JPH0470053B2 - - Google Patents

Info

Publication number
JPH0470053B2
JPH0470053B2 JP61183904A JP18390486A JPH0470053B2 JP H0470053 B2 JPH0470053 B2 JP H0470053B2 JP 61183904 A JP61183904 A JP 61183904A JP 18390486 A JP18390486 A JP 18390486A JP H0470053 B2 JPH0470053 B2 JP H0470053B2
Authority
JP
Japan
Prior art keywords
less
average particle
honeycomb structure
particle size
cordierite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61183904A
Other languages
Japanese (ja)
Other versions
JPS62225249A (en
Inventor
Toshuki Hamanaka
Setsu Harada
Seiichi Asami
Keiichiro Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to US06/936,501 priority Critical patent/US4772580A/en
Priority to EP86310131A priority patent/EP0232621B1/en
Priority to EP86310130A priority patent/EP0227482B1/en
Priority to DE8686310131T priority patent/DE3671390D1/en
Priority to DE8686310130T priority patent/DE3680496D1/en
Publication of JPS62225249A publication Critical patent/JPS62225249A/en
Publication of JPH0470053B2 publication Critical patent/JPH0470053B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はコージエライトハニカム構造触媒担
体、特に自動車排ガスの浄化用触媒担体に用いら
れる高強度で低膨脹性のハニカム構造触媒担体及
びその製造方法に関するものである。 (従来の技術) 耐熱衝撃性に優れかつ多孔性のコージエライト
ハニカムセラミツクは各種排ガス中の炭化水素、
一酸化炭素および窒素酸化物を浄化させる装置に
用いるハニカム状触媒担体材料として特に注目さ
れている。各種排ガス浄化装置の中で特に現在広
く使用されているようになつてきた自動車排ガス
浄化装置に用いるセラミツクハニカム触媒担体に
は、いくつかの重要な特性が要求される。要求さ
れる特性の一つはいわゆる耐熱衝撃性で、これは
排気ガス中の未燃焼炭化水素、一酸化炭素の触媒
酸化反応により急激な発熱による温度変化を受
け、ハニカム内に生じる温度差により引きおこさ
れる熱応力により亀裂又は破壊に耐える性質であ
る。この耐熱衝撃性は急熱急冷耐久温度差で表わ
され、その耐久温度差はハニカムの特性のうち熱
膨脹係数に逆比例することが判明しており、熱膨
脹係数が小さいほどその耐久温度差が大きい。 セラミツクハニカム触媒担体に要求される別の
性質はハニカム触媒担体と触媒活性物質及び触媒
物質との付着性がある。 セラミツクハニカム触媒担体に要求される他の
重要な性質として、ハニカム触媒の初期活性即ち
ライトオフ性能がある。 従来、コージエライトセラミツクが低膨脹性を
示すことは公知であり、例えば米国特許第
3885977号明細書(特開昭50−75611号公報)に開
示されているように、25℃〜1000℃の間での熱膨
脹係数が少なくとも一方向で11×10-7(1/℃)
より小さい配向したコージエライトセラミツクが
知られており、そこではこの配向性を起させる原
因としてカオリン等の板状粘土、積層粘土に起因
する平面的配向を記述している。 さらに特開昭53−82822号公報では、タルク等
のマグネシア源原料を10〜50μmの限定された粗
粒域で用いることにより、コージエライトセラミ
ツクが極めて低熱膨脹を示すことが開示されてい
る。 (発明が解決しようとする問題点) 一方、近年ハニカム構造触媒担体への触媒担持
技術の大幅な向上により、従来ハニカム構造触媒
担体に強く要求されていた多孔性に対する要求が
少なくなり、逆に触媒担体の容積の縮小即ち触媒
性能の向上、ライトオフ性能の向上、燃費性能改
良およびエンジンの出力向上のための低圧力損失
化、ケーシングへのキヤンニングのコストダウン
のための強度向上、さらに触媒活性を高めるため
にエンジン近傍に設置する必要性により耐熱衝撃
性の向上と強度の向上が強く望まれている。対応
する対策として触媒性能向上のためのハニカム構
造体のリブの薄壁化、高セル密度化、あるいは低
圧損化のための薄壁化、低セル密度化が従来より
検討されてきたが、多孔性のコージエライトセラ
ミツクスの薄壁化により強度低下の問題があり、
また、押出成形時の口金スリツト巾の減少によつ
て使用原料、特にマグネシア源原料を微粒にしな
ければならないため大幅な熱膨脹率の上昇を伴う
問題があつた。 さらに、コージエライトセラミツクスの緻密化
は難しく、特に室温から800℃までの熱膨脹係数
が2.0×10-6/℃以下を示すような低膨脹を示す
コージエライト素地では、カルシア、アルカリ、
カリ、ソーダのような融剤となるべき不純物量を
極めて小量に限定する必要があるためガラス相が
非常に少なく多孔質となる。特に近年自動車排ガ
ス浄化用触媒担体として使用されているコージエ
ライト質ハニカム構造体は、室温から800℃まで
の熱膨脹係数が1.5×10-6/℃以下であることを
必要とするため、不純物の少ないタルク、カオリ
ン、アルミナ等の原料が使用され、これらの原料
産地、原料系、原料粒度等の選定を行つてもその
コージエライト焼成体の気孔率はせいぜい20〜45
%の範囲のものに過ぎず、特に気孔率30%以下の
ハニカム構造体では不純物量の増加、原料の微粒
化が必要であつて、室温から800℃までの熱膨脹
係数が1.0×10-6/℃以下のものは得られなかつ
た。 さらに比較的低気孔率のコージエライト質ハニ
カム構造体の構造においては、乾燥及び焼成工程
での収縮が大きいため亀裂を発生し易く、歩留り
良く大きな寸法のハニカム構造体を製造すること
は困難であつた。 以上の技術的理由によつて、薄壁でしかも強度
特性を満足できる低気孔率レベルを有する極めて
低熱膨脹のコージエライト質ハニカム構造触媒担
体が要望されている。 (問題点を解決するための手段) 特開昭53−82822号公報に開示されているよう
にハニカム構造体の原料に微細タルクを使用して
焼成すると、熱膨脹率が著しく大きくなる欠点が
あるが、本発明者等はこの欠点を有した微細タル
ク中でも特に微細な平均粒子径7μm以下、好ま
しくは5μm以下のタルクを敢えて使用し、生成
する熱膨脹率の増大を同じく極微粒に属する粒子
径2μm以下、好ましくは1μm以下のカオリンの
併用さらには微細な平均粒子径2μm以下のアル
ミナおよび/または水酸化アルミニウム、又はこ
れらと高純度非晶質シリカの併用により解消で
き、気孔率を30%以下に低減することが可能とな
り、ハニカム構造リブの薄壁化によつても実用に
耐える強度レベルを発現することを見出した。さ
らに本発明者等はタルクの平均粒子径の1/3以下
の平均粒子径のカオリンの使用が好ましいことを
見出した。 さらに本発明では、ハニカム構造体の耐熱衝撃
性に対して寄与率が大であるハニカム構造体流路
(貫通孔)に垂直方向(B軸と称する)の熱膨脹
率と、コージエライト結晶の配向関係から最も低
熱膨脹特性を有するハニカム構造体流路(貫通
孔)方向(A軸と称する)の熱膨脹率との差が、
非常に小さくすることが明らかとなつた。従来の
粗粒原料を使用するコージエライト質ハニカム構
造体では、ハニカム構造リブ交点付近でタルク、
カオリン等の押出成形時に配向する原料の配向性
が乱れ、A軸の熱膨脹係数に比較し、B軸の熱膨
脹係数は40〜800℃の熱膨脹係数差で0.2×10-6
℃を越える高い値を示していた。本発明の極微粒
原料の使用により交点部分のハニカム構造体は熱
膨脹への悪影響が小さくなり、耐熱衝撃性向上に
極めて重要なハニカム構造体のB軸熱膨脹を大幅
に低下できることを見出した。 本発明は主成分の化学組成が重量基準で
SiO242〜56%、Al2O330〜45%、MgO12〜16%
で結晶相の主成分がコージエライトから成るハニ
カム構造を有し、気孔率が30%以下さらに好まし
くは25%以下でハニカム構造の流路方向の40〜
800℃の間の熱膨脹係数が0.8×10-6/℃以下、流
路に垂直な方向の40〜800℃の熱膨脹係数が1.0×
10-6/℃以下であることを特徴とする高強度低膨
脹性のコージエライトハニカム構造触媒担体であ
る。 本発明はまた、主成分の化学組成が重量基準で
SiO242〜56%、Al2O330〜45%、MgO12〜16%
になるように平均粒子径7μm以下のタルク、平
均粒子径2μm以下でかつタルクの平均粒子径の
1/3以下の平均粒子径のカオリン及び他のコージ
エライト化原料を調合し、この調合物に有機結合
剤及び可塑化剤を加え、混合混練して押出成形可
能に可塑化し、ハニカム構造体に押出成形後乾燥
し、1350〜1440℃の温度で焼成することにより、
結晶相の主成分がコージエライトから成り、気孔
率が30%以下で、ハニカム構造の流路方向の40〜
800℃の熱膨脹係数が0.8×10-6/℃以下、流路に
垂直な方向の40〜800℃の熱膨脹係数が1.0×
10-6/℃以下でかつその熱膨脹係数差が0.2×
10-6/℃以下である高強度低膨脹性のコージエラ
イトハニカム構造触媒担体を得ることを特徴とす
るコージエライトハニカム構造触媒担体の製造方
法である。 さらに本発明は、SiO242〜56%、Al2O330〜45
%、MgO12〜16%になるように平均粒子径7μm
以下のタルク、平均粒子径2μm以下でかつタル
クの平均粒子径の1/3以下の平均粒子径のカオリ
ン、平均粒子径2μm以下のアルミナおよび/ま
たは水酸化アルミニウム及び他のコージエライト
化原料を調合し、この調合物に有機結合剤及び可
塑化剤を加え、混合混練して押出成形可能に可塑
化し、ハニカム構造体に押出成形後乾燥し、1350
〜1440℃の温度で焼成することにより、結晶相の
主成分がコージエライトから成り、気孔率25%以
下、ハニカム構造体触媒担体のA軸CTE(熱膨脹
係数)0.8×10-6/℃以下のコージエライトハニ
カム構造触媒担体を得るか、またはSiO242〜56
%、Al2O330〜45%、MgO12〜16%になるように
平均粒子径7μm以下のタルク、平均粒子径2μm
以下でかつタルクの平均粒子径の1/3以下の平均
粒子径のカオリン、平均粒子径2μm以下のアル
ミナおよび/または水酸化アルミニウム、8%以
下の高純度非晶質シリカ及び他のコージエライト
化原料を調合し、この調合物に有機結合剤及び可
塑化剤を加え、混合混練して押出成形可能に可塑
化し、ハニカム構造体に押出成形後乾燥し、1350
〜1440℃の温度で焼成することにより、結晶相の
主成分がコージエライトから成り、気孔率30%以
下、ハニカム構造触媒体のA軸CTE0.5×10-6
℃以下、B軸CTE1.0×10-6/℃以下又は気孔率
25%以下、A軸CTE0.6×10-6/℃以下、B軸
CTE1.0×10-6/℃以下のコージエライトハニカ
ム構造触媒担体を得る製造方法である。 本発明のハニカム構造体の化学組成は、従来低
膨脹コージエライトセラミツクスの組成として知
られているコージエライト理論組成点(2MgO・
2Al2O3・5SiO2)を中心とした重量基準でSiO242
〜56%、好ましくは47〜53%、Al2O330〜45%好
ましくは32〜38%、MgO12〜16%好ましくは
12.5〜15%の領域で、種々の製造条件変更により
目的とする30%以下の気孔率、40〜800℃のA軸
熱膨脹係数0.8×10-6/℃以下、同じく1×
10-6/℃以下のB軸熱膨脹を達成することが可能
である。 主成分以外の化学成分は熱膨脹特性に悪影響を
及ぼす場合が多く、TiO2、CaO、K2O、Na2O、
Fe2O3、P2O5等の不純物は全体として2.5%以下
に抑えることが望ましく、特にCaO、K2O、
Na2Oアルカリ成分が少ないほど熱膨脹特性に好
影響を及ぼす。またP2O5は実質的に含有しない
0.1%未満である必要がある。結晶相は実質的に
コージエライト結晶から成ることが好ましく、コ
ージエライト結晶量として90重量%以上、他の含
有結晶としてのムライト、及びスピネル(サフイ
リンを含む)は夫々2.5重量%以下である。使用
する微粒タルクは特にアルカリ成分の少ないもの
が好ましく、微粉砕に用いる粉砕方法は粒子形状
を破壊する摩砕等の粉砕方法、例えばボールミル
等の使用は好ましくなく、レイモンドミル等の粉
砕方法が好適である。粒子径7μmを越えるタル
クはAB軸熱膨脹率差、気孔率が大となる。微粒
カオリンも不純物の少ないものが好ましく、結晶
形状にバラツキが少なく大きな結晶の混在しない
ものが好ましい。例えば、ニユージーランドカオ
リン等結晶形状にバラツキが大きく二次粒子を形
成し易いカオリンは好ましくない。 また、カオリン中焼成カオリンの粉砕方法とし
ては湿式ボールミル粉砕原料を用いると緻密化に
きわめて好適である。 粒子径2μmを越えるカオリンの使用は粒子径
7μm以下のタルクとの使用で熱膨脹が増加し、
気孔率が大となる。 さらに平均粒子径5μm以下のタルクおよび/
または平均粒子径1μm以下でかつタルクの平均
粒子径の1/3以下の平均粒子径のカオリンを使用
すると、低熱膨脹を維持したままさらに気孔率を
低下させることができる。 なお、タルク、カオリンの粒径は生、仮焼品の
調合重量比による平均粒子径より求めた。 本発明はタルク、カオリンの微粒子化に際し、
乾燥、焼成時での収縮等によるハニカム構造体亀
裂発生の抑制に効果的な仮焼タルク、仮焼カオリ
ンの使用をも包含する。タルク、カオリンの仮焼
温度を高温化することは気孔率増加と熱膨脹率増
加を招くため仮焼物を使用する場合は、仮焼温度
はできる限り低い温度の方が好ましい。粒度は生
原料と同様の微粒物を使用しなければ本発明の効
果を得ることはできない。 気孔率30%以下を達成するために、他のコージ
エライト化原料即ちアルミナ、水酸化アルミニウ
ム等のアルミナ源原料、非晶質シリカ、珪砂等の
シリカ源原料は従来より使用されているものを使
用することができるが、化学組成におけるアルカ
リ等不純物量の適正化及び製造するハニカム構造
体のリブ厚に応じて粗粒物のカツト等粒度の適正
化を図る必要がある。 また、気孔率25%以下を達成するために微粒の
アルミナおよび/または微粒の水酸化アルミニウ
ムを使用する場合は、2μm以下の粒子径のもの
を使用すると本発明の目的とする気孔率の低下に
寄与し、またローソーダアルミナ(Na2O0.12%
以下)を使用することにより、低膨脹化、低気孔
率化により一層の効果がある。 さらに低膨脹を達成するために高純度の非晶質
シリカの添加も気孔率の低下に寄与するが、8%
を越える添加は触媒担体の性質を劣化するため好
ましくない。 本発明における製造工程は従来のコージエライ
トハニカム構造体製造に用いられている押出成形
工程を適用することが可能である。焼成工程で
は、特に1100〜1350℃の温度領域では20〜300
℃/Hr好ましくは30〜200℃/Hrの平均昇温速
度で昇温し、1350〜1440℃の最高温度0.5〜24時
間焼成することが望ましい。平均昇温速度20℃/
Hr未満では熱膨脹率が大となり、300℃/Hrを
越えると焼成物の変形が著しくなる。また、1350
℃未満では熱膨脹率が大となり、1440℃以上では
焼成物の変形が著しくなる。 (作用) セル構造と強度特性に関しハニカム構造体A軸
方向の圧縮強度は、自動車排ガス浄化用触媒担体
として使用の場合、特に自動車運転時の振動、担
体容器の保持圧力等に耐えるためのリブ厚152μ
m1平方センチ当りのセル数62個の四角セル構造
(152μm/62個/cm2と称する)で少なくとも150
〜200Kg/cm2以上を必要とされるが、本発明では
コージエライト材質の熱膨脹を高めることなく気
孔率を30%以下に低減することが達成されたた
め、152μm/62個/cm2でA軸圧縮強度300Kg/cm2
以上のレベルが可能となつた。 さらに従来強度的に実使用不可能であつた
152μm/47個/cm2や強度、熱膨脹とも実使用不
可能であつた102μm/93個/cm2のセル構造でも
苛酷な使用条件でも耐えることのできるA軸圧縮
強度200Kg/cm2以上のレベルを示す、触媒担体の
形状設計と設置条件に応じて種々のセル構造を設
計することが可能となつた。即ち本発明による強
度向上は薄壁化、高セル密度化したハニカム構造
体への適用にあたり、従来品と比較して耐熱衝
撃、触媒性能等に優れた効果を発揮し、また薄壁
化低セル密度化したハニカム構造体への適用によ
り従来品と比較して耐熱衝撃、低圧損等に優れた
効果を発揮する。 従来使用されているリブ厚300μm1平方セン
チ当りセル数47個のハニカム構造体に比較して、
本発明はリブ厚102μm1平方センチ当りセル数
93個のハニカム構造体が得られ、高密度セル構造
による触媒活性の大幅向上に加えて耐熱衝撃生を
大幅に改善し、自動車排ガス用担体としてエンジ
ン近傍のマニホールド等への装着に好適なコージ
エライト質ハニカム構造体が実現できた。 また同じく従来の300μm/47個/cm2のハニカ
ム構造体に比較して152μm/62個/cm2のハニカ
ム構造体はA軸圧縮強度の大幅な向上によりハニ
カム構造体のケーシングへのキヤンニングの簡素
化が可能となり、振動の激しいエンジン近傍のマ
ニホールド等への装着に好適なハニカム構造体が
実現できた。 更に、300μm/47個/cm2のハニカム構造体に
比較して同等レベルの熱膨脹、A軸圧縮強度を持
つ152μm/47個/cm2のハニカム構造体が得られ、
自動車排ガスの低圧力損失によるエンジンの出力
向上、燃費の低減に好適なハニカム構造体が実現
できた。 本発明によるこのハニカム構造体B軸方向の熱
膨脹挙動は、特に触媒担体の性能向上のための高
セル密度化に有利である。 本発明のハニカム構造体はリブ厚203μm以下
の従来のハニカム構造体に比較してかなり薄壁の
ハニカム構造体である利点が得られる。すなわ
ち、薄壁で高セル密度、あるいは薄壁で比較的セ
ル密度の小さいハニカム構造体に好適である。一
方リブ厚が大きくセル密度の小さいハニカム構造
体へも高強度化により広く適用が可能となつた。 (実施例) 実施例 1 以下、本発明を実施例と比較例につきさらに詳
細に説明する。 次の第1表に示す化学分析値及び粒度の原料を
用いて、第2表No.1〜No.32のバツチをそれぞれ第
2表に示す調合割合に従つて調合し、原料100重
量部に対してメチルセルローズ3.8重量部及び添
加水を加え、混練と押出成形可能な坏土とした。
ここで使用原料は全て63μm篩通過のものを使用
