JPH0761892B2 - Cordierite honeycomb structure - Google Patents

Cordierite honeycomb structure

Info

Publication number
JPH0761892B2
JPH0761892B2 JP5139054A JP13905493A JPH0761892B2 JP H0761892 B2 JPH0761892 B2 JP H0761892B2 JP 5139054 A JP5139054 A JP 5139054A JP 13905493 A JP13905493 A JP 13905493A JP H0761892 B2 JPH0761892 B2 JP H0761892B2
Authority
JP
Japan
Prior art keywords
cordierite
honeycomb structure
thermal expansion
coefficient
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5139054A
Other languages
Japanese (ja)
Other versions
JPH0623275A (en
Inventor
節 原田
俊行 浜中
邦和 浜口
誠一 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP62283127A priority Critical patent/JPS643067A/en
Priority claimed from JP62283127A external-priority patent/JPS643067A/en
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5139054A priority patent/JPH0761892B2/en
Publication of JPH0623275A publication Critical patent/JPH0623275A/en
Publication of JPH0761892B2 publication Critical patent/JPH0761892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコージェライトハニカム
構造触媒担体、特に自動車排ガスの浄化用触媒担体に用
いられる低膨脹で耐熱衝撃性に優れたハニカム構造体に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cordierite honeycomb structure catalyst carrier, and more particularly to a honeycomb structure having low expansion and excellent thermal shock resistance, which is used as a catalyst carrier for purifying automobile exhaust gas.

【0002】[0002]

【従来の技術】近年工業技術の進歩に伴い、耐熱性、耐
熱衝撃性に優れた材料の要望が増加している。特に自動
車排ガス浄化装置に用いるセラミックハニカム触媒担体
においては、耐熱衝撃性は重要な特性の一つであり、排
気ガス中の未燃焼炭化水素、一酸化炭素の触媒反応によ
る急激な発熱やエンジン始動停止時の急熱、急冷により
温度変化を受け、ハニカム構造体内に生じる温度差によ
り引き起こされる熱応力に耐える高い耐熱衝撃性が要求
されており、特に今日触媒活性向上のためエンジン近傍
への設置および高速運転に伴いその要求が強い。
2. Description of the Related Art With the progress of industrial technology in recent years, there has been an increasing demand for materials having excellent heat resistance and thermal shock resistance. Thermal shock resistance is one of the important characteristics especially in the ceramic honeycomb catalyst carrier used in the automobile exhaust gas purifying apparatus, and it causes sudden heat generation and engine start / stop due to the catalytic reaction of unburned hydrocarbons and carbon monoxide in the exhaust gas. It is required to have high thermal shock resistance to withstand the thermal stress caused by the temperature difference generated in the honeycomb structure due to the temperature change caused by rapid heating and quenching during the installation. The demand is strong with driving.

【0003】この耐熱衝撃性は急熱急冷耐久温度差で表
わされ、その耐久温度差はハニカムの特性のうち熱膨脹
係数に逆比例することが判明しており、熱膨脹係数が小
さいほどその耐久温度差が大きく、ハニカム構造体にお
いては特に流路に垂直な方向(図4B軸)の寄与率が大
きいことが知られている。
This thermal shock resistance is represented by the difference between the rapid heating and quenching endurance temperature, and it has been found that the endurance temperature difference is inversely proportional to the coefficient of thermal expansion among the characteristics of the honeycomb. The smaller the coefficient of thermal expansion is, the more the endurance temperature is. It is known that the difference is large, and that the honeycomb structure has a large contribution particularly in the direction perpendicular to the flow path (axis in FIG. 4B).

【0004】[0004]

【発明が解決しようとする課題】従来、コージェライト
セラミックスが低膨脹性を示すことは公知であり、例え
ば米国特許第3,885,977 号明細書 (対応日本出願:特開
昭50- 75611 号公報) に開示されているように、25〜10
00℃の間での熱膨脹係数が少なくとも一方向で11×10-7
/℃より小さい配向したコージェライトセラミックスが
示されており、そこではこの配向性を起させる原因とし
て板状粘土、積層粘土に起因する平面的配向を記述して
おり、その中でシリカ原料を用いた25〜1000℃の間で0.
56×10-6/℃の低膨脹性を示す組成が開示されている。
Conventionally, it is known that cordierite ceramics exhibit a low expansion property, and are disclosed in, for example, US Pat. No. 3,885,977 (corresponding Japanese application: Japanese Patent Laid-Open No. 50-75611). 25-10 as has been
Coefficient of thermal expansion between 00 ° C is 11 × 10 -7 in at least one direction
Cordierite ceramics with an orientation of less than / ° C are shown, and the planar orientation due to the plate-like clay and laminated clay is described as the cause of this orientation. The temperature was between 25 and 1000 ℃.
Compositions having a low expansion of 56 × 10 −6 / ° C. are disclosed.

【0005】一方、ここでのシリカ使用系での特徴とし
てその実施例にも示されているように、A軸熱膨脹係数
0.62〜0.78×10-6/℃に比べてB軸熱膨脹係数が1.01〜
1.08×10-6/℃と大となり、実質的に耐熱衝撃性に寄与
するB軸熱膨脹係数の低膨脹化が達成できない問題点が
あった。
On the other hand, as a characteristic of the system using silica here, as shown in the examples, the coefficient of thermal expansion of the A-axis is shown.
0.62-0.78 × 10 -6 / ° C, B-axis thermal expansion coefficient is 1.01-
It was as large as 1.08 × 10 −6 / ° C., and there was a problem that the expansion of the B-axis thermal expansion coefficient, which substantially contributes to thermal shock resistance, could not be achieved.

