JPH0582343B2 - - Google Patents

Info

Publication number
JPH0582343B2
JPH0582343B2 JP62283127A JP28312787A JPH0582343B2 JP H0582343 B2 JPH0582343 B2 JP H0582343B2 JP 62283127 A JP62283127 A JP 62283127A JP 28312787 A JP28312787 A JP 28312787A JP H0582343 B2 JPH0582343 B2 JP H0582343B2
Authority
JP
Japan
Prior art keywords
cordierite
honeycomb structure
less
average particle
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62283127A
Other languages
Japanese (ja)
Other versions
JPH013067A (en
JPS643067A (en
Inventor
Setsu Harada
Toshuki Hamanaka
Kunikazu Hamaguchi
Seiichi Asami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62283127A priority Critical patent/JPS643067A/en
Priority to US07/151,995 priority patent/US4869944A/en
Priority to DE8888301120T priority patent/DE3861134D1/en
Priority to EP88301120A priority patent/EP0278749B1/en
Publication of JPH013067A publication Critical patent/JPH013067A/en
Publication of JPS643067A publication Critical patent/JPS643067A/en
Priority to JP5139054A priority patent/JPH0761892B2/en
Priority claimed from JP5139054A external-priority patent/JPH0761892B2/en
Publication of JPH0582343B2 publication Critical patent/JPH0582343B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はコージエライトハニカム構造触媒担
体、特に自動車排ガスの浄化用触媒担体に用いら
れる低膨脹で耐熱衝撃性に優れたハニカム構造体
の製造方法に関するものである。 (従来の技術及びその問題点) 近年工業技術の進歩に伴い、耐熱性、耐熱衝撃
性に優れた材料の要望が増加している。特に自動
車排ガス浄化装置に用いるセラミツクハニカム触
媒担体においては、耐熱衝撃性は重要な特性の一
つであり、排気ガス中の未燃焼炭化水素、一酸化
炭素の触媒反応による急激な発熱やエンジン始動
停止時の急熱、急冷により温度変化を受け、ハニ
カム構造体内に生じる温度差により引き起こされ
る熱応力に耐える高い耐熱衝撃性が要求されてお
り、特に今日触媒活性向上のためエンジン近傍へ
の設置および高速運転に伴いその要求が強い。 この耐熱衝撃性は急熱急冷耐久温度差で表わさ
れ、その耐久温度差はハニカムの特性のうち熱膨
脹係数に逆比例することが判明しており、熱膨脹
係数が小さいほどその耐久温度差が大きく、ハニ
カム構造体においては特に流路に垂直な方向(第
4図B軸)の寄与率が大きいことが知られてい
る。 従来、コージエライトセラミツクスが低膨脹性
を示すことは公知であり、例えば米国特許第
3885977号明細書(対応日本出願:特開昭50−
75611号公報)に開示されているように、25〜
1000℃の間で熱膨脹係数が少なくとも一方向で11
×10-7/℃より小さい配向したコージエライトセ
ラミツクスが示されており、そこではこの配向性
を起させる原因として板状粘土、積層粘土に起因
する平面的配向を記述しており、その中でシリカ
原料を用いた25〜1000℃の間で0.56×10-6/℃の
低膨脹性を示す組成が開示されている 一方、ここでのシリカ使用系での特徴としてそ
の実施例にも示されているように、A軸熱膨脹係
数0.62〜0.78×10-6/℃に比べてB軸熱膨脹係数
が1.01〜1.08×10-6/℃と大となり、実質的に耐
熱衝撃性に寄与するB軸熱膨脹係数の低膨脹化が
達成できない問題点があつた。 また、米国特許第3950175号明細書(特開昭50
−75612号公報)には、原料中のタルク又は粘土
の一部又は全量をパイロフエライト、カイアナイ
ト、石英、溶融シリカのようなシリカ又はシリカ
アルミナ源原料によつて置換することにより、少
なくとも20%の10μmより大きな径の開孔を有す
るコージエライト系多孔質セラミツクスが得られ
ることが開示されている。 一方、この中でシリカ原料として溶融シリカを
使用した10μm以上の大気孔を多数有する組成を
開示しているが、低膨脹化に関する記載はなく、
B軸熱膨脹係数の低膨脹化は達成できなかつた。 さらに、特公昭57−28390号公報には、タルク