した。 次いでそれぞれのバツチの坏土を公知の押出成
形法により、リブ厚102μm、1平方センチ当り
のセル数93個四角セル構造を有する直径93mm高さ
100mmの円筒形ハニカム構造体に成形した。それ
ぞれのバツチによるハニカム構造体を乾燥後、第
2表に示す焼成条件で焼成し、焼結体の特性とし
てハニカム構造体A軸とB軸の40〜800℃での熱
膨脹係数(CTE)、気孔率、コージエライト結晶
量、ハニカム構造A軸方向の圧縮強度、耐熱衝撃
性の評価を実施した。評価結果も第2表に示す。
なお、全ての焼結体の化学組成としてP2O5は0.1
%未満であつた。 原料の粒度分布、平均粒子径はX線沈降法によ
つたもので、本発明ではマイクロメリテイツクス
社のセデイグラフで測定した。
(Industrial Application Field) The present invention relates to a cordierite honeycomb structured catalyst carrier, particularly a high-strength, low-expansion honeycomb structured catalyst carrier used as a catalyst carrier for purifying automobile exhaust gas, and a method for producing the same. (Conventional technology) Cordierite honeycomb ceramic, which has excellent thermal shock resistance and is porous, absorbs hydrocarbons in various exhaust gases,
It is attracting particular attention as a honeycomb-shaped catalyst carrier material used in devices for purifying carbon monoxide and nitrogen oxides. Ceramic honeycomb catalyst carriers used in automobile exhaust gas purification devices, which are now widely used among various exhaust gas purification devices, are required to have several important properties. One of the required properties is so-called thermal shock resistance, which is caused by the temperature change caused by rapid heat generation due to the catalytic oxidation reaction of unburned hydrocarbons and carbon monoxide in the exhaust gas, and the temperature difference that occurs within the honeycomb. It has the property of resisting cracking or destruction due to thermal stress caused. This thermal shock resistance is expressed by the rapid heating and cooling durability temperature difference, and it has been found that the durability temperature difference is inversely proportional to the thermal expansion coefficient among the characteristics of honeycomb, and the smaller the thermal expansion coefficient, the larger the durability temperature difference. . Another property required of the ceramic honeycomb catalyst carrier is adhesion between the honeycomb catalyst carrier and the catalytically active substance and the catalytic substance. Another important property required of a ceramic honeycomb catalyst carrier is the initial activity or light-off performance of the honeycomb catalyst. It has been known that cordierite ceramic exhibits low expansion properties, for example, as described in U.S. Patent No.
As disclosed in Specification No. 3885977 (Japanese Unexamined Patent Publication No. 75611/1983), the coefficient of thermal expansion between 25°C and 1000°C is 11×10 -7 (1/°C) in at least one direction.
Smaller oriented cordierite ceramics are known, and the planar orientation caused by platy clays such as kaolin and laminated clays is described as the cause of this orientation. Further, JP-A-53-82822 discloses that cordierite ceramic exhibits extremely low thermal expansion by using a magnesia source material such as talc in a limited coarse grain region of 10 to 50 μm. (Problem to be solved by the invention) On the other hand, in recent years, with the significant improvement in catalyst supporting technology on honeycomb structure catalyst carriers, the requirement for porosity, which was previously strongly required for honeycomb structure catalyst carriers, has decreased, and on the contrary, the Reducing the volume of the carrier, i.e. improving catalyst performance, improving light-off performance, lowering pressure loss to improve fuel efficiency and increasing engine output, improving strength to reduce the cost of canning the casing, and increasing catalyst activity. There is a strong desire to improve thermal shock resistance and strength due to the need to install it near the engine in order to improve the thermal shock resistance. As countermeasures, thinner walls and higher cell density of the ribs of the honeycomb structure have been considered to improve catalyst performance, and thinner walls and lower cell density to lower pressure loss have been considered. There is a problem of reduced strength due to thinner walls of cordierite ceramics.
Furthermore, due to the reduction in the width of the die slit during extrusion molding, the raw materials used, especially the magnesia source material, must be made into fine particles, resulting in the problem of a significant increase in the coefficient of thermal expansion. Furthermore, it is difficult to densify cordierite ceramics, especially for cordierite substrates that exhibit low thermal expansion coefficients of 2.0×10 -6 /℃ or less from room temperature to 800℃.
Since it is necessary to limit the amount of impurities such as potash and soda that serve as fluxing agents to an extremely small amount, the glass phase is extremely small and the material becomes porous. In particular, cordierite honeycomb structures, which have been used as catalyst carriers for automobile exhaust gas purification in recent years, require a thermal expansion coefficient of 1.5 x 10 -6 /°C or less from room temperature to 800°C. , kaolin, alumina, and other raw materials are used, and even if the source of these raw materials, raw material system, raw material particle size, etc. are selected, the porosity of the fired cordierite body is at most 20 to 45.
In particular, for honeycomb structures with a porosity of 30% or less, it is necessary to increase the amount of impurities and make the raw material atomized, and the thermal expansion coefficient from room temperature to 800℃ is 1.0 × 10 -6 / ℃ or lower was not obtained. Furthermore, in the structure of cordierite honeycomb structures with relatively low porosity, cracks are likely to occur due to large shrinkage during drying and firing processes, making it difficult to manufacture large-sized honeycomb structures with good yield. . For the above technical reasons, there is a need for an extremely low thermal expansion cordierite honeycomb structure catalyst carrier that is thin-walled and has a low porosity level that satisfies strength properties. (Means for solving the problem) As disclosed in Japanese Patent Application Laid-open No. 53-82822, when fine talc is used as a raw material for a honeycomb structure and fired, there is a drawback that the coefficient of thermal expansion becomes significantly large. Among the fine talcs having this drawback, the present inventors purposely used talc with an average particle size of 7 μm or less, preferably 5 μm or less, which is particularly fine, and suppressed the increase in the thermal expansion rate of the particles, which also belong to the ultrafine particle size, of 2 μm or less. , preferably in combination with kaolin with a particle size of 1 μm or less, as well as alumina and/or aluminum hydroxide with a fine average particle size of 2 μm or less, or a combination of these with high-purity amorphous silica, reducing the porosity to 30% or less. It has been found that even when the walls of the honeycomb structure ribs are made thinner, a strength level that can withstand practical use can be achieved. Furthermore, the present inventors have found that it is preferable to use kaolin having an average particle size of 1/3 or less of the average particle size of talc. Furthermore, in the present invention, from the relationship between the thermal expansion coefficient in the direction perpendicular to the honeycomb structure flow channels (through holes) (referred to as the B axis) and the orientation of cordierite crystals, which has a large contribution rate to the thermal shock resistance of the honeycomb structure, The difference between the coefficient of thermal expansion in the flow path (through hole) direction (referred to as the A axis) of the honeycomb structure having the lowest thermal expansion characteristics is
It became clear that it could be made very small. In cordierite honeycomb structures that use conventional coarse-grained raw materials, talc,
The orientation of raw materials such as kaolin that are oriented during extrusion molding is disordered, and compared to the thermal expansion coefficient of the A axis, the thermal expansion coefficient of the B axis is 0.2 × 10 -6 /
It showed a high value exceeding ℃. It has been found that by using the ultrafine grain raw material of the present invention, the adverse effect on the thermal expansion of the honeycomb structure at the intersection point is reduced, and the B-axis thermal expansion of the honeycomb structure, which is extremely important for improving thermal shock resistance, can be significantly reduced. In the present invention, the chemical composition of the main component is based on weight.