【0006】また、米国特許第3,950,175 号明細書 (特
開昭50-75612号公報) には、原料中のタルク又は粘土の
一部又は全量をパイロフェライト、カイアナイト、石
英、溶融シリカのようなシリカ又はシリカアルミナ源原
料によって置換することにより、少なくとも20%の10μ
m より大きな径の開孔を有するコージェライト系多孔質
セラミックスが得られることが開示されている。
Further, in US Pat. No. 3,950,175 (JP-A-50-75612), a part or the whole amount of talc or clay in a raw material is silica such as pyroferrite, kyanite, quartz or fused silica. Or at least 20% of 10μ by replacing with silica alumina source material
It is disclosed that a cordierite-based porous ceramic having pores with a diameter larger than m can be obtained.

【0007】一方、この中でシリカ原料として溶融シリ
カを使用した10μm 以上の大気孔を多数有する組成を開
示しているが、低膨脹化に関する記載はなく、B軸熱膨
脹係数の低膨脹化は達成できなかった。
On the other hand, among these, a composition using fused silica as a silica raw material and having a large number of atmospheric holes of 10 μm or more is disclosed, but there is no description about reduction in expansion, and reduction in B-axis thermal expansion coefficient is achieved. could not.

【0008】さらに、特公昭57-28390号公報には、タル
ク平均粒子径を5〜150 μm にすることにより25〜 10
00℃の間で 1.6×10-6/℃以下の低膨脹が得られること
が開示されているが、25〜1000℃の間で0.9×10-6/℃
未満の低膨脹を示す組成の記載は一切なく、A軸および
B軸方向の熱膨脹係数をさらに低膨脹化することはでき
なかった。
Further, in Japanese Patent Publication No. 57-28390, a talc average particle size of 5 to 150 μm is used.
It is disclosed that a low expansion of 1.6 × 10 −6 / ° C. or less can be obtained at 00 ° C., but 0.9 × 10 −6 / ° C. at 25 to 1000 ° C.
There is no description of a composition exhibiting a low expansion of less than, and the thermal expansion coefficient in the A-axis and B-axis directions could not be further reduced.

【0009】さらにまた、発明者の先願である特願昭61
-183904 号には、気孔率30%以下の緻密化を目的とし
て、5μm 以下の微粒タルクの使用をベースとした高純
度非晶質シリカと微粒アルミナの組合わせを示している
が、40〜800 ℃の間で 0.3×10-6/℃未満の低膨脹は得
られていない。本願発明は気孔率が30%を超え42%以下
の範囲でA軸およびB軸方向の熱膨脹係数をさらに低膨
脹化したものである。
Furthermore, Japanese Patent Application No. 61-61, which is the prior application of the inventor.
-183904 shows a combination of high-purity amorphous silica and fine-grained alumina based on the use of fine-grained talc of 5 μm or less for the purpose of densification with porosity of 30% or less. A low expansion of less than 0.3 × 10 -6 / ° C between 0 ° C is not obtained. In the present invention, the coefficient of thermal expansion in the A-axis and B-axis directions is further reduced in the range where the porosity exceeds 30% and 42% or less.

【0010】本発明の目的は上述した課題を解消して、
従来のコージェライトハニカム構造体のA軸, B軸熱膨
脹係数の低膨脹化を図ることにより、耐熱性、耐熱衝撃
性に優れたコージェライトハニカム構造体を提供しよう
とするものである。
The object of the present invention is to solve the above problems,
It is an object of the present invention to provide a cordierite honeycomb structure excellent in heat resistance and thermal shock resistance by lowering the A-axis and B-axis coefficient of thermal expansion of a conventional cordierite honeycomb structure.

【0011】[0011]

【課題を解決するための手段】本発明のコージェライト
ハニカム構造体は、主成分の化学組成が SiO2 42〜56重
量%、Al2O3 30〜45重量%、MgO 12〜16重量%で、主結
晶相がコージェライトから成るハニカム構造体で、ハニ
カム構造の流路方向(図4A軸)の40〜800 ℃の間の熱
膨脹係数が 0.3×10-6/℃以下、流路に垂直な方向(図
4B軸)の40〜800 ℃の間の熱膨脹係数が 0.5×10-6
℃以下であり、主構造体組織がコージェライト結晶集合
体(ドメイン)、細孔より成り、マイクロクラックがド
メイン構造内コージェライト結晶のC軸方向に沿って進
展していることを特徴とするものである。なお、ハニカ
ム構造体の組織としては、ガラス相、副結晶相も少量含
まれる。
The cordierite honeycomb structure of the present invention has a chemical composition of main components of SiO 2 42 to 56% by weight, Al 2 O 3 30 to 45% by weight, and MgO 12 to 16% by weight. , The main crystal phase is cordierite, and the coefficient of thermal expansion between 40 and 800 ℃ in the flow direction of the honeycomb structure (axis of Fig. 4A) is 0.3 × 10 -6 / ℃ or less, Direction (axis of Fig. 4B) between 40 and 800 ℃ has a coefficient of thermal expansion of 0.5 × 10 -6 /
C. or less, the main structure structure is composed of cordierite crystal aggregates (domains) and pores, and microcracks are developed along the C-axis direction of the cordierite crystals in the domain structure. Is. The structure of the honeycomb structure also contains a small amount of glass phase and sub-crystal phase.

