JPH0763739A - Automatic ultrasonic flaw detecting method - Google Patents

Automatic ultrasonic flaw detecting method

Info

Publication number
JPH0763739A
JPH0763739A JP5209088A JP20908893A JPH0763739A JP H0763739 A JPH0763739 A JP H0763739A JP 5209088 A JP5209088 A JP 5209088A JP 20908893 A JP20908893 A JP 20908893A JP H0763739 A JPH0763739 A JP H0763739A
Authority
JP
Japan
Prior art keywords
scanning
probe
flaw detection
subject
automatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5209088A
Other languages
Japanese (ja)
Inventor
Yutaka Yamashita
豊 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5209088A priority Critical patent/JPH0763739A/en
Publication of JPH0763739A publication Critical patent/JPH0763739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve the flaw detecting efficiency and data accumulating efficiency of a flaw detecting method by making a probe to sufficiently make necessary automatic scanning and echo detection along the external shape of an object to be inspected irrespective of the external shape. CONSTITUTION:In an automatic ultrasonic flow detecting method in which flaw detection is performed based on the positional information of an ultrasonic flaw detecting probe 4 and intensity information of ultrasonic echoes by automatically scanning the whole body of an object 3 to be inspected with the probe 4 by automatically moving the probe in a grid at a fixed pitch over the entire body of the object 3 by means of a scanning device, the scanning extent of the probe 4 moved by of the scanning device is set to include the entire external shape of the object 3 and only the echo detecting values detected at the position of the object 3 on the scanning lines based on IF loss signals obtained form the probe 4 are fetched as flaw detecting information.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被検体内の溶接欠陥、
空洞欠陥、クラック欠陥等を、例えば水浸探傷方式によ
り自動検査する場合等に適用される自動超音波探傷方法
に係り、特にプローブの走査方法と得られる探傷情報の
取込み方法の改良によって探傷効率の向上を図った自動
超音波探傷方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a welding defect in an object,
The present invention relates to an automatic ultrasonic flaw detection method which is applied when, for example, automatically inspecting a cavity defect, a crack defect, etc. by a water immersion flaw detection method, in particular, by improving the probe scanning method and the obtained flaw detection information acquisition method, the flaw detection efficiency can be improved. The present invention relates to an improved automatic ultrasonic flaw detection method.

【0002】[0002]

【従来の技術】自動超音波探傷に際して適用される従来
の代表的なプローブの走査方式として、X軸、Y軸及び
Z軸の3軸の走査方法が知られている。この方法で例え
ば半導体素子部品等の被検体の自動検査を行う場合、ま
ず最初に被検体上にプローブを手動で、Z軸方向に走査
させ、プローブの焦点距離の設定を行う。
2. Description of the Related Art A three-axis scanning method of X-axis, Y-axis and Z-axis is known as a conventional typical scanning method of a probe applied in automatic ultrasonic flaw detection. When an automatic inspection of an object such as a semiconductor device component is performed by this method, first, the probe is manually scanned on the object in the Z-axis direction to set the focal length of the probe.

【0003】次に、被検体の原点すなわち、被検体の中
心部にプローブをX軸、Y軸方向に手動で移動させる。
この後、被検体の大きさに合せ、X軸及びY軸方向の走
査装置の探傷ストローク値をマイクロプロセッサを有す
る走査装置の制御装置へキーボード入力等の手段により
入力し、続いて自動走査の命令を入力することによりプ
ローブの自動走査を実行させる。
Next, the probe is manually moved in the X-axis and Y-axis directions to the origin of the subject, that is, the center of the subject.
After that, the flaw detection stroke values of the scanning device in the X-axis and Y-axis directions are input to the control device of the scanning device having a microprocessor by means of keyboard input or the like in accordance with the size of the subject, and then an automatic scanning command is issued. The automatic scanning of the probe is executed by inputting.

【0004】この場合走査装置のX軸方向並びにY軸方
向の走査範囲は、被検体の全面を探傷する必要上、被検
体の大きさ以上の大きさの範囲のX軸及びY軸方向スト
ローク値を入力し、自動走査を行わせるのが常である。
In this case, since the scanning range of the scanning device in the X-axis direction and the Y-axis direction is to detect flaws on the entire surface of the object to be inspected, stroke values in the X-axis and Y-axis directions in a range larger than the size of the object are detected. Is usually input to automatically scan.