SiO2 42-56%, Al2O3 30-45 %, MgO12-16%
It has a honeycomb structure in which the main component of the crystalline phase is cordierite, and the porosity is 30% or less, more preferably 25% or less, and porosity is 40% to 40% in the flow path direction of the honeycomb structure.
Thermal expansion coefficient between 800℃ is 0.8×10 -6 /℃ or less, and the thermal expansion coefficient between 40 and 800℃ in the direction perpendicular to the flow path is 1.0×
This is a high-strength, low-expansion cordierite honeycomb structure catalyst carrier characterized by a temperature of 10 -6 /°C or less. The present invention also provides that the chemical composition of the main component is based on weight.
SiO2 42-56%, Al2O3 30-45 %, MgO12-16%
Talc with an average particle size of 7 μm or less, kaolin with an average particle size of 2 μm or less and 1/3 or less of the average particle size of talc, and other cordierite forming raw materials are mixed so that By adding a binder and a plasticizer, mixing and kneading to plasticize it so that it can be extruded, extrusion molding into a honeycomb structure, drying, and baking at a temperature of 1350 to 1440 ° C.
The main component of the crystalline phase is cordierite, the porosity is 30% or less, and the porosity is 40 to 40% in the flow path direction of the honeycomb structure.
The coefficient of thermal expansion at 800℃ is 0.8×10 -6 /℃ or less, and the coefficient of thermal expansion from 40 to 800℃ in the direction perpendicular to the flow path is 1.0×
10 -6 /℃ or less and the difference in thermal expansion coefficient is 0.2×
The present invention is a method for producing a cordierite honeycomb structure catalyst carrier, which is characterized by obtaining a cordierite honeycomb structure catalyst carrier having high strength and low expansibility of 10 -6 /°C or less. Furthermore, the present invention has SiO 2 42-56%, Al 2 O 3 30-45%
%, average particle size 7 μm to make MgO 12-16%
The following talc, kaolin with an average particle size of 2 μm or less and 1/3 or less of the average particle size of talc, alumina and/or aluminum hydroxide with an average particle size of 2 μm or less, and other cordierite forming raw materials are prepared. , an organic binder and a plasticizer are added to this mixture, mixed and kneaded to make it plasticized so that it can be extruded, extruded into a honeycomb structure, dried,
By firing at a temperature of ~1440℃, the main component of the crystal phase is cordierite, the porosity is 25% or less, and the A-axis CTE (coefficient of thermal expansion) of the honeycomb structure catalyst carrier is 0.8×10 -6 /℃ or less. Obtain elite honeycomb structure catalyst support or SiO2 42~56
%, Al 2 O 3 30-45%, MgO 12-16% Talc with an average particle size of 7 μm or less, average particle size 2 μm
Kaolin with an average particle size of 1/3 or less of the average particle size of talc, alumina and/or aluminum hydroxide with an average particle size of 2 μm or less, high purity amorphous silica of 8% or less, and other cordierite forming raw materials An organic binder and a plasticizer are added to this mixture, mixed and kneaded to plasticize it so that it can be extruded, and after extrusion molding into a honeycomb structure, it is dried.
By firing at a temperature of ~1440℃, the main component of the crystal phase is cordierite, the porosity is 30% or less, and the A-axis CTE of the honeycomb structure catalyst is 0.5×10 -6 /
℃ or less, B axis CTE1.0×10 -6 /℃ or less or porosity
25% or less, A axis CTE 0.6×10 -6 /℃ or less, B axis
This is a manufacturing method for obtaining a cordierite honeycomb structure catalyst carrier having a CTE of 1.0×10 -6 /°C or less. The chemical composition of the honeycomb structure of the present invention is based on the theoretical composition point of cordierite (2MgO.
SiO 2 42 on a weight basis centered on 2Al 2 O 3・5SiO 2 )
~56%, preferably 47-53%, Al2O3 30-45 % preferably 32-38%, MgO12-16% preferably
In the region of 12.5 to 15%, the desired porosity is 30% or less by changing various manufacturing conditions, and the A-axis thermal expansion coefficient of 40 to 800℃ is 0.8×10 -6 /℃ or less, which is also 1×
It is possible to achieve a B-axis thermal expansion of less than 10 -6 /°C. Chemical components other than the main components often have a negative effect on thermal expansion properties, such as TiO 2 , CaO, K 2 O, Na 2 O,
It is desirable to suppress impurities such as Fe 2 O 3 and P 2 O 5 to 2.5% or less as a whole, especially CaO, K 2 O,
The lower the Na 2 O alkali content, the better the thermal expansion properties. Also, it does not substantially contain P 2 O 5 .
Must be less than 0.1%. It is preferable that the crystal phase consists essentially of cordierite crystals, with the amount of cordierite crystals being 90% by weight or more, and mullite and spinel (including saphirin) as other crystals contained being 2.5% by weight or less, respectively. The fine talc to be used is preferably one with a low alkaline content, and the pulverization method used for fine pulverization is a pulverization method such as grinding that destroys the particle shape, for example, the use of a ball mill etc. is not preferable, and a pulverization method such as a Raymond mill is preferable. It is. Talc with a particle size exceeding 7 μm has a large difference in coefficient of thermal expansion along the A-B axis and a large porosity. Fine-grained kaolin preferably has few impurities, and preferably has little variation in crystal shape and does not contain large crystals. For example, kaolin, such as New Zealand kaolin, which has large variations in crystal shape and tends to form secondary particles, is not preferred. In addition, as a method of pulverizing kaolin medium-calcined kaolin, using a wet ball mill pulverized raw material is extremely suitable for densification. When using kaolin with a particle size exceeding 2 μm, the particle size
Thermal expansion increases when used with talc of 7μm or less,
The porosity becomes large. In addition, talc with an average particle size of 5 μm or less and/or
Alternatively, by using kaolin with an average particle size of 1 μm or less and 1/3 or less of the average particle size of talc, the porosity can be further reduced while maintaining low thermal expansion. The particle sizes of talc and kaolin were determined from the average particle size based on the blended weight ratio of raw and calcined products. In the present invention, when talc and kaolin are made into fine particles,
It also includes the use of calcined talc and calcined kaolin, which are effective in suppressing the occurrence of cracks in honeycomb structures due to shrinkage during drying and firing. Increasing the calcination temperature of talc or kaolin increases the porosity and the coefficient of thermal expansion, so when a calcined product is used, it is preferable that the calcination temperature be as low as possible. The effects of the present invention cannot be obtained unless fine particles having a particle size similar to that of the raw raw material are used. In order to achieve a porosity of 30% or less, other cordierite forming raw materials, such as alumina source raw materials such as alumina and aluminum hydroxide, and silica source raw materials such as amorphous silica and silica sand, that have been conventionally used are used. However, it is necessary to optimize the amount of impurities such as alkali in the chemical composition and to optimize the particle size such as cutting of the coarse particles depending on the rib thickness of the honeycomb structure to be manufactured. Furthermore, when using fine particles of alumina and/or fine particles of aluminum hydroxide to achieve a porosity of 25% or less, use of particles with a particle size of 2 μm or less will not reduce the porosity, which is the objective of the present invention. Contributes and also low soda alumina ( Na2O0.12 %
By using the following), further effects can be obtained due to lower expansion and lower porosity. Furthermore, the addition of high-purity amorphous silica to achieve low expansion also contributes to lowering the porosity;