【0012】[0012]

【作用】上述した構成において低膨脹化が達成できるの
は、高純度非晶質シリカの使用により反応系態がタル
ク、カオリン、アルミナ系のコージェライト化反応系態
と大きく異なりコージェライト晶出段階が高温側に移行
し、好ましいコージェライト結晶配向すなわちコージェ
ライト結晶のC軸晶出方向が同方向に並んだ最大径20μ
m 以上のドメインを得ることができるためである。さら
に、コージェライト結晶のC軸方向の平均長さが1〜5
μm で80%以上のコージェライト結晶のC軸/A軸のア
スペクト比が1.5 以上の自形のコージェライト結晶が著
しく発達した微構造が得られる。
In the above-mentioned constitution, the low expansion can be achieved because the use of high-purity amorphous silica makes the reaction system greatly different from the cordierite-forming reaction system of talc, kaolin, and alumina. Shift to the high temperature side, and the preferred cordierite crystal orientation, that is, the maximum diameter of the cordierite crystal with the C-axis crystallization direction aligned in the same direction is 20 μm.
This is because it is possible to obtain more than m domains. Furthermore, the average length of the cordierite crystal in the C-axis direction is 1 to 5
A microstructure is obtained in which the automorphic cordierite crystal having a C-axis / A-axis aspect ratio of 1.5% or more of the cordierite crystal of 80% or more in μm is significantly developed.

【0013】すなわち、コージェライト結晶のC軸晶出
方向が同方向に並んだドメインと細孔をハニカム構造体
の主構造体組織とすることでマイクロクラックがドメイ
ン構造内コージェライト結晶のC軸方向に沿って進展さ
せることが可能となり、正の膨脹をするコージェライト
結晶A軸、B軸方向の熱膨脹を吸収しやすくなるため、
マイクロクラックの低膨脹化への寄与が大きくなり、ハ
ニカム構造体として低膨脹化すると考えられる。またド
メインを好ましくは最大径20μm 以上とすることでマイ
クロクラックをよりコージェライト結晶C軸方向に進展
させることができる。これらはコージェライト結晶のC
軸方向の平均長さが1〜5μm で80%以上のコージェラ
イト結晶のC軸/A軸のアスペクト比が 1.5以上の著し
く発達した自形のコージェライト結晶となることで得ら
れるものである。
That is, by forming domains and pores in which the C-axis crystallizing directions of the cordierite crystal are aligned in the same direction as the main structure structure of the honeycomb structure, microcracks are generated in the C-axis direction of the cordierite crystal in the domain structure. It becomes possible to progress along with, and it becomes easier to absorb the thermal expansion in the A-axis and B-axis directions of the cordierite crystal that expands positively.
It is considered that the contribution of the microcracks to the low expansion becomes large, and the honeycomb structure has a low expansion. Further, by setting the domain preferably to have a maximum diameter of 20 μm or more, microcracks can be further propagated in the C-axis direction of the cordierite crystal. These are C of cordierite crystals
The average length in the axial direction is 1 to 5 μm, and 80% or more of the cordierite crystal has a C-axis / A-axis aspect ratio of 1.5 or more, which is a significantly developed automorphic cordierite crystal.

【0014】さらにまた、この微構造の特徴としてマイ
クロクラックの量はタルク、カオリン、アルミナ系のコ
ージェライト材料と大きく異なることはないが、マイク
ロクラックがドメイン構造内コージェライト結晶のC軸
方向にそって進展しているものが多く、正の膨脹をする
コージェライト結晶A軸、B軸方向の熱膨脹を吸収する
ためマイクロクラックの低膨脹化への寄与も大きくなる
ことでハニカム構造体として低膨脹化するためと考えら
れる。
Furthermore, as a feature of this microstructure, the amount of microcracks does not differ greatly from that of talc, kaolin, and alumina-based cordierite materials, but the microcracks tend to fall along the C-axis direction of the cordierite crystal in the domain structure. Since the thermal expansion in the A-axis and B-axis directions of the cordierite crystal that expands positively is absorbed, the contribution of microcracks to the expansion becomes large, and the honeycomb structure has a low expansion. It is thought to be to do.

【0015】低膨脹化には、ハニカム構造体の化学組成
が SiO2にて42〜56重量%好ましくは47〜53重量%、Al
2O3 にて30〜45重量%好ましくは32〜38重量%、MgO に
て12〜16重量%好ましくは12.5〜15重量%とすることが
好適であり、不可避的に混入する成分例えばTiO2、CaO
、KNaO、Fe2O3 を全体として2.5 重量%以下含んでも
良い。
For low expansion, the chemical composition of the honeycomb structure is 42 to 56% by weight, preferably 47 to 53% by weight of SiO 2 , and Al.
30-45 wt% preferably 32-38 wt% in 2 O 3, 12 to 16 wt% in MgO preferably preferably set to 12.5 to 15 wt%, the component for example TiO 2 is inevitably mixed , CaO
, KNaO and Fe 2 O 3 may be contained in a total amount of 2.5 wt% or less.

【0016】結晶相は実質的にコージェライト結晶から
成ることが好ましく、コージェライト結晶量として90重
量%以上、他の含有結晶としてのムライト及びスピネル
(サフィリンを含む)を含む。
It is preferable that the crystal phase substantially consists of cordierite crystals, and the amount of cordierite crystals is 90% by weight or more, and mullite and spinel (including sapphirine) as other contained crystals are contained.

【0017】触媒担体としての気孔率は、30%未満では
触媒担持条件が悪化し、42%を超えると強度が低下する
とともに触媒担持後の耐熱衝撃性が悪化するため、30%
を超え42%以下が好ましいが、担持条件、キャンニング
方式の変更によって設定される。
If the porosity of the catalyst carrier is less than 30%, the catalyst supporting conditions will deteriorate, and if it exceeds 42%, the strength will decrease and the thermal shock resistance after supporting the catalyst will deteriorate.
Over 42% is preferable, but it is set by changing the carrying conditions and the canning method.