【0005】図4はこのように、被検体全体を覆う走査
範囲の設定例を示したものである。即ち、被検体aより
も大きいX軸方向ストローク値X1、Y方向ストローク
値Y1を有する走査領域bを設定するとともに、走査開
始点Aより走査ピッチP1にて方形走査を行うようにし
ている。
FIG. 4 shows an example of setting the scanning range which covers the entire subject in this way. That is, the scanning area b having the X-axis direction stroke value X1 and the Y-direction stroke value Y1 larger than the subject a is set, and the rectangular scanning is performed at the scanning pitch P1 from the scanning start point A.

【0006】一方、従来では任意形状の被検体の探傷を
行う別の自動走査方法も知られている。即ち、被検体へ
の手動によるZ軸方向焦点合せを実行後、所定の自動走
査開始位置へ手動によりプローブを移動し、その後の自
動走査は、プローブが被検体上にあることを検出して探
傷を実施する方法である。この方法は、超音波探傷器の
IFロス信号の有無を判定基準とするもので、IFロス
信号が有の場合には、X軸方向の走査を継続し、IFロ
ス信号が無くなった時点で、Y軸方向に走査装置を1ピ
ッチ分移動させ、X軸の反対方向に走査装置を動作さ
せ、探傷を実行する方法である。
On the other hand, conventionally, another automatic scanning method for detecting flaws on an object having an arbitrary shape is also known. That is, after manually focusing the object in the Z-axis direction, the probe is manually moved to a predetermined automatic scanning start position, and the subsequent automatic scanning detects that the probe is on the object and performs flaw detection. Is a method of implementing. This method uses the presence or absence of the IF loss signal of the ultrasonic flaw detector as a criterion for determination. When the IF loss signal is present, the scanning in the X-axis direction is continued, and when the IF loss signal disappears, In this method, the scanning device is moved in the Y-axis direction by one pitch, and the scanning device is operated in the direction opposite to the X-axis to perform flaw detection.

【0007】図5は、この方法に基づく走査例を示した
ものである。即ち、被検体aが図示のように凹所a1 を
有する例えば瓢箪形の場合、走査開始点Aから走査終了
点Bまでプローブ走査がIFロス信号の有無に従って行
なわれ、走査線Sで示す如く、プローブは凹所a1 に対
応して被検体aの形状に沿って忠実に移動する。この方
法では、前記のX軸及びY軸方向走査動作を繰り返すこ
とにより、任意形状の被検体においても被検体の外形に
沿った探傷を実行することができる。
FIG. 5 shows an example of scanning based on this method. That is, in the case where the object a is, for example, a gourd shape having a recess a1 as shown in the drawing, probe scanning is performed from the scanning start point A to the scanning end point B according to the presence or absence of the IF loss signal, and as shown by the scanning line S, The probe faithfully moves along the shape of the subject a corresponding to the recess a1. In this method, by repeating the above-described X-axis and Y-axis direction scanning operations, it is possible to perform flaw detection along the outer shape of the subject even in the subject having an arbitrary shape.

【0008】[0008]

【発明が解決しようとする課題】ところが、上述した従
来の方式による自動走査を行なう自動超音波探傷方法に
おいては、種々の問題がある。図4に示したX軸及びY
軸方向のストローク値入力による走査方式では、被検体
の大きさ以上の範囲の探傷を行うため、無駄な部分の範
囲の探傷も行っており、例えば同形状の被検体を大量に
探傷を実行する場合、探傷効率の点で悪くなるという欠
点があった。
However, there are various problems in the above-described conventional automatic ultrasonic flaw detection method for performing automatic scanning by the conventional method. X-axis and Y shown in FIG.
In the scanning method by inputting the stroke value in the axial direction, flaw detection is performed in a range larger than the size of the subject, so flaw detection is also performed in a range of useless parts. In this case, there is a drawback that the flaw detection efficiency is deteriorated.

【0009】また、図5に示した任意形状の被検体の探
傷をその形状に沿って行う場合には、被検体上にプロー
ブが存在する時の超音波探傷器のIFロス信号の有無を
探傷の判定基準としているため、X軸方向の走査が凹所
a1 で途切れ、走査の折返し点となる凹所a1 の反対側
で未探傷領域(同図の斜線領域)cが発生し、探傷が不
十分となる場合があった。
Further, when the flaw detection of the subject having an arbitrary shape shown in FIG. 5 is carried out along the shape, the presence or absence of the IF loss signal of the ultrasonic flaw detector when the probe is present on the subject is tested. The scanning in the X-axis direction is interrupted at the recess a1, and the undetected area (hatched area in the figure) c is generated on the opposite side of the recess a1 which is the turning point of the scanning. In some cases it was enough.