平均粒子径を5〜150μmにすることにより25〜
1000℃の間で1.6×10-6/℃以下の低膨脹が得ら
れることが開示されているが、25〜1000℃の間で
0.9×10-6/℃未満の低膨脹を示す組成の記載は
一切なく、A軸およびB軸方向の熱膨脹係数をさ
らに低膨脹化することはできなかつた。 さらにまた、発明者の先願である特願昭61−
183904には、気孔率30%以下の緻密化を目的とし
て、5μm以下の微粒タルクの使用をベースとし
た高純度非晶質シリカと微粒アルミナの組合わせ
を示しているが、40〜800℃の間で0.3×10-6/℃
未満の低膨脹は得られていない。本願発明は気孔
率が30%を超え42%以下の範囲でA軸およびB軸
方向の熱膨脹係数をさらに低膨脹化したものであ
る。 本発明の目的は上述した不具合を解消して、従
来のコージエライトハニカム構造体のA軸、B軸
熱膨脹係数の低膨脹化を図ることにより、耐熱
性、耐熱衝撃性に優れたコージエライトハニカム
構造体を得ることができるコージエライトハニカ
ム構造体の製造方法を提供しようとするものであ
る。 (問題点を解決するための手段) 本発明のコージエライトハニカム構造体の製造
方法は、主成分の化学組成がSiO242〜56重量%、
Al2O330〜45重量%、MgO12〜16重量%となるよ
うに平均粒子径5〜100μmのタルク、平均粒子
径2μm以下のアルミナ、平均粒子径15μm以下の
高純度非晶質シリカ及び他のコージエライト化原
料を調合し、この調合物に可塑化剤及び有機結合
剤を加えて混合、混練して可塑化した変形可能な
バツチとし、この可塑化したバツチを押出し成形
法により成形後乾燥し、次いでこの乾燥物を1350
〜1440℃の温度にて焼成することにより、結晶相
の主成分がコージエライトから成るハニカム構造
体で、気孔率が30%を超え42%以下であつて、ハ
ニカム構造の流路方向(第4図、A軸)の40〜
800℃の間の熱膨脹係数が0.3×10-6/℃以下、流
路に垂直な方向(第4図、B軸)の40〜800℃の
間の熱膨脹係数が0.5×10-6/℃以下であるコー
ジエライトハニカム構造体を得ることを特徴とす
るものである。 (作用) 上述した構成において低膨脹化が達成できるの
は、高純度非晶質シリカの使用により反応系態が
タルク、カオリン、アルミナ系のコージエライト
化反応系態と大きく異なりコージエライト晶出段
階が高温側に移行し、好ましいコージエライト結
晶配向すなわちコージエライト結晶のC軸晶出方
向が同方向に並んだ最大径20μm以上のドメイン
を得ることができるためである。さらに、コージ
エライト結晶のC軸方向の平均長さが1〜5μm
で80%以上のコージエライト結晶のC軸/A軸の
アスペクト比が1.5以上の自形のコージエライト
結晶が著しく発達した微構造が得られる。 さらにまた、この微構造の特徴としてマイクロ
クラツクの量はタルク、カオリン、アルミナ系の
コージエライト材料と大きく異なることはない
が、マイクロクラツクがドメイン構造内のコージ
エライト結晶のC軸方向にそつて進展しているも
のが多く、正の膨脹をするコージエライト結晶A
軸、B軸方向の熱膨脹を吸収するためマイクロク
ラツクの低膨脹化への寄与も大きくなることでハ
ニカム構造体として低膨脹化するためと考えられ
る。 低膨脹化には、ハニカム構造体の化学組成が
SiO2にて42〜56重量%好ましくは47〜53重量%、
Al2O3にて30〜45重量%好ましくは32〜38重量
%、MgOにて12〜16重量%好ましくは12.5〜15
重量%とすることが好適であり、不可避的に混入
する成分例えばTiO2、CaO、KNaO、Fe2O3を全
体として2.5重量%以下含んでも良い。 結晶相は実質的にコージエライト結晶から成る
ことが好ましく、コージエライト結晶量として90
重量%以上、他の含有結晶としてのムライト及び
スピネル(サフイリンを含む)を含む。 触媒担体としての気孔率は、30%未満では触媒
担持条件が悪化し、42%を超えると強度が低下す
るとともに触媒担持後の耐熱衝撃性が悪化するた
め、30%を超え42%以下と限定した。 熱膨脹係数は、A軸方向が0.3×10-6/℃を超
え、B軸方向が0.5×10-6/℃を超えると、それ
ぞれ耐熱衝撃性が悪化するため、A軸方向0.3×
10-6/℃以下およびB軸方向0.5×10-6/℃以下
と限定した。A軸方向の熱膨脹係数は0.2×
10-6/℃以下であるとさらに好ましい。 タルク粒度は、平均粒子径5μm未満であると
熱膨脹係数が上昇し気孔率が低下するとともに、
平均粒子径が100μmを超えると熱膨脹係数およ
び気孔率共に上昇するため、平均粒子径5〜
100μmと限定した。なお、平均粒子径は7〜50μ
mであると好ましい。 シリカの粒度は、平均粒子径が15μmを超える
とB軸方向の熱膨脹係数および気孔率が上昇する
ため平均粒子径15μm以下と限定する。また、シ
リカの種類は、結晶質シリカであると熱膨脹係数
が上昇し耐熱衝撃性が悪化するとともに、気孔率
も上昇するため非晶質シリカを使用する。 アルミナ粒度は、平均粒子径が2μmを超える
と熱膨脹係数が上昇するため、平均粒子径2μm
以下と限定した。なお、このアルミナとしては、
Na2O量0.12重量%以下のローソーダアルミナを
使用するとより低膨脹化が可能となるため好まし
い。 カオリン粒度は、平均粒子径が2μm以下であ
り、タルクの平均粒子径の1/3以下のものを使用
するとコージエライト結晶の配向が促進され低膨
脹化が達成できるため好ましい。 アルミナ原料として使用する水酸化アルミニウ