【0018】熱膨脹係数は、A軸方向が 0.3×10-6/℃
を超え、B軸方向が 0.5×10-6/℃を超えると、それぞ
れ耐熱衝撃性が悪化するため、A軸方向 0.3×10-6/℃
以下およびB軸方向 0.5×10-6/℃以下と限定した。な
お、A軸方向の熱膨脹係数は0.2×10-6/℃以下である
とさらに好ましい。
The coefficient of thermal expansion is 0.3 × 10 -6 / ° C in the A-axis direction.
And the B-axis direction exceeds 0.5 × 10 -6 / ° C, the thermal shock resistance deteriorates, so the A-axis direction is 0.3 × 10 -6 / ° C.
It was limited to the following and 0.5 × 10 −6 / ° C. or less in the B-axis direction. The coefficient of thermal expansion in the A-axis direction is more preferably 0.2 × 10 −6 / ° C. or less.

【0019】タルク粒度は、平均粒子径5μm 未満であ
ると熱膨脹係数が上昇し気孔率が低下するとともに、平
均粒子径が100 μm を超えると熱膨脹係数および気孔率
共に上昇するため、平均粒子径5〜100 μm と限定し
た。なお、平均粒子径は7〜50μm であると好ましい。
Regarding the talc particle size, if the average particle size is less than 5 μm, the coefficient of thermal expansion increases and the porosity decreases, and if the average particle size exceeds 100 μm, both the coefficient of thermal expansion and the porosity increase, so the average particle size 5 Limited to ~ 100 μm. The average particle size is preferably 7 to 50 μm.

【0020】シリカの粒度は、平均粒子径が15μm を超
えるとB軸方向の熱膨脹係数および気孔率が上昇するた
め平均粒子径15μm 以下と限定する。また、シリカの種
類は、結晶質シリカであると熱膨脹係数が上昇し耐熱衝
撃性が悪化するとともに、気孔率も上昇するため非晶質
シリカを使用する。
The particle size of silica is limited to 15 μm or less because the coefficient of thermal expansion in the B-axis direction and the porosity increase when the average particle size exceeds 15 μm. If the type of silica is crystalline silica, the coefficient of thermal expansion increases, the thermal shock resistance deteriorates, and the porosity also increases, so amorphous silica is used.

【0021】アルミナ粒度は、平均粒子径が2μm を超
えると熱膨脹係数が上昇するため、平均粒子径2μm 以
下と限定した。なお、このアルミナとしては、Na2O量0.
12重量%以下のローソーダアルミナを使用するとより低
膨脹化が可能となるため好ましい。
The alumina particle size is limited to 2 μm or less because the coefficient of thermal expansion increases when the average particle size exceeds 2 μm. As this alumina, Na 2 O amount of 0.
It is preferable to use 12% by weight or less of low soda alumina because it enables a lower expansion.

【0022】カオリン粒度は、平均粒子径が2μm 以下
であり、タルクの平均粒子径の1/3以下のものを使用す
るとコージェライト結晶の配向が促進され低膨脹化が達
成できるため好ましい。
The kaolin particle size is preferably 2 μm or less in average particle size, and the use of talc particles having an average particle size of 1/3 or less is preferable because the orientation of cordierite crystals is promoted and low expansion can be achieved.

【0023】アルミナ原料として使用する水酸化アルミ
ニウムは、平均粒子径が2μm 以下であるとコージェラ
イト結晶配向を促進し、低膨脹化に非常に効果があるた
め好ましい。
Aluminum hydroxide used as the alumina raw material is preferable because it has an average particle size of 2 μm or less because it promotes cordierite crystal orientation and is very effective in reducing expansion.

【0024】非晶質シリカの使用量は、8〜20重量%で
あると低膨脹化に最も効果があるため好ましい。
Amorphous silica is preferably used in an amount of 8 to 20% by weight because it is most effective in reducing expansion.

【0025】[0025]

【実施例】以下、本発明を実施例と比較例につきさらに
詳細に説明する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0026】実施例1 表1に示す化学分析値及び粒度の原料を表2〜表4のN
o. 1〜No.36 の調合割合に従って調合し、メチルセル
ロース添加後、混練し、押出し成形可能な坏土とした。
Example 1 The raw materials having the chemical analysis values and particle sizes shown in Table 1 were used as N in Tables 2 to 4.
o. 1 to No. 36 were mixed, and after adding methyl cellulose, kneading was performed to obtain an extrudable kneaded clay.

【0027】次いで、それぞれのバッチの坏土を公知の
押出成形法により、リブ厚152 μm、1平方センチ当り
のセル数62個で四角セル形状を有する直径93mm、高さ10
0mmの円筒形ハニカム構造体に成形した。ハニカム構造
体を乾燥後、表2〜表4に示す最高温度で焼成し、焼結
体の特性として、A,B軸の熱膨脹係数、気孔率、コー
ジェライト結晶量、耐熱衝撃性の評価を実施した。評価
結果も表2〜表4に示す。
Next, the kneaded material of each batch was subjected to a known extrusion molding method to have a rib thickness of 152 μm, a square cell shape with 62 cells per square centimeter, a diameter of 93 mm and a height of 10.
It was molded into a 0 mm cylindrical honeycomb structure. After the honeycomb structure was dried, it was fired at the maximum temperature shown in Tables 2 to 4, and the characteristics of the sintered body were evaluated such as the coefficient of thermal expansion of A and B axes, the porosity, the amount of cordierite crystals, and the thermal shock resistance. did. The evaluation results are also shown in Tables 2 to 4.

