目的】 磁性流体を潤滑剤とし、その磁性流体のシー
ルと潤滑効果の優れた流体軸受装置を提供する。
【構成】 非磁性軸受2、3へ挿通した透磁性の回転軸
4と、軸受2、3間へ配置し軸方向に着磁した環状磁石
13と、軸受2の外側面に接して環状磁石8と磁極片1
0、14とからなる磁気シール部とを設け、空洞16を
残しながら、磁性流体7を磁石13の両極近傍に保持さ
せ、且つ軸受2の内側面へ切り欠き22を設けることに
より、装置の姿勢や磁性流体の熱膨張にかかわらず、磁
性流体が外部へ溢流又は飛散することがなく、又磁性流
体の消耗にたいしても潤滑効果を持続する、磁性流体を
潤滑剤とする流体軸受装置。
(57) [Abstract] [Purpose] To provide a hydrodynamic bearing device which uses magnetic fluid as a lubricant and has excellent sealing and sealing effect of the magnetic fluid. [Structure] A magnetically permeable rotating shaft 4 inserted into the non-magnetic bearings 2 and 3, an annular magnet 13 disposed between the bearings 2 and 3 and magnetized in the axial direction, and an annular magnet 8 in contact with the outer surface of the bearing 2. And pole piece 1
0, 14 is provided, the magnetic fluid 7 is retained in the vicinity of both poles of the magnet 13 while leaving the cavity 16, and the notch 22 is provided on the inner surface of the bearing 2, thereby improving the posture of the apparatus. A hydrodynamic bearing device using a magnetic fluid as a lubricant, in which the magnetic fluid does not overflow or scatter outside regardless of the thermal expansion of the magnetic fluid, and the lubricating effect is maintained even when the magnetic fluid is consumed.
Description
【0001】[0001]
本考案は、ポリゴンミラー又はハードディスク駆動装置等に用いる軸受装置の 改良に関する。 The present invention relates to improvement of a bearing device used for a polygon mirror or a hard disk drive device.
【0002】[0002]
この種の軸受装置としては、回転軸の振れが小さいこと、低騒音及び長寿命で あることが要求され、使用される軸受装置として、潤滑油等の液体を流体とする 流体軸受が推奨され且つ実用されている。例えば、特開平1ー320314号が その一例であり、図3にこの軸受装置の原理構成を示すと、円筒状ハウジング1 の内周へ固定された1対の環状ラジアル軸受2、3と該軸受に挿通された回転軸 4とを有し、回転軸4の先端は前記ハウジングの一端を閉塞した規制部材5へ突 き当てられる。回転軸4の他端は前記ハウジングの開放端から伸張してポリゴン ミラー又は磁気記録媒体を搭載するハブ6が固定される。ハウジング1、ラジア ル軸受2、3、回転軸4、規制部材5で囲まれた空間は潤滑用の磁性流体7で満 たされている。ハウジング1の開放端には、環状磁石8及びその両端面に接して 取りつけられた非磁性シール9、環状磁極片10があり、該磁極片の内周と回転 軸4との空隙へ磁性流体11が磁気的に保持されて磁気シールを構成し、磁性流 体7が外部へ漏洩するのを防止している。又軸受2と磁極片10との間に間隙1 2を設けその中間位置まで磁性流体が満たされている。 This type of bearing device is required to have small runout of the rotating shaft, low noise, and long life.As the bearing device to be used, a fluid bearing using a liquid such as lubricating oil as a fluid is recommended. It is in practical use. For example, Japanese Unexamined Patent Publication No. 1-320314 is one such example. FIG. 3 shows the principle configuration of this bearing device. A pair of annular radial bearings 2 and 3 fixed to the inner circumference of a cylindrical housing 1 and the bearings. The rotating shaft 4 is inserted into the housing, and the tip of the rotating shaft 4 is abutted against the regulating member 5 that closes one end of the housing. The other end of the rotary shaft 4 extends from the open end of the housing, and a hub 6 on which a polygon mirror or a magnetic recording medium is mounted is fixed. The space surrounded by the housing 1, the radial bearings 2, 3, the rotating shaft 4, and the regulating member 5 is filled with a magnetic fluid 7 for lubrication. At the open end of the housing 1, there are an annular magnet 8, a non-magnetic seal 9 attached to both end surfaces thereof, and an annular magnetic pole piece 10, and a magnetic fluid 11 is introduced into the gap between the inner circumference of the magnetic pole piece and the rotating shaft 4. Are magnetically held to form a magnetic seal, which prevents the magnetic fluid 7 from leaking to the outside. Further, a gap 12 is provided between the bearing 2 and the pole piece 10, and the magnetic fluid is filled up to the intermediate position.