ムは、平均粒子径が2μm以下であるとコージエ
ライト結晶配向を促進し、低膨脹化に非常に効果
があるため好ましい。 非晶質シリカの使用量は、8〜20重量%である
と低膨脹化に最も効果があるため好ましい。 (実施例) 以下、本発明を実施例と比較例につきさらに詳
細に説明する。 実施例 1 第1表に示す化学分析値及び粒度の原料を第2
表のNo.1〜No.36の調合割合に従つて調合し、メチ
ルセルロース添加後、混練し、押出し成形可能な
坏土とした。 次いで、それぞれのバツチの坏土を公知の押出
成形法により、リブ厚152μm、1平方センチ当
りのセル数62個で四角セル形状を有する直径93
mm、高さ100mmの円筒形ハニカム構造体に成形し
た。ハニカム構造体を乾燥後、第2表に示す最高
温度で焼成し、焼結体の特性として、A、B軸の
熱膨脹係数、気孔率、コージエライト結晶量、耐
熱衝撃性の評価を実施した。評価結果も第2表に
示す。 また、上述した結果から、第1図にA軸方向の
熱膨脹係数と耐熱衝撃温度の関係、第2図にB軸
方向の熱膨脹係数と耐熱衝撃温度の関係を示すと
ともに、第3図にNo.1〜No.7のバツチにおいての
タルク平均粒子径とA、B軸方向の熱膨脹係数の
関係とを比較しあわせて従来公知の特公昭57−
28390号公報中第1図のタルク平均粒子径と熱膨
脹係数の関係を示す。 なお、第1表中原料の平均粒子径は、タルク
(A)、(B)、(C)についてはJIS標準篩による乾式分離
法により、またその他のものはX線沈降法により
マイクロメリテイツクス社のセデイグラフにより
測定した。
(Industrial Application Field) The present invention relates to a method for producing a cordierite honeycomb structure catalyst carrier, particularly a honeycomb structure having low expansion and excellent thermal shock resistance, which is used as a catalyst carrier for purifying automobile exhaust gas. (Prior art and its problems) With the progress of industrial technology in recent years, the demand for materials with excellent heat resistance and thermal shock resistance has increased. In particular, thermal shock resistance is one of the important properties of ceramic honeycomb catalyst carriers used in automobile exhaust gas purification devices, and can prevent rapid heat generation due to the catalytic reaction of unburned hydrocarbons and carbon monoxide in the exhaust gas, and stop the engine from starting. High thermal shock resistance is required to withstand thermal stress caused by temperature differences that occur within the honeycomb structure due to temperature changes due to rapid heating and cooling. There are strong demands associated with driving. This thermal shock resistance is expressed by the rapid heating and cooling durability temperature difference, and it has been found that the durability temperature difference is inversely proportional to the thermal expansion coefficient among the characteristics of honeycomb, and the smaller the thermal expansion coefficient, the larger the durability temperature difference. It is known that in a honeycomb structure, the contribution ratio is particularly large in the direction perpendicular to the flow path (axis B in FIG. 4). It has been known that cordierite ceramics exhibit low expansion properties, for example, as described in U.S. Patent No.