【0028】また、上述した結果から、図1にA軸方向
の熱膨脹係数と耐熱衝撃温度の関係、図2にB軸方向の
熱膨脹係数と耐熱衝撃温度の関係を示すとともに、図3
にN0. 1〜 No.7のバッチにおいてのタルク平均粒子径
とA,B軸方向の熱膨脹係数の関係とを比較しあわせて
従来公知の特公昭57-28390号公報中図1のタルク平均粒
子径と熱膨脹係数の関係を示す。
From the above results, FIG. 1 shows the relationship between the thermal expansion coefficient in the A-axis direction and the thermal shock resistance temperature, and FIG. 2 shows the relationship between the thermal expansion coefficient in the B-axis direction and the thermal shock resistance temperature.
In comparison with the relationship between the average particle size of talc and the coefficient of thermal expansion in the A and B axis directions in batches No. 1 to No. 7, the average particle size of talc shown in FIG. And the coefficient of thermal expansion.

【0029】なお、表1中原料の平均粒子径は、タルク
( A), (B), (C) についてはJIS標準篩による乾式分
離法により、またその他のものはX線沈降法によりマイ
クロメリティックス社のセディグラフにより測定した。
The average particle size of the raw materials in Table 1 is talc.
(A), (B), and (C) were measured by a dry separation method using a JIS standard sieve, and the others were measured by an X-ray sedimentation method using a cedigraph manufactured by Micromeritics.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】表2〜表4の結果から、平均粒子径5〜10
0 μm のタルク、平均粒子径2μm以下のアルミナ、平
均粒子径15μm 以下の高純度非晶質シリカを使用した試
験 No.2〜6, 9〜14, 16, 18および20〜35は、本発明
で規定するA軸およびB軸の熱膨脹係数を満たすことが
わかった。
From the results shown in Tables 2 to 4, the average particle size is 5 to 10
Test Nos. 2 to 6, 9 to 14, 16, 18 and 20 to 35 using talc of 0 μm, alumina having an average particle diameter of 2 μm or less, and high-purity amorphous silica having an average particle diameter of 15 μm or less are the present invention. It was found that the thermal expansion coefficients of the A-axis and the B-axis defined by 1) were satisfied.

【0035】また、タルク粒度が本発明外の試料 No.
1,7、アルミナ粒度が本発明外の試料 No.8、シリカ
粒度が本発明外の試料 No.15、結晶シリカを使用した試
料 No.17, 19は、それぞれ本発明で規定するA軸および
B軸の熱膨脹係数を満たさないこともわかった。
Sample No. having a talc particle size outside the scope of the present invention was used.
Sample Nos. 1 and 7, alumina having a particle size outside the scope of the present invention, Sample No. 15 having a silica grain size outside the scope of the present invention, and Samples Nos. 17 and 19 using crystalline silica were respectively the A axis and the A axis specified in the present invention. It was also found that the coefficient of thermal expansion of the B axis was not satisfied.

【0036】さらに、図1、図2より、耐熱衝撃温度が
熱膨脹係数と逆比例し、その相関はB軸の熱膨脹係数と
の間で顕著であることが、また図3より、本発明では公
知例である特公昭57-28390と同粒度のタルクを用いてい
るが、高純度非晶質シリカと微粒アルミナの併用により
熱膨脹係数を極めて小さくすることができることがわか
った。
Further, it is known from FIGS. 1 and 2 that the thermal shock resistance temperature is inversely proportional to the coefficient of thermal expansion, and the correlation is remarkable between the coefficient of thermal expansion of the B axis and that from FIG. Although talc having the same particle size as that of Japanese Examined Patent Publication No. 57-28390 is used, it was found that the thermal expansion coefficient can be made extremely small by using high-purity amorphous silica in combination with fine-grained alumina.

【0037】実施例2 表2〜表4に示した試料のうち数種類の試料を実施例1
と同様の方法で準備し、各試料の最小ドメイン長径、コ
ージェライト結晶平均長さ、アスペクト比1.5以上の結
晶量比、ハニカム壁面(ハニカム押出方向平行面)上で
のコージェライト結晶のI比〔I(110) /{I(110) +
I(002) }〕をそれぞれ求めた。結果を表5に示す。
Example 2 Several kinds of samples shown in Tables 2 to 4 were used in Example 1
Prepared in the same manner as above, the minimum domain major axis of each sample, the average length of the cordierite crystals, the crystal ratio of the aspect ratio of 1.5 or more, the I ratio of the cordierite crystals on the honeycomb wall surface (parallel surface in the honeycomb extrusion direction) [ I (110) / {I (110) +
I (002)}] was obtained. The results are shown in Table 5.

【0038】表5において、最小ドメイン長径は各試料
のSEM 写真より確認できる最小ドメインの長径から求め
た。また、コージェライト結晶平均長さおよびアスペク
ト比1.5 以上の結晶量比は、同じく各試料のSEM 写真よ
り無作為にコージェライト結晶を選択し、各結晶の長さ
と幅を測定するとともにアスペクト比を計算して求め
た。
In Table 5, the minimum domain major axis was determined from the minimum domain major axis that can be confirmed from the SEM photograph of each sample. In addition, for the average length of cordierite crystals and the amount of crystals with an aspect ratio of 1.5 or more, cordierite crystals were randomly selected from the SEM photographs of each sample, and the length and width of each crystal were measured and the aspect ratio was calculated. I asked.

【0039】[0039]

【表5】 [Table 5]

【0040】表5の結果から、本発明の一部の試料にお
いは、最小ドメイン長径は20μm 以上、コージェライト
結晶の平均長さは1〜5μm 、アスペクト比1.5 以上の
結晶量比は80%以上の範囲にあることがわかり、これら
の範囲は本発明における好ましい範囲であることがわか
った。さらに、ハニカム壁面のI比は0.78以上が好まし
い範囲であることがわかった。
From the results shown in Table 5, in some of the samples of the present invention, the minimum domain major axis is 20 μm or more, the average length of cordierite crystals is 1 to 5 μm, and the crystal amount ratio of aspect ratio 1.5 or more is 80% or more. It was found that the above ranges were present, and these ranges were found to be preferable ranges in the present invention. Furthermore, it was found that the I ratio of the honeycomb wall surface is preferably 0.78 or more.