Addition exceeding this amount is not preferable because it deteriorates the properties of the catalyst carrier. As the manufacturing process in the present invention, it is possible to apply the extrusion molding process used in the conventional manufacturing of cordierite honeycomb structures. In the firing process, especially in the temperature range of 1100-1350℃, 20-300℃
It is desirable to raise the temperature at an average temperature increase rate of 30 to 200 °C/Hr, and to bake at a maximum temperature of 1350 to 1440 °C for 0.5 to 24 hours. Average heating rate 20℃/
If it is less than 300°C/Hr, the coefficient of thermal expansion will be large, and if it exceeds 300°C/Hr, the fired product will be significantly deformed. Also, 1350
Below 1440°C, the coefficient of thermal expansion becomes large, and above 1440°C, the fired product becomes significantly deformed. (Function) Regarding the cell structure and strength characteristics, the compressive strength in the A-axis direction of the honeycomb structure is determined by the rib thickness to withstand vibrations during automobile operation, holding pressure of the carrier container, etc. when used as a catalyst carrier for automobile exhaust gas purification. 152μ
Square cell structure with 62 cells per square centimeter (referred to as 152μm/62 cells/ cm2 ) with at least 150
~200Kg/cm2 or more is required, but in the present invention, it was achieved to reduce the porosity to 30% or less without increasing the thermal expansion of the cordierite material, so A-axis compression at 152μm/62 pieces/ cm2 was achieved. Strength 300Kg/cm 2
Higher levels are now possible. Furthermore, conventionally, it was impossible to actually use it due to its strength.
Even with a cell structure of 102μm/93 cells/ cm2 , which was impossible to actually use in terms of 152μm/47 cells/ cm2 , strength, and thermal expansion, the A-axis compressive strength is at a level of 200Kg/cm2 or higher, which allows it to withstand severe usage conditions. It has become possible to design various cell structures depending on the shape design and installation conditions of the catalyst carrier. In other words, when applied to honeycomb structures with thin walls and high cell density, the strength improvement achieved by the present invention exhibits superior effects in terms of thermal shock resistance, catalytic performance, etc. compared to conventional products, and also has a thin wall and low cell density. By applying it to a dense honeycomb structure, it exhibits excellent thermal shock resistance, low pressure loss, etc. compared to conventional products. Compared to the conventionally used honeycomb structure with a rib thickness of 300 μm and 47 cells per square centimeter,
The present invention has a rib thickness of 102 μm and a number of cells per square centimeter.
93 honeycomb structures were obtained, and in addition to greatly improving catalytic activity due to the high-density cell structure, it also greatly improved thermal shock resistance, making it a cordierite material suitable for installation in manifolds near the engine as a carrier for automobile exhaust gas. A honeycomb structure was realized. Also, compared to the conventional honeycomb structure of 300μm/47 pieces/ cm2 , the honeycomb structure of 152μm/62 pieces/ cm2 has significantly improved A-axis compressive strength, which simplifies the canning of the honeycomb structure into a casing. This made it possible to create a honeycomb structure that is suitable for installation in manifolds, etc. near engines that experience severe vibrations. Furthermore, a honeycomb structure of 152 μm/47 pieces/cm 2 having the same level of thermal expansion and A-axis compressive strength as a honeycomb structure of 300 μm/47 pieces/cm 2 was obtained,
A honeycomb structure suitable for improving engine output and reducing fuel consumption due to low pressure loss of automobile exhaust gas has been realized. This thermal expansion behavior in the B-axis direction of the honeycomb structure according to the present invention is particularly advantageous for increasing the cell density for improving the performance of the catalyst carrier. The honeycomb structure of the present invention has the advantage of being a significantly thinner-walled honeycomb structure compared to conventional honeycomb structures having rib thicknesses of 203 μm or less. That is, it is suitable for a honeycomb structure with thin walls and a high cell density, or a honeycomb structure with a thin wall and a relatively low cell density. On the other hand, by increasing the strength, it has become widely applicable to honeycomb structures with large rib thickness and low cell density. (Examples) Example 1 The present invention will be described in more detail below with reference to Examples and Comparative Examples. Using the raw materials with chemical analysis values and particle sizes shown in Table 1 below, batches No. 1 to No. 32 in Table 2 were prepared according to the proportions shown in Table 2, and 100 parts by weight of the raw materials were prepared. 3.8 parts by weight of methyl cellulose and added water were added to the mixture to form a clay that could be kneaded and extruded.
All raw materials used here passed through a 63 μm sieve. Next, the clay of each batch was molded using a known extrusion method to form a square cell structure with a rib thickness of 102 μm and 93 cells per square centimeter, and a diameter of 93 mm in height.
It was molded into a 100mm cylindrical honeycomb structure. After drying the honeycomb structures from each batch, they were fired under the firing conditions shown in Table 2, and the characteristics of the sintered bodies were the coefficient of thermal expansion (CTE) at 40 to 800°C of the A-axis and B-axis of the honeycomb structure, and the pores. Evaluations were made for the ratio, amount of cordierite crystals, compressive strength in the A-axis direction of the honeycomb structure, and thermal shock resistance. The evaluation results are also shown in Table 2.
In addition, P 2 O 5 is 0.1 as the chemical composition of all sintered bodies.
It was less than %. The particle size distribution and average particle diameter of the raw material were determined by the X-ray sedimentation method, and in the present invention were measured using a Sedigraph manufactured by Micromeritics.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第2表中試験No.1および2はタルクの粒径が
7μmよりも大きいため、気孔率が30%を超えて
おり、試験No.8、11、14および24はカオリンの平
均粒子径が2μmより大きくかつタルクの粒径の
1/3より大きいため、A軸の熱膨脹係数が0.8×
10-6/℃より大きく、B軸の熱膨脹係数が1.0×
10-6/℃より大きく、かつ気孔率が30%を超えて
いる。また、試験No.21はタルクの粒径が7μmよ
り大きくカオリンの平均粒子径が2μmより大き
いため気孔率が30%を超えており、試験No.23はカ
オリンを使用していないためA軸の熱膨脹係数が
0.8×10-6/℃より大きくB軸の熱膨脹係数が1.0
×10-6/℃より大きくかつ気孔率が30%を超えて
いる。また、試験No.26および27はカオリンの平均
粒子径がタルクの粒径の1/3より大きいため、A
軸の熱膨脹係数が0.8×10-6/℃を超えB軸の熱
膨脹係数が1.0×10-6/℃を超えている。 実施例 2 第2表No.6及びNo.21のバツチを、実施例1と同
様の方法によりセル構造の異つた口金により押出
成形し、焼成して、第3表に示すセル構造を有す
る直径93mm高さ100mmの円筒形ハニカム構造体No.
41〜No.47を製造した。それぞれのハニカム構造体
のA軸及びB軸の40〜800℃の熱膨脹係数と、A
軸圧縮強度を評価した。評価結果も第3表に示
す。
[Table] Test Nos. 1 and 2 in Table 2 have a particle size of talc.
Since the porosity is larger than 7 μm, the porosity exceeds 30%, and test Nos. 8, 11, 14, and 24 are A because the average particle size of kaolin is larger than 2 μm and larger than 1/3 of the particle size of talc. The coefficient of thermal expansion of the shaft is 0.8×
Greater than 10 -6 /℃, B-axis thermal expansion coefficient is 1.0×
10 -6 /℃, and the porosity exceeds 30%. In addition, in Test No. 21, the porosity exceeds 30% because the particle size of talc is larger than 7 μm and the average particle size of kaolin is larger than 2 μm, and in Test No. 23, kaolin is not used, so the A-axis The coefficient of thermal expansion is
B-axis thermal expansion coefficient is greater than 0.8×10 -6 /°C and 1.0
×10 -6 /℃ and the porosity exceeds 30%. In addition, in Test Nos. 26 and 27, the average particle size of kaolin was larger than 1/3 of the particle size of talc, so A
The coefficient of thermal expansion of the shaft exceeds 0.8×10 -6 /°C, and the coefficient of thermal expansion of the B-axis exceeds 1.0×10 -6 /°C. Example 2 The batches No. 6 and No. 21 in Table 2 were extruded using dies with different cell structures in the same manner as in Example 1, and fired, resulting in a diameter having the cell structure shown in Table 3. Cylindrical honeycomb structure No. 93mm and height 100mm.
41 to No. 47 were manufactured. The coefficient of thermal expansion between 40 and 800°C on the A-axis and B-axis of each honeycomb structure, and A
The axial compressive strength was evaluated. The evaluation results are also shown in Table 3.