Specification No. 3885977 (corresponding Japanese application: Japanese Patent Application Laid-open No. 1989-
As disclosed in Publication No. 75611), 25~
The coefficient of thermal expansion is at least 11 in one direction between 1000℃
Cordierite ceramics with an orientation smaller than ×10 -7 /℃ are described, and the planar orientation caused by plate clay and laminated clay is described as the cause of this orientation. discloses a composition that uses a silica raw material and exhibits a low expansion of 0.56 x 10 -6 /℃ between 25 and 1000℃.On the other hand, the characteristics of the system using silica here are also shown in the examples. As shown in the figure, the B axis thermal expansion coefficient is 1.01 to 1.08 x 10 -6 /°C, which is larger than the A axis thermal expansion coefficient of 0.62 to 0.78 x 10 -6 /°C, and B substantially contributes to thermal shock resistance. There was a problem in that it was not possible to achieve a low axial thermal expansion coefficient. Also, U.S. Patent No. 3950175 (Japanese Unexamined Patent Publication No.
-75612), by replacing part or all of the talc or clay in the raw material with silica or silica-alumina source raw materials such as pyrophyllite, kyanite, quartz, and fused silica. It is disclosed that cordierite porous ceramics having pores with a diameter larger than 10 μm can be obtained. On the other hand, this document discloses a composition that uses fused silica as a silica raw material and has many large pores of 10 μm or more, but there is no mention of low expansion.
It was not possible to achieve a low B-axis thermal expansion coefficient. Furthermore, in Japanese Patent Publication No. 57-28390, it is proposed that by setting the average particle diameter of talc to 5 to 150 μm,
It is disclosed that a low expansion of 1.6 × 10 -6 /℃ or less can be obtained between 1000℃, but between 25 and 1000℃
There is no description of a composition exhibiting low expansion of less than 0.9×10 −6 /° C., and it was not possible to further reduce the thermal expansion coefficients in the A-axis and B-axis directions. Furthermore, the inventor's earlier patent application filed in 1983-
183904 describes a combination of high-purity amorphous silica and fine alumina based on the use of fine talc of 5 μm or less for the purpose of densification with a porosity of 30% or less. 0.3×10 -6 /℃
No low inflation was obtained. In the present invention, the coefficient of thermal expansion in the A-axis and B-axis directions is further reduced in a porosity range of more than 30% and less than 42%. The purpose of the present invention is to solve the above-mentioned problems and to reduce the A-axis and B-axis thermal expansion coefficients of the conventional cordierite honeycomb structure, thereby making cordierite excellent in heat resistance and thermal shock resistance. It is an object of the present invention to provide a method for manufacturing a cordierite honeycomb structure that can obtain a honeycomb structure. (Means for Solving the Problems) The method for producing a cordierite honeycomb structure of the present invention is characterized in that the chemical composition of the main components is SiO 2 42 to 56% by weight;
Talc with an average particle size of 5-100 μm, alumina with an average particle size of 2 μm or less, high-purity amorphous silica with an average particle size of 15 μm or less, and others so that Al 2 O 3 30-45% by weight and MgO 12-16% by weight. A plasticizer and an organic binder are added to this mixture to form a plasticized and deformable batch by mixing and kneading, and this plasticized batch is formed by extrusion molding and then dried. , then this dried material was heated to 1350
By firing at a temperature of ~1440°C, the main component of the crystalline phase is cordierite, the porosity is more than 30% and 42% or less, and the flow path direction of the honeycomb structure (Fig. 4) is obtained. , A axis) 40~
Thermal expansion coefficient between 800℃ and 0.3×10 -6 /℃ or less, and the thermal expansion coefficient between 40 and 800℃ in the direction perpendicular to the flow path (Fig. 4, axis B) of 0.5×10 -6 /℃ or less The present invention is characterized in that a cordierite honeycomb structure is obtained. (Function) Low expansion can be achieved with the above-mentioned configuration because the reaction system is significantly different from the cordierite formation reaction system of talc, kaolin, and alumina due to the use of high-purity amorphous silica, and the cordierite crystallization stage is at a high temperature. This is because it is possible to obtain domains having a maximum diameter of 20 μm or more in which the preferable cordierite crystal orientation, that is, the C-axis crystallization direction of the cordierite crystals are aligned in the same direction. Furthermore, the average length of cordierite crystals in the C-axis direction is 1 to 5 μm.