【0010】本発明はこのような事情に鑑みてなされた
もので、被検体がいかなる形状であっても、被検体の外
形に沿った範囲でプローブの自動走査およびエコー検出
が必要かつ十分に行え、これにより探傷効率およびデー
タ蓄積効率の向上が図れる自動超音波探傷方法を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and regardless of the shape of the subject, automatic scanning of the probe and echo detection can be performed in a range along the outer shape of the subject. It is therefore an object of the present invention to provide an automatic ultrasonic flaw detection method capable of improving flaw detection efficiency and data storage efficiency.

【0011】[0011]

【課題を解決するための手段】本発明は前記の目的を達
成するために、超音波探傷用プローブを走査装置によっ
て被検体全体に亘って一定ピッチで自動的に方形走査さ
せ、前記プローブの位置情報と超音波エコーの強度情報
とに基づいて探傷を行なう自動超音波探傷方法におい
て、前記操作装置によるプローブの走査範囲を前記被検
体の外形全体を含む形状として設定する一方、前記プロ
ーブから得られるIFロス信号に基づく走査ライン上の
被検体存在位置で検出されるエコー検出値のみを探傷情
報として取込むことを特徴とする。
In order to achieve the above-mentioned object, the present invention automatically and rectangularly scans an ultrasonic flaw detection probe with a scanning device at a constant pitch over the entire object, and the position of the probe. In an automatic ultrasonic flaw detection method in which flaw detection is performed based on information and intensity information of ultrasonic echoes, the scanning range of the probe by the operating device is set as a shape including the entire outer shape of the subject, while being obtained from the probe It is characterized in that only the echo detection value detected at the subject existing position on the scanning line based on the IF loss signal is taken in as flaw detection information.

【0012】なお、本発明において望ましい態様は、例
えば円形、三角形等の代表的形状の被検体について探傷
を行う場合には、制御・画像処理計算機にキーボードよ
り円の半径、三角形の三辺等のデータを入力し、被検体
の外形座標値を自動演算してメモリに入力することであ
る。
In the preferred embodiment of the present invention, for example, when the inspection is performed on an object having a typical shape such as a circle or a triangle, the control / image processing computer uses a keyboard to set the radius of a circle, the three sides of a triangle, and the like. This is to input data, automatically calculate the external coordinate value of the subject, and input it to the memory.

【0013】また別の望ましい態様は、任意形状の被検
体の外形座標データ入力を、制御・画像処理計算機に接
続した、座標算出機能を有するCADタブレットのペン
入力により行ってもよい。
In another desirable mode, the external coordinate data of the subject having an arbitrary shape may be input by pen input of a CAD tablet having a coordinate calculating function, which is connected to a control / image processing computer.

【0014】さらに他の望ましい態様は、任意形状の被
検体の外形座標データ入力を、制御・画像処理計算機に
接続した画像処理装置及びCCDカメラを用いて行い、
該CCDカメラによる被検体の撮像データを画像処理装
置により座標データ化して入力することである。
Still another desirable mode is to input the external coordinate data of a subject of an arbitrary shape by using an image processing device and a CCD camera connected to a control / image processing computer,
The image data of the subject by the CCD camera is converted into coordinate data by an image processing device and input.

【0015】[0015]

【作用】上記の方法においては、例えば制御・画像処理
計算機メモリに予め入力されている任意形状の被検体の
外形座標データにより走査装置を動作させる。そして、
被検体の外形に合わせた形で、プローブを被検体上で走
査させて探傷を行い、予め制御・画像処理計算機に入力
されているX軸、Y軸ピッチデータ毎に制御・画像処理
計算機の指令で、プローブから超音波探傷器に採取され
ている超音波エコー信号をアナログデータとして、制御
・画像処理計算機へ送信する。そして、自動走査を全て
終了後制御・画像処理計算機により探傷データの画像処
理演算を行い、結果をCRTへ表示する。この場合、I
Fロス信号により被検体が存在しない部分では、エコー
データを収録しないようにする。
In the above method, for example, the scanning device is operated by the external coordinate data of the subject having an arbitrary shape which is previously input to the control / image processing computer memory. And
The probe is scanned on the subject in a shape that matches the outer shape of the subject and flaw detection is performed, and the control / image processing computer command is issued for each X-axis and Y-axis pitch data that is input to the control / image processing computer in advance. Then, the ultrasonic echo signal collected by the ultrasonic flaw detector from the probe is transmitted as analog data to the control / image processing computer. After completion of all automatic scanning, the control / image processing computer performs image processing calculation of flaw detection data and displays the result on the CRT. In this case, I
The echo data is not recorded in the portion where the subject does not exist due to the F loss signal.