【表】 第2表と第3表から明らかな通り、本発明のコ
ージエライトハニカム構造体は、触媒担体として
極めて優れた低膨脹性、強度特性を示した。 実施例 3 以下の第4表に示つ特性の原料を用いて第5表
No.51〜87のバツチをそれぞれ第5表に示す調合割
合に従つて調合し、原料100重量部に対してメチ
ルセルローズ3.8重量部及び添加水を加え混練し、
押出成形可能な杯土とした。ここで使用の原料は
全て63μm篩通過のものを使用した。次いでそれ
ぞれのバツチの杯土を公知の押出成形法によりリ
ブ厚さ102μm、1平方センチ当りのセル数93個
の四角構造セルを有する直径93mm高さ100mmの円
筒形ハニカム構造体に成形した。それぞれのバツ
チによるハニカム構造体を乾燥後第5表に示す焼
成条件で焼成し、焼結体の特性としてハニカム構
造体のA軸とB軸の40〜800℃での熱膨脹係数
(CTE)、気孔率、コージエライト結晶量、ハニ
カム構造A軸方向の圧縮強度、耐熱衝撃性の評価
を実施した。評価結果も第5表に示す。尚すべて
の焼結体の化学組成としてP2O5は0.1%未満であ
つた。 原料の粒度分布、平均粒子径はX線沈降法によ
るデータで本発明ではマイクロメリテイツクス社
のセデイグラフで測定した。
[Table] As is clear from Tables 2 and 3, the cordierite honeycomb structure of the present invention exhibited extremely excellent low expansion and strength characteristics as a catalyst carrier. Example 3 Using raw materials with the characteristics shown in Table 4 below,
Batch Nos. 51 to 87 were mixed according to the proportions shown in Table 5, and 3.8 parts by weight of methyl cellulose and added water were added to 100 parts by weight of the raw materials and kneaded.
It was made into a cup clay that can be extruded. All raw materials used here passed through a 63 μm sieve. Next, the clay from each batch was formed into a cylindrical honeycomb structure of 93 mm in diameter and 100 mm in height, having a rib thickness of 102 μm and a square cell structure with 93 cells per square centimeter, by a known extrusion molding method. After drying, the honeycomb structures of each batch were fired under the firing conditions shown in Table 5, and the characteristics of the sintered bodies were the coefficient of thermal expansion (CTE) at 40 to 800°C of the A-axis and B-axis of the honeycomb structure, and the pores. Evaluations were made for the ratio, amount of cordierite crystals, compressive strength in the A-axis direction of the honeycomb structure, and thermal shock resistance. The evaluation results are also shown in Table 5. The chemical composition of all the sintered bodies contained less than 0.1% P 2 O 5 . The particle size distribution and average particle diameter of the raw material are data obtained by an X-ray sedimentation method, and in the present invention, they were measured using a Sedigraph manufactured by Micromeritics.