【0003】[0003]
解決しようとする問題点は、上記軸受装置において間隙12は、潤滑用磁性流 体7と環状磁石8、非磁性シール9及び磁極片10で構成される磁気シール部を 離間させ、磁性流体の添加量のバラツキや熱膨張による体積増加に対する緩衝ス ペースとして役立っている。しかしながら軽薄短小を要求される前記用途に対し て、この部分のスペースは無い方が望ましい。又、軸受装置を傾斜乃至横置で用 いる場合、磁性流体は必然的に流動して前記磁気シール部にまで達し、過剰の磁 性流体が流出する危険がある。 The problem to be solved is that in the above bearing device, the gap 12 separates the magnetic fluid 7 for lubrication from the magnetic seal portion composed of the annular magnet 8, the non-magnetic seal 9 and the pole piece 10, and the magnetic fluid is added. It serves as a buffer space for variations in quantity and volume increase due to thermal expansion. However, it is desirable that there is no space for this part for the above-mentioned applications that require lightness, thinness, shortness, and size. Further, when the bearing device is used in a tilted or horizontal position, the magnetic fluid inevitably flows to reach the magnetic seal portion, and there is a risk that excess magnetic fluid will flow out.
【0004】 かかる磁気シール部はその内部が磁性流体で充満されると、回転軸の遠心力等 の作用でシール装置の外へ磁性流体が飛散しやすく、軸受装置の取扱いや使用時 の姿勢に留意しなくてはならない。このような磁気シールの信頼性に対しては、 この部分に保持される磁性流体は少なくとも磁極片10と回転軸4との間隙近傍 にとどめることが望ましい。 そこで、前記の間隙12を設けなくても、磁性流体の添加量の多少のバラツキ 、熱膨張による体積増加や軸受装置の姿勢に関わらず、磁気シール及び潤滑効果 を阻害しない、磁性流体を潤滑剤として使用した流体軸受装置を提案する。When the inside of the magnetic seal portion is filled with the magnetic fluid, the magnetic fluid is easily scattered to the outside of the seal device due to the action of the centrifugal force of the rotating shaft and the like. You have to be careful. For the reliability of such a magnetic seal, it is desirable that the magnetic fluid held in this portion should be kept at least in the vicinity of the gap between the pole piece 10 and the rotating shaft 4. Therefore, even if the above-mentioned gap 12 is not provided, the magnetic fluid is a lubricant that does not impair the magnetic seal and the lubricating effect regardless of the variation in the amount of the magnetic fluid added, the volume increase due to thermal expansion, and the attitude of the bearing device. The hydrodynamic bearing device used as is proposed.