【0016】本発明によれば、いかなる形状の被検体に
対しても、被検体の外形に沿った範囲でのプローブの自
動走査を必要かつ十分に行え、またエコー検出について
は、被検体の形状範囲以外の部分で省略することによ
り、探傷効率およびデータ蓄積効率の向上が図れる。
According to the present invention, for any shape of the subject, automatic scanning of the probe within the range along the outer shape of the subject can be necessary and sufficient, and the echo detection can be performed in the shape of the subject. By omitting the part other than the range, the flaw detection efficiency and the data storage efficiency can be improved.

【0017】[0017]

【実施例】以下、本発明の一実施例を図1〜図3を参照
して説明する。まず、図1により本発明の方法を実施す
る装置のシステム構成を説明する。本実施例では、水槽
1内に被検体設置台2が設置されており、その上に、被
検体3が載置されている。プローブ4は例えば垂直探触
子を有するもので水浸状態で配置され、超音波探傷器5
に接続されている。プローブ4は走査手段6によりX
軸、Y軸及びZ軸の3方向に走査される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. First, the system configuration of an apparatus for carrying out the method of the present invention will be described with reference to FIG. In this embodiment, the subject installation table 2 is installed in the water tank 1, and the subject 3 is placed on it. The probe 4 has, for example, a vertical probe and is arranged in a water immersion state.
It is connected to the. The probe 4 is moved by the scanning means 6 to X.
Scanning is performed in three directions of the axis, the Y axis, and the Z axis.

【0018】なお、走査手段は、例えばプローブを駆動
する走査装置としてのドライバユニットと、このドライ
バユニットに走査信号を送るコントローラユニットとを
備えて構成される。また超音波探傷器5及び走査手段6
には信号線を介して制御・画像処理計算機7が接続さ
れ、この制御・画像処理計算機7にはデータ入力手段と
して、例えばキーボード8が接続されている。
The scanning means comprises, for example, a driver unit as a scanning device for driving the probe and a controller unit for sending a scanning signal to the driver unit. Further, the ultrasonic flaw detector 5 and the scanning means 6
A control / image processing computer 7 is connected via a signal line, and a keyboard 8 is connected to the control / image processing computer 7 as data input means.

【0019】次に、本実施例の作用を図2に示すフロー
チャートにより説明する。まず最初に、制御・画像処理
計算機7のメモリへ任意形状の被検体の外形座標データ
を入力する(ステップS1)。
Next, the operation of this embodiment will be described with reference to the flow chart shown in FIG. First, the external shape coordinate data of the subject having an arbitrary shape is input to the memory of the control / image processing computer 7 (step S1).

【0020】次にX軸、Y軸の各探傷ピッチ、走査起点
座標値及びX軸、Y軸走査速度設定値入力を各々キーボ
ード8より行なう(ステップS2,S3,S4)。次
に、被検体3の外形座標データにより、X軸、Y軸走査
装置の各走査範囲が計算機演算部により演算され(ステ
ップS5)、走査装置コントローラへ走査命令が転送さ
れる(ステップS6)。
Next, the X-axis and Y-axis flaw detection pitches, the scanning origin coordinate values, and the X-axis and Y-axis scanning speed set values are input from the keyboard 8 (steps S2, S3, S4). Then, each scanning range of the X-axis and Y-axis scanning devices is calculated by the computer arithmetic unit based on the outer shape coordinate data of the subject 3 (step S5), and the scanning command is transferred to the scanning device controller (step S6).