【表】【table】

【表】【table】

【表】【table】

【表】 第5表中、微粒のタルク、カオリンに平均粒子
径2μm以下のアルミナおよび/または水酸化ア
ルミニウムを添加した試験No.51〜62、64、65、
67、さらに高純度非晶質シリカを8%以下添加し
た試験No.71、73〜87は平均粒子径4μmの比較的
粗粒のアルミナを添加した実施例1に比較して、
より低い気孔率を達成できることがわかつた。 なお、試験No.63、66および71は添加した水酸化
アルミニウムの粒径が3.6μmであり2.0μmよりも
大きいため、また試験No.72は添加したシリカとし
て結晶質シリカを使用したためそれぞれ気孔率が
他の試験例に比較して増加しているが、実施例1
で示した気孔率とは同等でありこれらの資料も本
発明の範囲内である。 実施例 4 第5表No.60(気孔率18.0%)、No.56(気孔率20.3
%)、No.53(気孔率23.0%)、No.51(気孔率25.0%)

No.78(気孔率27.0%)、No.73(気孔率30.0%)バツ
チを実施例3と同様の方法によりセル構造の異つ
た口金により押出成形し、焼成して第6表に示す
セル構造を有する直径93mm、高さ100mmの円筒形
ハニカム構造体を製造し、それぞれのハニカム構
造体のA軸圧縮強度を測定した。この測定よりA
軸圧縮強度が200±10(Kg/cm2)の点をプロツト
し、気孔率・リブ厚・セル数の関係を第4図に示
した。
[Table] In Table 5, test Nos. 51 to 62, 64, 65, in which alumina and/or aluminum hydroxide with an average particle size of 2 μm or less were added to fine talc and kaolin,
67, and test Nos. 71 and 73 to 87 in which 8% or less of high-purity amorphous silica was added, compared to Example 1 in which relatively coarse alumina with an average particle diameter of 4 μm was added.
It has been found that lower porosity can be achieved. In addition, in Test Nos. 63, 66 and 71, the particle size of the added aluminum hydroxide was 3.6 μm, which is larger than 2.0 μm, and in Test No. 72, crystalline silica was used as the added silica, so the porosity was low. increased compared to other test examples, but in Example 1
These data are also within the scope of the present invention. Example 4 Table 5 No. 60 (porosity 18.0%), No. 56 (porosity 20.3
%), No.53 (porosity 23.0%), No.51 (porosity 25.0%)
,
No. 78 (porosity 27.0%) and No. 73 (porosity 30.0%) batches were extruded and molded using dies with different cell structures in the same manner as in Example 3, and fired to have the cell structures shown in Table 6. A cylindrical honeycomb structure having a diameter of 93 mm and a height of 100 mm was manufactured, and the A-axis compressive strength of each honeycomb structure was measured. From this measurement, A
The points at which the axial compressive strength was 200±10 (Kg/cm 2 ) were plotted, and the relationship between porosity, rib thickness, and number of cells is shown in Figure 4.