A microstructure in which euhedral cordierite crystals with a C-axis/A-axis aspect ratio of 80% or more of the cordierite crystals is 1.5 or more is obtained. Furthermore, as a feature of this microstructure, the amount of microcracks is not significantly different from that of talc, kaolin, and alumina-based cordierite materials, but the microcracks develop along the C-axis direction of the cordierite crystals within the domain structure. Cordierite crystal A has positive expansion.
This is thought to be due to the fact that the microcracks make a greater contribution to low expansion because they absorb thermal expansion in the axial and B-axis directions, resulting in low expansion as a honeycomb structure. Low expansion is achieved by changing the chemical composition of the honeycomb structure.
42-56% by weight in SiO2 , preferably 47-53% by weight,
30-45% by weight in Al2O3 , preferably 32-38% by weight, 12-16% by weight in MgO, preferably 12.5-15
It is preferable to set it as 2.5% by weight or less of unavoidably mixed components such as TiO 2 , CaO, KNaO, and Fe 2 O 3 as a whole. It is preferable that the crystal phase consists essentially of cordierite crystals, and the amount of cordierite crystals is 90
At least % by weight of mullite and spinel (including saphirin) as other crystals contained. The porosity of the catalyst carrier is limited to more than 30% and no more than 42%, because if it is less than 30%, the conditions for supporting the catalyst will deteriorate, and if it exceeds 42%, the strength will decrease and the thermal shock resistance after supporting the catalyst will deteriorate. did. If the coefficient of thermal expansion exceeds 0.3×10 -6 /℃ in the A-axis direction and 0.5×10 -6 /℃ in the B-axis direction, the thermal shock resistance will deteriorate, so the coefficient of thermal expansion should be 0.3× in the A-axis direction.
It was limited to 10 -6 /°C or less and 0.5×10 -6 /°C or less in the B-axis direction. The coefficient of thermal expansion in the A-axis direction is 0.2×
More preferably, the temperature is 10 -6 /°C or less. When the average particle size of talc is less than 5 μm, the coefficient of thermal expansion increases and the porosity decreases.
If the average particle size exceeds 100μm, both the coefficient of thermal expansion and the porosity will increase, so the average particle size of 5~
It was limited to 100 μm. In addition, the average particle diameter is 7 to 50μ
It is preferable that it is m. The particle size of silica is limited to an average particle size of 15 μm or less because if the average particle size exceeds 15 μm, the coefficient of thermal expansion in the B-axis direction and the porosity increase. Regarding the type of silica, amorphous silica is used because crystalline silica increases the coefficient of thermal expansion and deteriorates thermal shock resistance, as well as increases the porosity. The average particle size of alumina is 2 μm because the coefficient of thermal expansion increases when the average particle size exceeds 2 μm.
Limited to the following. Furthermore, as this alumina,
It is preferable to use low soda alumina with a Na 2 O content of 0.12% by weight or less because it allows for lower expansion. The average particle size of kaolin is 2 μm or less, and it is preferable to use one that is 1/3 or less of the average particle size of talc because it promotes the orientation of cordierite crystals and achieves low expansion. The aluminum hydroxide used as the alumina raw material preferably has an average particle diameter of 2 μm or less because it promotes cordierite crystal orientation and is very effective in reducing expansion. The amount of amorphous silica used is preferably 8 to 20% by weight because it is most effective in reducing swelling. (Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 Raw materials with chemical analysis values and particle sizes shown in Table 1 were
The mixtures were prepared according to the proportions of No. 1 to No. 36 in the table, and after adding methylcellulose, they were kneaded to form extrudable clay. Next, the clay of each batch was molded by a known extrusion method to form a square cell shape with a rib thickness of 152 μm and 62 cells per square centimeter, and a diameter of 93 mm.