【0005】[0005]
上記目的を達成するために、軸方向に間隔をおいてハウジングの内周に固定さ れた一対のラジアル軸受と、該軸受に挿通する軸を有する軸受装置に於て、図1 に示すように、非磁性体のハウジング1、一対のラジアル軸受2、3、該ラジア ル軸受の中間に設けた環状磁石13とを有し、該環状磁石は軸方向に着磁され、 前記軸受より内径を大きくしてあり、その磁気力により潤滑用の磁性流体7を前 記磁石13の内周に収納保持させ、更にハウジングの一端に軸方向に着磁した環 状磁石8と磁極片10、14とからなる磁気シール部を軸受2の外側面に接して 設けるようにした。又、この図示例では抜け止め15が回転軸4の先端近傍に固 定してある。磁性流体7の収納量はハウジング1、軸受2、3、回転軸4、規制 部材5、抜け止め15、磁石13で形成される軸受装置の内部空間より少な目で あるようにし、空洞16を残すようにした。 In order to achieve the above object, in a bearing device having a pair of radial bearings fixed to the inner circumference of a housing at intervals in the axial direction and a shaft inserted into the bearings, as shown in FIG. , A non-magnetic housing 1, a pair of radial bearings 2 and 3, and an annular magnet 13 provided in the middle of the radial bearings. The annular magnet is axially magnetized and has an inner diameter larger than that of the bearings. Due to the magnetic force, the magnetic fluid 7 for lubrication is housed and held in the inner periphery of the magnet 13, and the annular magnet 8 and the magnetic pole pieces 10 and 14 axially magnetized at one end of the housing. The magnetic seal portion is formed in contact with the outer surface of the bearing 2. Further, in this illustrated example, the retainer 15 is fixed near the tip of the rotary shaft 4. The amount of the magnetic fluid 7 accommodated should be smaller than the internal space of the bearing device formed by the housing 1, the bearings 2, 3, the rotating shaft 4, the regulating member 5, the retaining member 15, and the magnet 13, and the cavity 16 should be left. I chose
【0006】[0006]
このように構成した軸受装置によると、前記のように収納された潤滑用の磁性 流体の量が少な目でも、該磁性流体は磁石13の両極近傍に集中して保持される 傾向があり、更に透磁性の回転軸4へ磁石13の両極からフリンジングする矢印 aに示す磁束の作用により、磁石13の両極に接して配置された軸受2、3の軸 受隙間17、18へ隣接して磁性流体7が保持され、且つ該隙間の毛細管現象に より,軸受面への磁性流体の補給が常に行われる。 According to the bearing device configured as described above, even if the amount of the magnetic fluid for lubrication stored as described above is small, the magnetic fluid tends to be concentrated and held in the vicinity of both poles of the magnet 13, and further, Due to the action of the magnetic flux indicated by the arrow a, which is fringing from both poles of the magnet 13 to the magnetic rotating shaft 4, the magnetic fluid is adjacent to the bearing clearances 17 and 18 of the bearings 2 and 3 arranged in contact with both poles of the magnet 13. 7 is held, and the capillarity of the gap allows the magnetic fluid to be constantly replenished to the bearing surface.
【0007】[0007]
以下、図示の一実施例で本考案を説明する。図1は本考案の流体軸受装置の断 面図である。軸方向に間隔をおいて非磁性円筒状ハウジング1の内周に固定した 1対の環状の非磁性ラジアル軸受2、3と該軸受に挿通した透磁性材の回転軸4 を有し、回転軸4の先端はハウジング1の一端を閉塞した規制部材5へ突き当て られスラスト軸受を構成している。回転軸4の他端はハウジング1の開放端から 伸張して、ポリゴンミラー又は磁気記録媒体を搭載するハブ6が固定される。 Hereinafter, the present invention will be described with reference to an illustrated embodiment. FIG. 1 is a sectional view of the hydrodynamic bearing device of the present invention. A pair of annular non-magnetic radial bearings 2 and 3 fixed to the inner circumference of the non-magnetic cylindrical housing 1 at intervals in the axial direction, and a rotary shaft 4 of a magnetically permeable material inserted through the bearings. The tip of 4 abuts against a regulating member 5 that closes one end of the housing 1 to form a thrust bearing. The other end of the rotary shaft 4 extends from the open end of the housing 1 and a hub 6 carrying a polygon mirror or a magnetic recording medium is fixed.