【表】 第6表および第4図から、ハニカム構造体のA
軸圧縮強度を200Kg/cm2としたときのリブ厚を本
発明範囲内の気孔率から求めると、セル密度が2
〜140セル/cm2の範囲でリブ厚が437μm以下の規
定ができることがわかつた。 (発明の効果) かくて本発明によれば気孔率30%以下の高強度
で低膨脹性の薄壁で高セル密度のハニカム構造体
及び薄壁で低セル密度のハニカム構造体が得られ
る。これは触媒担体用ハニカム構造体としてより
広範に利用可能で、特に自動車排ガス浄化触媒担
体として極めて有用である。従つて本発明は産業
上極めて有用である。
[Table] From Table 6 and Figure 4, A of the honeycomb structure
When the rib thickness is calculated from the porosity within the range of the present invention when the axial compressive strength is 200Kg/ cm2 , the cell density is 2.
It was found that the rib thickness could be defined as 437 μm or less within the range of ~140 cells/cm 2 . (Effects of the Invention) Thus, according to the present invention, a high-strength, low-expansion, thin-walled, high-cell-density honeycomb structure and a thin-walled, low-cell-density honeycomb structure with a porosity of 30% or less can be obtained. This honeycomb structure can be used more widely as a catalyst carrier, and is particularly useful as an automobile exhaust gas purification catalyst carrier. Therefore, the present invention is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1表および第4表のタルク(A)〜(E)の
粒度分布曲線を示す図、第2図は第1表および第
4表のカオリン(A)〜(E)の粒度分布曲線を示す図、
第3図は本発明ハニカム構造体の一例を示す斜視
図、第4図は本発明ハニカム構造体における気孔
率リブ厚およびセル数の関係を示すグラフであ
る。
Figure 1 shows the particle size distribution curves of talc (A) to (E) in Tables 1 and 4, and Figure 2 shows the particle size distribution curves of kaolin (A) to (E) in Tables 1 and 4. Diagram showing the distribution curve,
FIG. 3 is a perspective view showing an example of the honeycomb structure of the present invention, and FIG. 4 is a graph showing the relationship between the porosity rib thickness and the number of cells in the honeycomb structure of the present invention.

Claims (1)

【特許請求の範囲】 1 主成分の化学組成が重量基準でSiO242〜56
%、Al2O330〜45%、MgO12〜16%で結晶相の主
成分がコージエライトから成るハニカム構造を有
し、気孔率が30%以下でハニカム構造の流路方向
の40〜800℃の間の熱膨脹係数が0.8×10-6/℃以
下、流路に垂直な方向の40〜800℃の熱膨脹係数
が1.0×10-6/℃以下であることを特徴とするコ
ージエライトハニカム構造触媒担体。 2 前記気孔率が25%以下である特許請求の範囲
第1項記載のコージエライトハニカム構造触媒担
体。 3 前記ハニカム構造体の流路方向と流路に垂直
な方向の40〜800℃の熱膨脹係数差が0.2×10-6
℃以下である特許請求の範囲第1項記載のコージ
エライトハニカム構造触媒担体。 4 ハニカム構造の流路方向の圧縮強度が200
Kg/cm2以上である特許請求の範囲第1項記載のコ
ージエライトハニカム構造触媒担体。 5 ハニカム構造のリブ厚を437μm以下とする
特許請求の範囲第1項記載のコージエライトハニ
カム構造触媒担体。 6 主成分の化学組成が重量基準でSiO242〜56
%、Al2O330〜45%、MgO12〜16%になるように
平均粒子径7μm以下のタルクと平均粒子径2μm
以下でかつタルクの平均粒子径の1/3以下の平均
粒子径のカオリン及び他のコージエライト化原料
を調合し、この調合物に有機結合剤及び可塑化剤
を加えて混合混練して押出成形可能に可塑化し、
ハニカム構造体に押出成形後、1350〜1440℃の温
度で焼成することを特徴とするコージエライトハ
ニカム構造触媒担体の製造方法。 7 平均粒子径5μm以下のタルクを用いる特許
請求の範囲第6項記載の製造方法。 8 平均粒子径1μm以下のカオリンを用いる特
許請求の範囲第6項記載の製造方法。 9 主成分の化学組成が重量基準でSiO242〜56
%、Al2O330〜45%、MgO12〜16%になるように
平均粒子径7μm以下のタルクと平均粒子径2μm
以下でかつタルクの平均粒子径の1/3以下の平均
粒子径のカオリンと平均粒子径2μm以下のアル
ミナおよび/または水酸化アルミニウム及び他の
コージエライト化原料を調合し、この調合物に有
機結合剤及び可塑化剤を加えて混合混練して押出
成形可能に可塑化し、ハニカム構造体に押出成形
後、1350〜1440℃の温度で焼成することを特徴と
するコージエライトハニカム構造触媒担体の製造
方法。 10 平均粒子径5μm以下のタルクを用いる特
許請求の範囲第9項記載の製造方法。 11 平均粒子径1μm以下のカオリンを用いる
特許請求の範囲第9項記載の製造方法。 12 前記コージエライト化原料のうちアルミナ
のNa2Oが0.12%である特許請求の範囲第9項記
載のコージエライトハニカム構造触媒担体の製造
方法。 13 前記カオリンのうちの仮焼カオリンを湿式
ボールミルにより粉砕して調整する特許請求の範
囲第9項記載のコージエライトハニカム構造触媒
担体の製造方法。 14 主成分の化学組成が重量基準でSiO242〜
56%、Al2O330〜45%、MgO12〜16%になるよう
に平均粒子径7μm以下のタルクと平均粒子径2μ
m以下でかつタルクの平均粒子径の1/3以下の平
均粒子径のカオリンと平均粒子径2μm以下のア
ルミナおよび/または水酸化アルミニウムと高純
度非晶質シリカ及び他のコージエライト化原料を
調合し、この調合物に有機結合剤及び可塑化剤を
加えて混合混練して押出成形可能に可塑化し、ハ
ニカム構造体に押出成形後、1350〜1440℃の温度
で焼成することを特徴とするコージエライトハニ
カム構造触媒担体の製造方法。 15 平均粒子径5μm以下のタルクを用いる特
許請求の範囲第14項記載の製造方法。 16 平均粒子径1μm以下のカオリンを用いる
特許請求の範囲第14項記載の製造方法。 17 前記コージエライト化原料のうちアルミナ
のNa2Oが0.12%以下である特許請求の範囲第1
4項記載のコージエライトハニカム構造触媒担体
の製造方法。 18 前記カオリンのうちの仮焼カオリンを湿式
ボールミルにより粉砕して調整する特許請求の範
囲第14項記載のコージエライトハニカム構造触
媒担体の製造方法。 19 前記高純度非晶質シリカの添加量が8%以
下である特許請求の範囲第14項記載のコージエ
ライトハニカム構造触媒担体の製造方法。
[Claims] 1. The chemical composition of the main component is SiO 2 42 to 56 on a weight basis.
%, Al 2 O 3 30-45%, MgO 12-16%, the main component of the crystal phase is cordierite, the porosity is 30% or less, and the temperature of 40-800℃ in the flow path direction of the honeycomb structure is A cordierite honeycomb structure catalyst characterized by having a thermal expansion coefficient of 0.8×10 -6 /℃ or less in the direction perpendicular to the flow path and a thermal expansion coefficient of 1.0×10 -6 /℃ or less in the direction perpendicular to the flow path between 40 and 800℃. carrier. 2. The cordierite honeycomb structure catalyst carrier according to claim 1, wherein the porosity is 25% or less. 3 The difference in coefficient of thermal expansion between 40 and 800°C between the flow path direction and the direction perpendicular to the flow path of the honeycomb structure is 0.2×10 -6 /
The cordierite honeycomb structure catalyst carrier according to claim 1, which has a temperature of .degree. C. or less. 4 The compressive strength in the flow path direction of the honeycomb structure is 200
The cordierite honeycomb structured catalyst carrier according to claim 1, wherein the catalyst carrier has a catalyst support of at least Kg/cm 2 . 5. The cordierite honeycomb structure catalyst carrier according to claim 1, wherein the rib thickness of the honeycomb structure is 437 μm or less. 6 The chemical composition of the main component is SiO 2 42-56 on a weight basis
%, Al 2 O 3 30-45%, MgO 12-16% with talc with an average particle size of 7 μm or less and an average particle size of 2 μm
It is possible to mix kaolin and other cordierite forming raw materials with an average particle size of 1/3 or less of the average particle size of talc, add an organic binder and a plasticizer to this mixture, mix and knead it, and then extrude it. plasticized into
A method for producing a cordierite honeycomb structure catalyst carrier, which comprises extrusion molding into a honeycomb structure and then firing at a temperature of 1350 to 1440°C. 7. The manufacturing method according to claim 6, using talc having an average particle diameter of 5 μm or less. 8. The manufacturing method according to claim 6, using kaolin having an average particle diameter of 1 μm or less. 9 The chemical composition of the main component is SiO 2 42-56 on a weight basis
%, Al 2 O 3 30-45%, MgO 12-16% with talc with an average particle size of 7 μm or less and an average particle size of 2 μm
Kaolin with an average particle size of 1/3 or less of the average particle size of talc, alumina and/or aluminum hydroxide with an average particle size of 2 μm or less, and other cordierite forming raw materials are mixed, and this mixture is added with an organic binder. A method for producing a cordierite honeycomb structure catalyst carrier, which comprises adding a plasticizer and mixing and kneading to make it plasticized to enable extrusion molding, extrusion molding into a honeycomb structure, and then firing at a temperature of 1350 to 1440°C. . 10. The manufacturing method according to claim 9, using talc having an average particle diameter of 5 μm or less. 11. The manufacturing method according to claim 9, using kaolin having an average particle diameter of 1 μm or less. 12. The method for producing a cordierite honeycomb structured catalyst carrier according to claim 9, wherein Na 2 O in alumina in the cordierite forming raw material is 0.12%. 13. The method for producing a cordierite honeycomb structure catalyst carrier according to claim 9, wherein the calcined kaolin of the kaolin is pulverized using a wet ball mill. 14 The chemical composition of the main component is SiO 2 42 ~ on a weight basis
Talc with an average particle size of 7 μm or less and an average particle size of 2 μm so that the amount is 56%, Al 2 O 3 30-45%, and MgO 12-16%.
Kaolin with an average particle size of 2 μm or less and 1/3 of the average particle size of talc, alumina and/or aluminum hydroxide with an average particle size of 2 μm or less, high-purity amorphous silica, and other cordierite forming raw materials are mixed. , a cordier characterized in that an organic binder and a plasticizer are added to this mixture, the mixture is kneaded and plasticized to enable extrusion molding, and after extrusion molding into a honeycomb structure, it is fired at a temperature of 1350 to 1440°C. A method for producing a light honeycomb structured catalyst carrier. 15. The manufacturing method according to claim 14, using talc having an average particle diameter of 5 μm or less. 16. The manufacturing method according to claim 14, using kaolin having an average particle diameter of 1 μm or less. 17 Claim 1, wherein the Na 2 O content of alumina among the cordierite forming raw materials is 0.12% or less.
4. The method for producing a cordierite honeycomb structure catalyst carrier according to item 4. 18. The method for producing a cordierite honeycomb structured catalyst carrier according to claim 14, wherein the calcined kaolin of the kaolin is pulverized using a wet ball mill. 19. The method for producing a cordierite honeycomb structured catalyst carrier according to claim 14, wherein the amount of the high-purity amorphous silica added is 8% or less.
JP61183904A 1985-12-27 1986-08-05 Cordierite honeycomb catalyst carrier and its production Granted JPS62225249A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US06/936,501 US4772580A (en) 1985-12-27 1986-12-01 Catalyst carrier of cordierite honeycomb structure and method of producing the same
EP86310131A EP0232621B1 (en) 1985-12-27 1986-12-24 Catalyst carrier of cordierite honeycomb structure and method of producing the same
EP86310130A EP0227482B1 (en) 1985-12-27 1986-12-24 Cordierite honeycomb structural body and method of producing the same
DE8686310131T DE3671390D1 (en) 1985-12-27 1986-12-24 CATALYST SUPPORT WITH CORDIERITE HONEYCOMB STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF.
DE8686310130T DE3680496D1 (en) 1985-12-27 1986-12-24 CORDIERITE ITEM WITH HONEYCOMB STRUCTURE AND METHOD FOR THEIR PRODUCTION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-293692 1985-12-27
JP29369285 1985-12-27