【0041】また、図5(a) ,(b) に試験No.32 (本発
明)の50倍および2000倍のSEM 写真を、図6(a) ,(b)
に試験 No.36(参考例)の50倍および2000倍のSEM 写真
を示した。さらに、図7には図5(a) に示したSEM 写真
の各領域を説明するための図を示した。
5 (a) and 5 (b) are SEM photographs of Test No. 32 (invention) at 50 times and 2000 times, respectively, and FIGS. 6 (a) and 6 (b).
Shows SEM photographs of Test No. 36 (reference example) at 50 times and 2000 times. Further, FIG. 7 shows a diagram for explaining each region of the SEM photograph shown in FIG.

【0042】図5(a),(b) および図7とから、本発明の
試料 No.32のものにあっては、C軸方向に伸びた平均長
さ3.5 μm の長柱状のコージェライト自形結晶が非常に
発達し、長形20μm 以上のドメインを形成していること
がわかる。また、アスペクト比1.5 以上の結晶が全体の
85%を占めており、マイクロクラックもドメイン内結晶
C軸方向にそったものが多い。図5(a) に示す50倍SEM
写真で拡大すれば、自形結晶及びドメインを確認するこ
とができる。また、大きなドメインは長径が100 μm 以
上にもなり、SEM での確認が困難となる。
From FIGS. 5 (a), (b) and FIG. 7, the sample No. 32 of the present invention has a long columnar cordierite self-extending in the C-axis direction and an average length of 3.5 μm. It can be seen that the shape crystals are very well developed and form domains of 20 μm or longer. In addition, crystals with an aspect ratio of 1.5 or more
It accounts for 85%, and many microcracks are along the crystal C-axis direction in the domain. 50x SEM shown in Fig. 5 (a)
Enlarged in the photo, you can see the automorphic crystals and domains. In addition, the major axis of the large domain has a major axis of 100 μm or more, which makes it difficult to confirm by SEM.

【0043】これに対し、図6(a),(b) に示される試料
No.36の参考例にあっては、ほとんどの部分でコージェ
ライト自形結晶が認められず、確認できる自形結晶の平
均長さも0.8 μm である。従って、ドメインの形成も比
較的小さいもの(長径10μm以上)がごく一部に認めら
れるだけである。図6(b) に示す2000倍写真は自形結晶
が比較的発達した部分であるが、ここでもアスペクト比
が1.5 以上の結晶は少く、全体では30%しか認められな
い。また、マイクロクラックも存在するが、コージェラ
イト結晶との関係は明確でない。
On the other hand, the samples shown in FIGS. 6 (a) and 6 (b)
In the reference example of No. 36, cordierite automorphic crystals were not observed in most parts, and the average length of the automorphic crystals that could be confirmed was 0.8 μm. Therefore, the formation of domains is relatively small (major axis is 10 μm or more) in only a small part. The 2000x photograph shown in Fig. 6 (b) shows the area where the automorphic crystals were relatively developed, but again, there were few crystals with an aspect ratio of 1.5 or more, and only 30% was observed as a whole. Although microcracks are also present, their relationship with cordierite crystals is not clear.

【0044】さらに、図8(a),(b) に試験 No.32(本発
明)の同一視野における常温及び800 ℃におけるSEM 写
真を示す。図8図(a),(b) の比較により、常温で開いて
いるマイクロクラックが800 ℃ではほぼ完全に閉じてい
るのが確認でき、このことはマイクロクラックがコージ
ェライトハニカムの低膨脹化に寄与していることを示し
ている。
Further, FIGS. 8 (a) and 8 (b) show SEM photographs of Test No. 32 (invention) in the same visual field at room temperature and 800 ° C. By comparing Figures 8 (a) and 8 (b), it was confirmed that the microcracks that were open at room temperature were almost completely closed at 800 ℃, which means that the microcracks contribute to the low expansion of cordierite honeycomb. It shows that it is contributing.

【0045】さらにまた、図9に試験 No.32(本発明)
と No.36(参考例)の1200℃までの熱膨脹ヒステリシス
曲線を示す。図9から、試験 No.32の最大ヒステリシス
量(加熱時膨脹曲線と冷却時収縮曲線の同一温度での熱
膨脹率差の最大値)が0.086%、試験 No.36の最大ヒス
テリシス量が0.068 %である。最大ヒステリシス量の大
きさはマイクロクラックの量や低膨脹化への寄与の大き
さを表わすと考えられ、No. 32と No.36は微構造観察で
マイクロクラックの量に大きな差は認められないことか
ら、低膨脹化に対するマイクロクラックの効果は No.32
の方が大きいことを示している。
Furthermore, test No. 32 (invention) is shown in FIG.
And the thermal expansion hysteresis curves up to 1200 ° C of No. 36 (reference example) are shown. From Fig. 9, the maximum hysteresis amount of test No. 32 (maximum difference in thermal expansion coefficient at the same temperature between expansion curve during heating and contraction curve during cooling) was 0.086%, and maximum hysteresis amount in test No. 36 was 0.068%. is there. The maximum hysteresis amount is considered to represent the amount of microcracks and the contribution to low expansion, and No. 32 and No. 36 show no significant difference in the amount of microcracks in the microstructure observation. Therefore, the effect of microcracks on low expansion is No. 32.
It is shown that is larger.