【0021】この後、走査装置コントローラが走査命令
を受け、ドライバユニットへ走査指令が出力され、走査
手段6によって所定範囲のプローブ走査が行われる。こ
の時、ステップS2において設定されたX軸方向ピッチ
値により、X軸走査装置がピッチ距離移動する毎に、制
御・画像処理計算機7から同期的に、超音波探傷器5へ
探傷エコー信号の採取命令が送信される。
Thereafter, the scanning device controller receives a scanning command, a scanning command is output to the driver unit, and the scanning means 6 performs probe scanning within a predetermined range. At this time, with the pitch value in the X-axis direction set in step S2, every time the X-axis scanning device moves by a pitch distance, the control / image processing computer 7 synchronously collects a flaw detection echo signal to the ultrasonic flaw detector 5. The instruction is sent.

【0022】そして、プローブ4により採取されて超音
波探傷器5へ伝送された探傷エコー信号が、制御・画像
処理計算機7へアナログ信号として送信され、被検体3
の自動検査が終了した後、制御・画像処理計算機7のメ
モリ部に保存された探傷データのソフトプログラムによ
る画像処理が行われ、CRT画面上に表示する処理が行
われる。
Then, the flaw detection echo signal collected by the probe 4 and transmitted to the ultrasonic flaw detector 5 is transmitted to the control / image processing computer 7 as an analog signal, and the subject 3
After the automatic inspection is completed, the image processing of the flaw detection data stored in the memory unit of the control / image processing computer 7 is performed by the software program, and the processing for displaying on the CRT screen is performed.

【0023】そして、本実施例においては、プローブ4
から得られるIFロス信号に基づく走査ライン上の被検
体3の存在位置で検出されるエコー検出値のみが探傷情
報として取込まれる。
In the present embodiment, the probe 4
Only the echo detection value detected at the position where the subject 3 is present on the scanning line based on the IF loss signal obtained from the above is taken in as flaw detection information.

【0024】なお、以上の一連の処理において被検体3
へのプローブ4のZ軸走査装置の駆動によるエコー信号
の焦点合せ作業は、自動焦点合せ処理又は手動操作によ
る焦点合せ処理のいずれかにより行い、時期としては、
前記フローチャート中の走行装置コントローラへの走査
命令転送(ステップS6)の以前のいずれかの段階にお
いて実行する。
In addition, in the above series of processing, the subject 3
Focusing work of the echo signal by driving the Z-axis scanning device of the probe 4 is performed by either an automatic focusing process or a manual focusing process.
It is executed at any stage before the transfer of the scanning command to the traveling device controller (step S6) in the flowchart.

【0025】図3は、任意形状の被検体3の自動検査の
一例として円形部材についての探傷処理を行う場合を示
している。この場合には、まず円形被検体9を、走査装
置の座標点(0,0)と被検体の中心が一致するように
設置する。次にプローブを走査装置により走査開始点1
1へ自動的に移動させる処理を行う。
FIG. 3 shows a case where flaw detection processing is performed on a circular member as an example of automatic inspection of a subject 3 having an arbitrary shape. In this case, first, the circular subject 9 is installed so that the coordinate point (0, 0) of the scanning device coincides with the center of the subject. Next, the scanning device is used to start scanning point 1 of the probe.
Perform processing to automatically move to 1.

【0026】その後、走査開始点11からX軸方向及び
Y軸方向に図示の経路に従い走査範囲10の外形に沿っ
て走査を行う。この時、走査範囲10は円形被検体9の
外形よりも、若干大きな範囲としておく。このことによ
り探傷時に、円形被検体の全範囲に渡り自動検査を可能
とする。
After that, scanning is performed from the scanning start point 11 in the X-axis direction and the Y-axis direction along the contour of the scanning range 10 along the illustrated path. At this time, the scanning range 10 is set to be slightly larger than the outer shape of the circular subject 9. This makes it possible to perform automatic inspection over the entire range of the circular object at the time of flaw detection.

【0027】また被検体の形状が円形以外の任意の形状
であっても、前記フローチャートの被検体外形座標デー
タ入力処理(ステップS1)において、任意の形状の外
形座標データを算出し、計算機のメモリ領域へ入力する
ことにより、前記円形被検体と同様に自動検査が可能と
なる。
Further, even if the shape of the subject is an arbitrary shape other than a circle, in the process of inputting the outer coordinate data of the subject (step S1) of the above-mentioned flowchart, the outer coordinate data of the arbitrary shape is calculated and stored in the memory of the computer. By inputting to the area, the automatic inspection becomes possible like the circular object.