Publications (2)

Publication Number Publication Date
JPS62225249A JPS62225249A (en) 1987-10-03
JPH0470053B2 true JPH0470053B2 (en) 1992-11-09

Family

ID=17797998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61183904A Granted JPS62225249A (en) 1985-12-27 1986-08-05 Cordierite honeycomb catalyst carrier and its production

Country Status (1)

Country Link
JP (1) JPS62225249A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536451A (en) * 1992-10-26 1996-07-16 The Procter & Gamble Company Liquid hard surface detergent compositions containing short chain amphocarboxylate detergent surfactant
JP3555382B2 (en) * 1997-04-22 2004-08-18 松下電器産業株式会社 Exhaust gas filter, method for producing the same, and diesel engine equipped with the exhaust gas filter
DE20321503U1 (en) * 2002-09-13 2007-08-30 Ibiden Co., Ltd., Ogaki Honeycomb structural body
JPWO2006006667A1 (en) * 2004-07-14 2008-05-01 日本碍子株式会社 Method for manufacturing porous honeycomb structure
JP4864061B2 (en) * 2008-10-08 2012-01-25 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
JP2010227818A (en) * 2009-03-26 2010-10-14 Ngk Insulators Ltd Honeycomb structure and honeycomb catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075612A (en) * 1973-11-05 1975-06-20
JPS5382822A (en) * 1976-12-28 1978-07-21 Ngk Insulators Ltd Cordierite ceramics
JPS5514468A (en) * 1978-07-19 1980-01-31 Toshiba Corp Protective device for condenser
JPS5919072A (en) * 1982-07-23 1984-01-31 Tanaka Seisakusho:Kk Control system of operation of copying device
JPS602272A (en) * 1984-05-14 1985-01-08 川嶋工業株式会社 Sheath of knife

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075612A (en) * 1973-11-05 1975-06-20
JPS5382822A (en) * 1976-12-28 1978-07-21 Ngk Insulators Ltd Cordierite ceramics
JPS5514468A (en) * 1978-07-19 1980-01-31 Toshiba Corp Protective device for condenser
JPS5919072A (en) * 1982-07-23 1984-01-31 Tanaka Seisakusho:Kk Control system of operation of copying device
JPS602272A (en) * 1984-05-14 1985-01-08 川嶋工業株式会社 Sheath of knife

Also Published As

Publication number Publication date
JPS62225249A (en) 1987-10-03

Similar Documents

Publication Publication Date Title
US4772580A (en) Catalyst carrier of cordierite honeycomb structure and method of producing the same
US4295892A (en) Cordierite ceramic honeycomb and a method for producing the same
EP1805112B1 (en) Ceramic body based on aluminum titanate and including a glass phase
EP0232621B1 (en) Catalyst carrier of cordierite honeycomb structure and method of producing the same
EP0037868B2 (en) Method of producing low-expansion ceramic materials
US4001028A (en) Method of preparing crack-free monolithic polycrystalline cordierite substrates
EP1133457B1 (en) Fabrication of low thermal expansion, high strength porous cordierite structures
EP1483221B1 (en) Strontium feldspar aluminum titanate for high temperature applications
US4435512A (en) Process for producing cordierite ceramic products
EP0278750B1 (en) Cordierite honeycomb structural bodies
US7001861B2 (en) Aluminum titanate-based ceramic article
US6391813B1 (en) Low sintering temperature cordierite batch and cordierite ceramic produced therefrom
US5262102A (en) Process for firing ceramic honeycomb structural bodies
US7923093B2 (en) High porosity filters for 4-way exhaust gas treatment
EP1027304B1 (en) Method for firing ceramic honeycomb bodies
JPH1192214A (en) Production of cordierite product short in sintering time
JPH1179831A (en) Production of thin-wall cordierite-based honeycomb structure
US5997984A (en) Cordierite honeycomb structural body and method for its production
JP3311650B2 (en) Method for manufacturing cordierite-based ceramic honeycomb structure
JP2000226253A (en) Production of cordierite-based ceramic honeycomb structure
JPH0582343B2 (en)
JPH013067A (en) Manufacturing method of cordierite honeycomb structure
US6933255B2 (en) Beta-spodumene ceramics for high temperature applications
JPH0470053B2 (en)
JP5128989B2 (en) Cordierite ceramics manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term