【0046】[0046]

【発明の効果】以上詳細に説明したところから明らかな
ように、本発明によれば、ハニカム構造体組織をドメイ
ンと細孔とすることによってマイクロクラックをコージ
ェライト結晶のC軸方向に沿って進展させマイクロクラ
ックの熱膨脹吸収を正の膨脹をするコージェライト結晶
A軸、B軸方向により作用させることが可能となり、40
〜800 ℃の間の熱膨脹係数 A軸 : 0.3×10-6/℃以
下、B軸 : 0.5×10-6/℃以下の耐熱性、耐熱衝撃性に
優れたハニカム構造体となる。従って本発明は、産業上
極めて有用であり、特に高い耐熱性、耐熱衝撃性が要求
されている自動車排ガス浄化装置のマニホールド化、高
速運転に伴うセラミック触媒担体に有用である。
As is apparent from the above detailed description, according to the present invention, microcracks are propagated along the C-axis direction of cordierite crystal by forming the honeycomb structure structure into domains and pores. It is possible to make the thermal expansion absorption of the microcracks act in the A-axis and B-axis directions of the cordierite crystal that positively expands.
Coefficient of thermal expansion between ˜800 ° C. A-axis: 0.3 × 10 −6 / ° C. or less, B-axis: 0.5 × 10 −6 / ° C. or less, the honeycomb structure is excellent in heat resistance and thermal shock resistance. Therefore, the present invention is extremely useful industrially, and is particularly useful for forming a manifold of an automobile exhaust gas purifying apparatus, which is required to have high heat resistance and thermal shock resistance, and a ceramic catalyst carrier for high-speed operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】A軸の熱膨脹係数と耐熱衝撃温度との関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between the coefficient of thermal expansion of the A axis and the thermal shock resistance temperature.

【図2】B軸の熱膨脹係数と耐熱衝撃温度との関係を示
すグラフである。
FIG. 2 is a graph showing the relationship between the coefficient of thermal expansion of the B axis and the thermal shock resistance temperature.

【図3】タルク平均粒子径と熱膨脹係数との関係を示す
グラフである。
FIG. 3 is a graph showing the relationship between the average particle size of talc and the coefficient of thermal expansion.

【図4】ハニカム構造体の一例を示す斜視図である。FIG. 4 is a perspective view showing an example of a honeycomb structure.

【図5】試験 No.32の結晶の構造を示す50倍および2000
倍のSEM 写真である。
FIG. 5: 50 × and 2000 showing the structure of the crystal of test No. 32
It is a double SEM photograph.

【図6】試験 No.36の結晶の構造を示す50倍および2000
倍のSEM 写真である。
FIG. 6: 50 × and 2000 showing the structure of the crystal of test No. 36
It is a double SEM photograph.

【図7】図5(a) に示したSEM 写真の各領域を説明する
ための図である。
FIG. 7 is a diagram for explaining each region of the SEM photograph shown in FIG. 5 (a).

【図8】試験 No.32の同一視野における常温および800
℃の結晶の構造を示すSEM 写真である。
[Figure 8] Normal temperature and 800 in the same field of view of test No. 32
It is a SEM photograph which shows the structure of the crystal of (degreeC).

【図9】試験 No.32と No.36の1200℃までの熱膨脹ヒス
テリシス曲線を示す図である。
FIG. 9 is a diagram showing the thermal expansion hysteresis curves of Test Nos. 32 and 36 up to 1200 ° C.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 主成分の化学組成が SiO2 42〜56重量
%、Al2O3 30〜45重量%、MgO 12〜16重量%で、主結晶
相がコージェライトから成るハニカム構造体で、ハニカ
ム構造の流路方向の40〜800 ℃の間の熱膨脹係数が 0.3
×10-6/℃以下、流路に垂直な方向の40〜800 ℃の間の
熱膨脹係数が 0.5×10-6/℃以下であり、主構造体組織
がコージェライト結晶集合体(ドメイン)、細孔より成
り、マイクロクラックがドメイン構造内コージェライト
結晶のC軸方向に沿って進展していることを特徴とする
コージェライトハニカム構造体。
1. A honeycomb structure having a chemical composition of main components of SiO 2 42 to 56% by weight, Al 2 O 3 30 to 45% by weight, MgO 12 to 16% by weight, and a main crystal phase of cordierite. The coefficient of thermal expansion between 40 and 800 ℃ in the flow direction of the honeycomb structure is 0.3.
× 10 -6 / ℃ or less, the coefficient of thermal expansion between 40 ~ 800 ℃ in the direction perpendicular to the flow path is 0.5 × 10 -6 / ℃ or less, the main structure texture is cordierite crystal aggregate (domain), A cordierite honeycomb structure comprising pores, wherein microcracks extend along the C-axis direction of the cordierite crystal in the domain structure.
【請求項2】 気孔率が30%を超え42%以下である請求
項1記載のコージェライトハニカム構造体。
2. The cordierite honeycomb structure according to claim 1, which has a porosity of more than 30% and 42% or less.
【請求項3】 ハニカム構造の流路方向の40〜800 ℃の
間の熱膨張係数が 0.2×10-6/℃以下である請求項1記
載のコージェライトハニカム構造体。
3. The cordierite honeycomb structure according to claim 1, wherein the coefficient of thermal expansion between 40 and 800 ° C. in the flow direction of the honeycomb structure is 0.2 × 10 −6 / ° C. or less.
【請求項4】 前記ドメイン最大径が20μm 以上である
請求項1記載のコージェライトハニカム構造体。
4. The cordierite honeycomb structure according to claim 1, wherein the maximum domain diameter is 20 μm or more.
【請求項5】 コージェライト結晶のC軸方向の平均長
さが1〜5μm で、80%以上のコージェライト結晶のC
軸/A軸長さ比(アスペクト比)が1.5 以上である請求
項1項記載のコージェライトハニカム構造体。
5. A cordierite crystal having an average length in the C-axis direction of 1 to 5 μm and 80% or more of cordierite crystal C.
The cordierite honeycomb structure according to claim 1, wherein an axial / A axial length ratio (aspect ratio) is 1.5 or more.
【請求項6】 ハニカム壁面(ハニカム押出方向平行
面)のコージェライト結晶I比I=I(110)/{I(110)+
I(002)}が0.78以上である請求項1記載のコージェライ
トハニカム構造体。
6. A cordierite crystal I ratio I = I (110) / {I (110) + on a honeycomb wall surface (a plane parallel to the honeycomb extrusion direction).
The cordierite honeycomb structure according to claim 1, wherein I (002)} is 0.78 or more.
JP5139054A 1987-02-12 1993-05-17 Cordierite honeycomb structure Expired - Lifetime JPH0761892B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62283127A JPS643067A (en) 1987-02-12 1987-11-11 Cordierite honeycomb structure and production thereof
JP5139054A JPH0761892B2 (en) 1987-11-11 1993-05-17 Cordierite honeycomb structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62283127A JPS643067A (en) 1987-02-12 1987-11-11 Cordierite honeycomb structure and production thereof
JP5139054A JPH0761892B2 (en) 1987-11-11 1993-05-17 Cordierite honeycomb structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62283127A Division JPS643067A (en) 1987-02-12 1987-11-11 Cordierite honeycomb structure and production thereof