【0028】例えば図5に示した瓢箪形の被検査体につ
いて本実施例を適用した場合には、凹所を越えて走査が
全体的に行われ、その際、凹所のデータは収録されな
い。したがって、必要部分の探傷データのみが得られ、
これにより探傷効率およびデータ蓄積効率の向上が図れ
るものとなる。
For example, when the present embodiment is applied to the gourd-shaped object to be inspected shown in FIG. 5, the entire scanning is performed beyond the recess, and at that time, the data of the recess is not recorded. Therefore, only the flaw detection data of the necessary part can be obtained,
Thereby, the flaw detection efficiency and the data storage efficiency can be improved.

【0029】なお、本発明は以上の実施例に限られるも
のではない。例えば前記フローチャートでの被検体外形
座標データ入力(ステップS1)では、計算機メモリへ
の被検体外形座標データを直接入力するようにしたが、
円形部材、三角形部材、台形部材等の代表的な外形座標
データの自動演算が可能な部材の場合には、円の半径、
三角形の三辺寸法等を計算機キーボードから入力するこ
とにより、外形座標データを演算プログラムにより自動
演算することが可能である。
The present invention is not limited to the above embodiment. For example, in the subject outer shape coordinate data input (step S1) in the above-described flowchart, the subject outer shape coordinate data is directly input to the computer memory.
In the case of a member such as a circular member, a triangular member, or a trapezoidal member that can automatically calculate typical external coordinate data, the radius of the circle,
By inputting the three-sided dimensions of the triangle and the like from the computer keyboard, the external coordinate data can be automatically calculated by the calculation program.

【0030】また、計算機に座標処理機能を有するCA
Dタブレットを直接接続し、CADタブレットのディジ
タイザペンにより任意形状の被検体の外形をCADタブ
レット上に描き、この外形座標データを計算機へ送信し
計算機メモリ内へ入力する方法を採用してもよい。
CA having a coordinate processing function in the computer
A method may be adopted in which the D tablet is directly connected, the contour of the subject having an arbitrary shape is drawn on the CAD tablet by the digitizer pen of the CAD tablet, and the contour coordinate data is transmitted to the computer and input into the computer memory.

【0031】さらに、CCDカメラを画像処理装置に接
続し、さらに画像処理装置と計算機とを通信ケーブルに
より接続し、CCDカメラにより任意形状の被検体を撮
映し、その撮像を画像処理装置の画像処理により外形座
標データ演算を行い、算出された外形座標データを計算
機へ送信し、計算機メモリへ入力するようにしてもよ
い。
Further, the CCD camera is connected to the image processing apparatus, the image processing apparatus and the computer are connected by a communication cable, the subject of an arbitrary shape is imaged by the CCD camera, and the image pickup is performed by the image processing of the image processing apparatus. It is also possible to calculate the outer shape coordinate data by using, to send the calculated outer shape coordinate data to the computer, and to input it to the computer memory.

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、い
かなる形状の被検体に対しても、被検体の外形に沿った
範囲でのプローブの自動走査を必要かつ十分に行い、ま
たエコー検出については、被検体の形状範囲以外の部分
で省略することにより、探傷効率およびデータ蓄積効率
の向上が図れる。
As described above, according to the present invention, it is necessary and sufficient to automatically scan the probe in the range along the outer shape of the object for any shape of the object, and to detect the echo. With regard to (2), the flaw detection efficiency and the data accumulation efficiency can be improved by omitting the portion other than the shape range of the subject.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する超音波探傷装置のシス
テム構成例を示す図。
FIG. 1 is a diagram showing an example of the system configuration of an ultrasonic flaw detector for implementing the method of the present invention.

【図2】本発明の一実施例による走査方法の処理手順を
説明するフローチャート。
FIG. 2 is a flowchart illustrating a processing procedure of a scanning method according to an embodiment of the present invention.

【図3】本発明による具体的な走査例を示す図。FIG. 3 is a diagram showing a specific scanning example according to the present invention.

【図4】従来の方法を示す図。FIG. 4 is a diagram showing a conventional method.

【図5】従来の他の方法を示す図。FIG. 5 is a diagram showing another conventional method.