【0008】 軸受3と規制部材5の中間に位置させて抜け止め15が回転軸4に固定してあ り、又ハウジング1内で軸受2、3の中間には軸方向に着磁した環状磁石13が 設けてある。軸受2、3と回転軸4は微小隙間17、18を介して対向し、軸受 2内周には上下に貫通する溝状の小さな切り欠き22を形成してある。ラジアル 軸受2、3、回転軸4、規制部材5、磁石13で囲まれた空間には磁性流体7が 空洞16を残した状態で収納され、磁性流体7は軸受3、ハウジング1、規制部 材5等で囲まれた空間へ充填された前記スラスト軸受の潤滑を行うための磁性流 体19と軸受隙間18を通じて連通しており、磁性流体7と19は同一材料であ る。ハウジング1の開放端には環状磁石8と環状磁極片10、14および磁性流 体26(磁性流体7が流出したもので最初は存在しない)で構成される磁気シー ル部が軸受2の外側面に接して取り付けられる。A retaining member 15 is fixed to the rotary shaft 4 by being located between the bearing 3 and the regulating member 5, and an annular magnet magnetized in the axial direction is provided in the housing 1 between the bearings 2 and 3. 13 is provided. The bearings 2 and 3 and the rotary shaft 4 are opposed to each other through minute gaps 17 and 18, and a small groove-shaped notch 22 is formed in the inner circumference of the bearing 2 so as to vertically penetrate therethrough. In the space surrounded by the radial bearings 2, 3, the rotary shaft 4, the regulating member 5, and the magnet 13, the magnetic fluid 7 is stored with the cavity 16 left, and the magnetic fluid 7 is contained in the bearing 3, the housing 1, and the regulating member. The magnetic fluid 19 for lubricating the thrust bearing filled in the space surrounded by 5 and the like communicates with the bearing gap 18, and the magnetic fluids 7 and 19 are the same material. At the open end of the housing 1, a magnetic seal portion composed of an annular magnet 8, annular pole pieces 10 and 14 and a magnetic fluid 26 (the magnetic fluid 7 flows out and does not exist at first) is provided on the outer surface of the bearing 2. Attached in contact with.
【0009】 図2にこのような軸受装置の潤滑用磁性流体7を収納する方法を示し、更に図 1の装置の組立手順を説明する。図1で回転軸4、抜け止め15、規制部材5が 取り付けてない状態で、図2に示すように磁性流体供給装置のノズル20の先端 を軸受2、3の中間に挿入し磁性流体7を滴下すると、該磁性流体は矢印bに示 す方向へ磁石13の吸引力で引かれて磁石13の内周に張り付き、直下へは落下 しない。このようにして磁性流体の適量(空洞16が残る量)の収納が終了した 後、図1の回転軸4を挿入し、更に抜け止め15を固定し、ハブ6が下方になる ように該装置を逆置して前記のスラスト軸受の潤滑のための磁性流体19を滴下 して充填する。最後に空気抜き用の小孔21を有する規制部材5を圧入等により ハウジング1の端部へ固定し、然るのち小孔21を接着剤等で封止する。このよ うに組立時に磁性流体7を収納する際、磁石13の吸引力により磁性流体が下方 へ落下しないので組立がやり易い。FIG. 2 shows a method for accommodating the lubricating magnetic fluid 7 of such a bearing device, and the assembly procedure of the device of FIG. 1 will be further described. As shown in FIG. 2, the tip of the nozzle 20 of the magnetic fluid supply device is inserted in the middle of the bearings 2 and 3 in a state where the rotary shaft 4, the retainer 15 and the regulating member 5 are not attached in FIG. When dropped, the magnetic fluid is drawn in the direction indicated by the arrow b by the attractive force of the magnet 13 and sticks to the inner circumference of the magnet 13, and does not fall directly below. After the storage of an appropriate amount of magnetic fluid (the amount in which the cavity 16 remains) is completed in this way, the rotary shaft 4 of FIG. 1 is inserted, the retainer 15 is further fixed, and the hub 6 is placed downwards. And the magnetic fluid 19 for lubricating the thrust bearing is dropped and filled. Finally, the regulating member 5 having the small hole 21 for venting air is fixed to the end of the housing 1 by press fitting or the like, and then the small hole 21 is sealed with an adhesive or the like. As described above, when the magnetic fluid 7 is stored during assembly, the magnetic fluid does not drop downward due to the attraction force of the magnet 13, so that the assembly is easy.