Publications (2)

Publication Number Publication Date
JPH0623275A JPH0623275A (en) 1994-02-01
JPH0761892B2 true JPH0761892B2 (en) 1995-07-05

Family

ID=26471960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5139054A Expired - Lifetime JPH0761892B2 (en) 1987-02-12 1993-05-17 Cordierite honeycomb structure

Country Status (1)

Country Link
JP (1) JPH0761892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009013567A1 (en) 2008-03-31 2009-10-01 Ngk Insulators, Ltd., Nagoya Process for producing a honeycomb structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520911B2 (en) * 2005-11-30 2009-04-21 Corning Incorporated Porous cordierite ceramic honeycomb article with improved strength and method of manufacturing same
US7744980B2 (en) * 2005-12-20 2010-06-29 Corning Incorporated Low CTE cordierite honeycomb article and method of manufacturing same
US10472285B2 (en) * 2016-11-10 2019-11-12 Corning Incorporated Composite ceramic materials, articles, and method of manufacture

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885977A (en) * 1973-11-05 1975-05-27 Corning Glass Works Anisotropic cordierite monolith
JPS5382822A (en) * 1976-12-28 1978-07-21 Ngk Insulators Ltd Cordierite ceramics
JPS56129044A (en) * 1980-03-14 1981-10-08 Ngk Insulators Ltd Thermal shock resistant ceramic honeycomb structure
JPS56145169A (en) * 1980-04-04 1981-11-11 Nippon Soken Manufacture of cordierite body
JPS56145170A (en) * 1980-04-04 1981-11-11 Nippon Soken Manufacture of cordierite body
JPS5728390A (en) * 1980-07-28 1982-02-16 Fujitsu Ltd Semiconductor laser
JPS5814950A (en) * 1981-07-18 1983-01-28 Nippon Soken Inc Catalyst carrier having honeycomb structure coated with activated alumina
JPS61129015A (en) * 1984-11-24 1986-06-17 Nippon Denso Co Ltd Filter for purifying exhaust gas and its preparation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009013567A1 (en) 2008-03-31 2009-10-01 Ngk Insulators, Ltd., Nagoya Process for producing a honeycomb structure
US8529826B2 (en) 2008-03-31 2013-09-10 Ngk Insulators, Ltd. Manufacturing method of honeycomb structure
DE102009013567B4 (en) 2008-03-31 2019-07-11 Ngk Insulators, Ltd. Process for producing a honeycomb structure

Also Published As

Publication number Publication date
JPH0623275A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
US5258150A (en) Fabrication of low thermal expansion, high porosity cordierite body
US5409870A (en) Modified cordierite precursors
US4869944A (en) Cordierite honeycomb-structural body and a method for producing the same
US7923093B2 (en) High porosity filters for 4-way exhaust gas treatment
JP4540025B2 (en) Production of ultra-low thermal expansion cordierite structures
US6391813B1 (en) Low sintering temperature cordierite batch and cordierite ceramic produced therefrom
JP5039554B2 (en) Ceramic body based on aluminum titanate and containing a glass phase
JP4950492B2 (en) Manufacturing method of honeycomb filter for exhaust gas purification
US4772580A (en) Catalyst carrier of cordierite honeycomb structure and method of producing the same
JP3150928B2 (en) Method for manufacturing thin-walled cordierite-based honeycomb structure
EP0232621B1 (en) Catalyst carrier of cordierite honeycomb structure and method of producing the same
KR20020026178A (en) Low expansion, high porosity, high strength cordierite body and method
KR20060095877A (en) Honeycomb carrier for exhaust gas clarification catalyst and method for production thereof
EP1027304A1 (en) Method for firing ceramic honeycomb bodies
US5997984A (en) Cordierite honeycomb structural body and method for its production
JP3311650B2 (en) Method for manufacturing cordierite-based ceramic honeycomb structure
JPH013067A (en) Manufacturing method of cordierite honeycomb structure
JPH0582343B2 (en)
US8058198B2 (en) Cordierite ceramic and method of producing the same
JP4609831B2 (en) Honeycomb carrier for exhaust gas purification catalyst and manufacturing method thereof
JP5128989B2 (en) Cordierite ceramics manufacturing method
JPH0761892B2 (en) Cordierite honeycomb structure
JPH0558773B2 (en)
JPH0470053B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 13