【符号の説明】[Explanation of symbols]

1 水槽 2 被検体設置台 3 被検体 4 プローブ 5 超音波探傷器 6 走査装置走査手段 7 制御・画像処理計算機 8 キーボード 9 円形被検体 10 走査範囲 11 走査開始点 12 走査終了点 1 water tank 2 subject installation table 3 subject 4 probe 5 ultrasonic flaw detector 6 scanning device scanning means 7 control / image processing computer 8 keyboard 9 circular subject 10 scanning range 11 scanning start point 12 scanning end point

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超音波探傷用プローブを走査装置によっ
て被検体全体に亘って一定ピッチで自動的に方形走査さ
せ、前記プローブの位置情報と超音波エコーの強度情報
とに基づいて探傷を行なう自動超音波探傷方法におい
て、前記操作装置によるプローブの走査範囲を前記被検
体の外形全体を含む形状に設定する一方、前記プローブ
から得られるIFロス信号に基づく走査ライン上の被検
体存在位置で検出されるエコー検出値のみを探傷情報と
して取込むことを特徴とする自動超音波探傷方法。
1. An automatic ultrasonic flaw detection probe is automatically square-scanned by a scanning device at a constant pitch over the entire object, and flaw detection is automatically performed based on position information of the probe and ultrasonic echo intensity information. In the ultrasonic flaw detection method, while setting the scanning range of the probe by the operating device to a shape including the entire outer shape of the object, the object detection position on the scanning line based on the IF loss signal obtained from the probe is detected. The automatic ultrasonic flaw detection method is characterized in that only the detected echo value is taken as flaw detection information.
JP5209088A 1993-08-24 1993-08-24 Automatic ultrasonic flaw detecting method Pending JPH0763739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5209088A JPH0763739A (en) 1993-08-24 1993-08-24 Automatic ultrasonic flaw detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5209088A JPH0763739A (en) 1993-08-24 1993-08-24 Automatic ultrasonic flaw detecting method

Publications (1)

Publication Number Publication Date
JPH0763739A true JPH0763739A (en) 1995-03-10

Family

ID=16567083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5209088A Pending JPH0763739A (en) 1993-08-24 1993-08-24 Automatic ultrasonic flaw detecting method

Country Status (1)

Country Link
JP (1) JPH0763739A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110606A (en) * 2020-01-09 2021-08-02 日立Geニュークリア・エナジー株式会社 Ultrasonic flaw detection system and ultrasonic flaw method
CN117949536A (en) * 2024-03-27 2024-04-30 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Integrated circuit sound scanning method, device, computer equipment and storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110606A (en) * 2020-01-09 2021-08-02 日立Geニュークリア・エナジー株式会社 Ultrasonic flaw detection system and ultrasonic flaw method
CN117949536A (en) * 2024-03-27 2024-04-30 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Integrated circuit sound scanning method, device, computer equipment and storage medium
CN117949536B (en) * 2024-03-27 2024-08-20 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Integrated circuit sound scanning method, device, computer equipment and storage medium

Similar Documents

Publication Publication Date Title
CN103969336B (en) Automatic detecting and imaging method of hyper-acoustic phased array of weld joint in complex space
JP4862765B2 (en) Surface inspection apparatus and surface inspection method
JPH06161533A (en) Control system for three-dimensional measuring device
JP3499747B2 (en) Portable ultrasonic flaw detector
JP2720077B2 (en) Ultrasonic flaw detector
JPH0763739A (en) Automatic ultrasonic flaw detecting method
EP0642016B1 (en) Apparatus for probing images with ultrasonic waves
JPH0545347A (en) Automatic ultrasonic flaw detecting method
JPS63121748A (en) Ultrasonic flaw detector
JP3212541B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JP2000206101A (en) Ultrasonic flaw detection apparatus
JPH0515219B2 (en)
JPH10232117A (en) Image measuring device
JPH0740022B2 (en) Detection method of continuous defects in ultrasonic measurement
JP2640878B2 (en) Ultrasound imaging equipment
JP2765916B2 (en) Ultrasonic inspection equipment
JP2003270215A (en) Device for ultrasonic video inspection and detecting method of focal position thereof
JPH03150859A (en) Semiconductor wafer tester
JP2524540B2 (en) Ultrasonic inspection method
JP3040051B2 (en) Ultrasound imaging equipment
JPH06288749A (en) Set position detection of material for crack detection
JPH0740021B2 (en) Ultrasonic flaw detector
JPH0829143A (en) Method and apparatus for inspecting surface state
JPH09189512A (en) Image measuring machine
JPS6222059A (en) Ultrasonic flaw detecting device for circumferential weld zone