【0010】 このようにして軸受装置の内部へ磁石13の吸引力で図1に示すように保持さ れた磁性流体7は、回転軸4を回転させると磁性流体7の流動による摩擦熱のた め温度が上昇し、磁性流体7と空洞16中の空気は体積膨張をおこす。この膨張 した空気は軸受隙間17を通ってシール部側に流出する。そして、磁性流体7も 同様に流出しようとするが、磁石13の吸引力が作用しているので流出する量は 少ない。この作用は温度上昇が急激で無い場合であり、温度上昇が急激な場合に は軸受隙間17に介在する磁性流体7の粘性抵抗のため、前記空洞中の空気が前 記軸受隙間から外気へ拡散することが出来ず、軸受2、3間の気圧が急上昇し、 軸受部分に無理がかかってしまう。The magnetic fluid 7 thus held inside the bearing device by the attractive force of the magnet 13 as shown in FIG. 1 causes frictional heat generated by the flow of the magnetic fluid 7 when the rotating shaft 4 is rotated. Therefore, the temperature rises, and the magnetic fluid 7 and the air in the cavity 16 expand in volume. This expanded air flows out to the seal portion side through the bearing gap 17. Then, the magnetic fluid 7 also tries to flow out in the same manner, but the amount of flow out is small because the attractive force of the magnet 13 acts. This action occurs when the temperature does not rise rapidly. When the temperature rises rapidly, the air in the cavity diffuses from the bearing gap to the outside air due to the viscous resistance of the magnetic fluid 7 present in the bearing gap 17. However, the air pressure between the bearings 2 and 3 suddenly rises, and the bearing portion is forced.
【0011】 これを防止する為に軸受2の内周に切り欠き22を設けてあり、この切り欠き 22の部分の磁性流体7の粘性抵抗は軸受隙間17の粘性抵抗より遥かに小さく 、空洞16中の空気が流通するのは容易である。磁性流体7は磁石13の両極近 傍に磁力により引きつけられており、前記の膨張に対しては空洞16中の空気の 一部が磁力のおよばない切り欠き22中の磁性流体の一部と共に切り欠き22を 通じて磁気シール部の方へ押し出される。In order to prevent this, a notch 22 is provided in the inner circumference of the bearing 2, and the viscous resistance of the magnetic fluid 7 at the notch 22 is much smaller than that of the bearing gap 17, and the cavity 16 The air inside is easy to circulate. The magnetic fluid 7 is attracted by the magnetic force near both poles of the magnet 13, and a part of the air in the cavity 16 is cut together with a part of the magnetic fluid in the notch 22 to which the magnetic force does not act against the expansion. It is pushed out toward the magnetic seal through the notch 22.
【0012】 空洞16中の空気と共に押し出された小量の磁性流体7はその出口が丁度磁気 シール部の磁極片10と軸4との隙間23部分に位置し、矢印cで示す磁束の作 用によりこの部分へ捕捉される。磁性流体7の冷却時には切り欠き22を通路と して外気が元の空洞16へ導入されるとともに押し出された磁性流体7も元の方 向へ吸い込まれる。このように熱膨張収縮にともなう磁性流体7の体積の増減に 対し空洞16がその緩衝部分として作用し、磁気シール部へ磁性流体が流動する のを防止している。又蒸発等により磁性流体7の量が減少しても残りの磁性流体 7は磁石13の作用により常に軸受面に隣接して保持されるので,その潤滑効果 を失うことがない。The small amount of the magnetic fluid 7 extruded together with the air in the cavity 16 has its outlet just located in the gap 23 between the magnetic pole piece 10 and the shaft 4 of the magnetic seal portion, and the magnetic flux shown by the arrow c Is captured by this part. At the time of cooling the magnetic fluid 7, the outside air is introduced into the original cavity 16 through the cutout 22 and the extruded magnetic fluid 7 is also sucked in the original direction. In this way, the cavity 16 acts as a buffer portion for the increase or decrease in volume of the magnetic fluid 7 due to thermal expansion and contraction, and prevents the magnetic fluid from flowing to the magnetic seal portion. Further, even if the amount of the magnetic fluid 7 decreases due to evaporation or the like, the remaining magnetic fluid 7 is always held adjacent to the bearing surface by the action of the magnet 13, so that its lubricating effect is not lost.
【0013】 回転軸4は焼入鋼或いは焼入硬化型ステンレス鋼等の透磁性材料を用いるが、 軸受2、3を同様透磁性材料にすると、磁石13とともに閉磁路が構成され、軸 受2、3の支承面へ垂直に強い磁場が作用し、このような強い磁場の作用は、磁 性流体7の粘度の増加等特性に対して悪い影響を与える可能性がある。従って軸 受2,3は非磁性材料にしてある。従って軸受2、3は磁極片としての作用をし ないから軸受隙間17から流動する磁性流体7を磁気的に捕捉することはできな い。従って前記のように磁石8と磁極片10、14とからなる磁気シール部を軸 受2の側面に接して設けることができる。The rotating shaft 4 is made of a magnetically permeable material such as hardened steel or quench hardening type stainless steel, but if the bearings 2 and 3 are also made of a magnetically permeable material, a closed magnetic path is formed together with the magnet 13 and the bearing 2 A strong magnetic field acts perpendicularly on the bearing surface of No. 3, and the action of such a strong magnetic field may adversely affect properties such as an increase in viscosity of the magnetic fluid 7. Therefore, the bearings 2 and 3 are made of non-magnetic material. Therefore, since the bearings 2 and 3 do not act as pole pieces, the magnetic fluid 7 flowing from the bearing gap 17 cannot be magnetically captured. Therefore, as described above, the magnetic seal portion including the magnet 8 and the magnetic pole pieces 10 and 14 can be provided in contact with the side surface of the bearing 2.
【0014】 軸受2の隙間17から流動した磁性流体7は磁極片10と軸4との隙間23及 びその近傍に捕捉される。然しながら、前記のように熱膨張による体積増加分は 前記空洞16で吸収される故、従来技術のように軸受2と磁気シール部間に空隙 を設ける必要はない。又、軸受装置が横置で使用されても、磁石13の吸引力の ため磁性流体7が重力の作用で流動することもなく、従って使用時の姿勢を考慮 する必要もない。The magnetic fluid 7 flowing from the gap 17 of the bearing 2 is captured in the gap 23 between the pole piece 10 and the shaft 4 and in the vicinity thereof. However, since the volume increase due to thermal expansion is absorbed by the cavity 16 as described above, it is not necessary to provide a gap between the bearing 2 and the magnetic seal portion as in the prior art. Further, even if the bearing device is used in a horizontal position, the magnetic fluid 7 does not flow under the action of gravity due to the attractive force of the magnet 13, and therefore, it is not necessary to consider the posture during use.
【0015】 このように本考案によれば磁気シール部は、軸受との間に間隙を設けなくても 磁気シールの効果を果たすことが出来,なお且つ従来技術のように熱膨張や姿勢 による重力の作用で磁性流体7が磁気シール内へ流動し装置外へ磁性流体7が飛 散する危険は極めて少ないが、何らかの原因で過剰の磁性流体7が磁気シール部 内へ侵入した場合でも磁極片14と回転軸4との隙間24で磁性流体7を捕捉す ることが出来る。As described above, according to the present invention, the magnetic seal portion can achieve the effect of the magnetic seal without providing a gap between the magnetic seal portion and the bearing, and the gravity due to the thermal expansion and the posture unlike the prior art. There is little risk that the magnetic fluid 7 will flow into the magnetic seal due to the action of, and the magnetic fluid 7 will scatter outside the device. However, even if the excess magnetic fluid 7 enters the magnetic seal part for some reason, the pole piece 14 The magnetic fluid 7 can be captured in the gap 24 between the rotary shaft 4 and the rotary shaft 4.
【0016】 更に磁極片14と回転軸4との隙間24が磁性流体7で完全に充填された場合 、磁気シール部内に空洞が形成されると空洞中の空気の熱膨張により、隙間24 へ保持された磁性流体7の気密性が急激に破れ、いわゆる爆飛現象として磁性流 体7が外部へ飛散する危険がある。これを防止するには磁極片14の内周の一部 に切り欠き25を設けるか貫通孔を設け外気との導通路とすることが望ましい。 このように通気孔を設けることについての効用は例えば実開昭55−8056 9号記載されている如く周知である。Further, when the gap 24 between the pole piece 14 and the rotating shaft 4 is completely filled with the magnetic fluid 7, when a cavity is formed in the magnetic seal portion, the air in the cavity is thermally expanded and retained in the gap 24. The airtightness of the magnetic fluid 7 thus abruptly broken and there is a risk that the magnetic fluid 7 scatters to the outside as a so-called explosion phenomenon. In order to prevent this, it is desirable to provide a notch 25 or a through hole at a part of the inner circumference of the pole piece 14 so as to provide a conduction path to the outside air. The effect of providing such a ventilation hole is well known as described in, for example, Japanese Utility Model Laid-Open No. 55-80569.
【0017】[0017]
上記実施例では、軸受2の内周面に切り欠き22を設けたが、急激な温度上昇 が無い用途では切り欠き22は無くてもよい。 また、軸受2、3を非磁性体で構成したが、用途によっては透磁性材料を用い てもよく、軸受2に透磁性材料を用いればシール部の磁極片10を省略できる。 この場合には、軸受隙間17から流出した磁性流体7を隙間17のシール部側 端で捕捉し、捕捉しきれない磁性流体7は磁石8の内周で保持され、外部に飛散 することがない。 Although the notch 22 is provided on the inner peripheral surface of the bearing 2 in the above-described embodiment, the notch 22 may be omitted in applications where there is no sudden temperature rise. Although the bearings 2 and 3 are made of a non-magnetic material, a magnetically permeable material may be used depending on the application, and if the magnetically permeable material is used for the bearing 2, the pole piece 10 of the seal portion can be omitted. In this case, the magnetic fluid 7 flowing out from the bearing gap 17 is trapped at the end of the gap 17 on the seal portion side, and the magnetic fluid 7 that cannot be trapped is held by the inner circumference of the magnet 8 and is not scattered to the outside. .
【0018】[0018]
本考案は上述のように非磁性ハウジングの内周に固定されお互いに離間した一 対の非磁性ラジアル軸受の中間へ軸方向に着磁された環状磁石を配置し、前記ハ ウジングの開放された端部へ前記軸受の外側面に接して環状磁石と環状磁極片か ら成る磁気シール部を設け、前記環状磁石の内周に一部空洞を形成して磁性流体 を潤滑剤として収納したので、この空洞が熱膨張等に対するダンパーの役目をし て軸受とシール部間の空間が省略できて軸方向寸法が短くでき、軸受装置の姿勢 にかかわらず磁性流体が磁気シール部へ溢流して磁気シール効果を阻害するよう なことがなく、また蒸発等により磁性流体の量が減少しても、常に潤滑効果を持 続することが可能であり、且つ軸受装置を組立てる際の磁性流体の添加方法も容 易で、さらに前記磁気シール部に接する側の前記軸受の内周面へ切り欠きを設け ることにより、磁性流体等の急激な熱膨張があっても安定した軸受機能を果たす 流体軸受装置を提供することが出来る。 As described above, the present invention arranges an axially magnetized annular magnet in the middle of a pair of non-magnetic radial bearings fixed to the inner circumference of the non-magnetic housing and separated from each other, and the housing is released. Since a magnetic seal portion composed of an annular magnet and an annular magnetic pole piece was provided at the end portion in contact with the outer surface of the bearing, and a cavity was partially formed in the inner periphery of the annular magnet to store the magnetic fluid as a lubricant. This cavity acts as a damper against thermal expansion, etc., so that the space between the bearing and the seal can be omitted and the axial dimension can be shortened, and the magnetic fluid overflows to the magnetic seal regardless of the orientation of the bearing device. The effect is not impaired, and even if the amount of magnetic fluid decreases due to evaporation etc., it is possible to maintain the lubricating effect at all times, and the method of adding magnetic fluid when assembling the bearing device is also used. Easy and even earlier The Rukoto provided a cutout to the inner peripheral surface of the bearing of the side in contact with the magnetic seal portion, it is possible to provide a fluid bearing device fulfill the bearing function stable even if abrupt thermal expansion, such as the magnetic fluid.
【図面の簡単な説明】[Brief description of drawings]
【図1】本考案の1実施例による流体軸受装置の断面図
である。FIG. 1 is a sectional view of a hydrodynamic bearing device according to an embodiment of the present invention.
【図2】図1を組立てる際の磁性流体7の添加方法を示
す断面図である。FIG. 2 is a sectional view showing a method of adding a magnetic fluid 7 when assembling FIG.
【図3】従来の流体軸受装置の断面図である。FIG. 3 is a cross-sectional view of a conventional hydrodynamic bearing device.
1 ハウジング 2、3 ラジアル軸受 4 回転軸 7、 磁性流体 8、13 環状永久磁石 10、14 磁極片 16 空洞 22 切り欠き DESCRIPTION OF SYMBOLS 1 Housing 2, 3 Radial bearing 4 Rotating shaft 7, Magnetic fluid 8, 13 Annular permanent magnet 10, 14 Magnetic pole piece 16 Cavity 22 Notch
Claims (2)
に固定した1対のラジアル軸受と、前記ハウジングの開
放端側で前記一方の軸受の外側面に接して設けた磁気シ
ール部と、前記軸受の内周に挿通する回転軸を有する軸
受装置において、 前記ハウジングを非磁性体で構成し、前記1対の軸受の
中間に該軸受よりも内径の大きい環状磁石を設け、該磁
石は軸方向に着磁してなり、該磁石と前記回転軸との空
間に一部空洞を形成して磁性流体を収納した軸受装置。1. A pair of radial bearings fixed to the inner circumference of the housing at intervals in the axial direction, and a magnetic seal portion provided in contact with the outer surface of the one bearing on the open end side of the housing, In a bearing device having a rotating shaft inserted through the inner periphery of the bearing, the housing is made of a non-magnetic material, and an annular magnet having an inner diameter larger than that of the bearing is provided in the middle of the pair of bearings, and the magnet is a shaft. A bearing device which is magnetized in a direction and has a cavity formed in a space between the magnet and the rotating shaft to accommodate a magnetic fluid.
上下に貫通する切り欠きを形成した請求項1に記載の軸
受装置。2. The bearing device according to claim 1, wherein a notch that vertically penetrates is formed on the inner circumference of the radial bearing on the magnetic seal portion side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4034493U JPH076520U (en) | 1993-06-29 | 1993-06-29 | Bearing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4034493U JPH076520U (en) | 1993-06-29 | 1993-06-29 | Bearing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH076520U true JPH076520U (en) | 1995-01-31 |
Family
ID=12578021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4034493U Withdrawn JPH076520U (en) | 1993-06-29 | 1993-06-29 | Bearing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH076520U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010178629A (en) * | 2009-02-03 | 2010-08-19 | Globeride Inc | Fishing reel |
-
1993
- 1993-06-29 JP JP4034493U patent/JPH076520U/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010178629A (en) * | 2009-02-03 | 2010-08-19 | Globeride Inc | Fishing reel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5847479A (en) | Self-pressure-balanced hydrodynamic bearing spindle motor | |
JP3206191B2 (en) | Spindle motor and method for assembling the same | |
JPH01320314A (en) | Bearing device | |
US20020051588A1 (en) | Hydrodynamic bearing unit | |
US20030190100A1 (en) | Radial capillary seal for fluid dynamic bearing motors | |
US7740407B2 (en) | Hydrodynamic bearing type rotary device and recording and reproduction apparatus including the same | |
JP3940451B2 (en) | Hydrodynamic bearing device and motor equipped with the same | |
JPH09217735A (en) | Dynamic pressure bearing device | |
JP3864942B2 (en) | Bearing unit and motor using the bearing unit | |
JP4360482B2 (en) | Hydrodynamic bearing device | |
JP4329787B2 (en) | Bearing unit and drive motor using the bearing unit | |
JP2010144858A (en) | Fluid bearing device, spindle motor using the same, and information recording and reproducing apparatus | |
JPH076520U (en) | Bearing device | |
JP4194610B2 (en) | Hydrodynamic bearing device | |
JP4633388B2 (en) | Hydrodynamic bearing device | |
JP3299685B2 (en) | Magnetic fluid bearing device | |
JP2629561B2 (en) | Polygon mirror drive motor for laser beam scanning | |
JPH11311253A (en) | Dynamic pressure type oil-impregnated sintered bearing unit | |
JP2005147266A (en) | Bearing unit, motor having bearing unit and electronic instrument | |
JP4670818B2 (en) | Hydrodynamic bearing device and motor equipped with the same | |
JP2003065324A (en) | Hydrodyanamic type bearing apparatus | |
JP3601924B2 (en) | Bearing unit containing magnetic fluid | |
JPH08109923A (en) | Magnetic fluid feeding porous oil retaining bearing unit | |
JP2005195180A (en) | Dynamic oil-impregnated sintered bearing unit | |
JP2002021844A (en) | Fluid bearing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19971106 |