It was molded into a cylindrical honeycomb structure with a length of 100 mm and a height of 100 mm. After drying the honeycomb structure, it was fired at the maximum temperature shown in Table 2, and the characteristics of the sintered body were evaluated for the coefficient of thermal expansion of the A and B axes, porosity, amount of cordierite crystals, and thermal shock resistance. The evaluation results are also shown in Table 2. In addition, from the above results, Fig. 1 shows the relationship between the coefficient of thermal expansion in the A-axis direction and the thermal shock resistance temperature, Fig. 2 shows the relationship between the coefficient of thermal expansion in the B-axis direction and the thermal shock resistance temperature, and Fig. 3 shows the relationship between the coefficient of thermal expansion in the A-axis direction and the thermal shock resistance temperature. Comparing the relationship between the talc average particle diameter and the thermal expansion coefficient in the A and B axis directions for batches No. 1 to No.
Figure 1 in Publication No. 28390 shows the relationship between the average particle diameter of talc and the coefficient of thermal expansion. In addition, the average particle diameter of the raw materials in Table 1 is talc.
(A), (B), and (C) were measured by a dry separation method using a JIS standard sieve, and the others were measured by an X-ray sedimentation method using a Sedigraph manufactured by Micromeritics.

【表】【table】

【表】【table】

【表】【table】

【表】 * ローソーダアルミナ使用
** 結晶質シリカ使用
*1 水銀圧入法 全細孔容積換算値(コージエライト
真比重2.52とした)
*2 X線回折 ZnO内部標準による定量値
*3 電気炉への投入 30分保持、室温への取出での
耐久温度
第2表の結果から、平均粒子径5〜100μmの
タルク、平均粒子径2μm以下のアルミナ、平均
粒子径15μm以下の高純度非晶質シリカを使用し
た試験No.2〜6、9〜14、16、18および20〜35
は、本発明で規定するA軸およびB軸の熱膨脹係
数を満たすことがわかつた。 また、タルク粒度が本発明外の試料No.1、7、
アルミナ粒度が本発明外の試料No.8、シリカ粒度
が本発明外の試料No.15、結晶シリカを使用した試
料No.17、19は、それぞれ本発明で規定するA軸お
よびB軸の熱膨脹係数を満たさないこともわかつ
た。 さらに、第1図、第2図より、耐熱衝撃温度が
熱膨脹係数と逆比例し、その相関はB軸の熱膨脹
係数との間で顕著であることが、また第3図よ
り、本発明では公知例である特公昭57−28390と
同粒度のタルクを用いているが、高純度非晶質シ
リカと微粒アルミナの併用により熱膨脹係数を極
めて小さくすることができることがわかつた。 実施例 2 第2表に示した試料のうち数種類の試料を実施
例1と同様の方法で準備し、各試料の最小ドメイ
ン長径、コージエライト結晶平均長さ、アスペク
ト比1.5以上の結晶量比、ハニカム壁面(ハニカ
ム押出方向平行面)上でのコージエライト結晶の
比〔(110)/{(110)+(002)}〕をそ
れぞれ求めた。結果を第3表に示す。 第3表において、最小ドメイン長径は各試料の
SEM写真より確認できる最小ドメインの長径か
ら求めた。また、コージエライト結晶平均長さお
よびアスペクト比1.5以上の結晶量比は、同じく
各試料のSEM写真より無作為にコージエライト
結晶を選択し、各結晶の長さと幅を測定するとと
もにアスペクト比を計算して求めた。
[Table] * Uses low soda alumina ** Uses crystalline silica *1 Mercury intrusion method Total pore volume equivalent value (cordierite true specific gravity is 2.52)
*2 Quantitative value using X-ray diffraction ZnO internal standard *3 Durability temperature when put into electric furnace, held for 30 minutes, and taken out to room temperature From the results in Table 2, talc with an average particle size of 5 to 100 μm, and talc with an average particle size of 2 μm Test Nos. 2-6, 9-14, 16, 18 and 20-35 using the following alumina and high purity amorphous silica with an average particle size of 15 μm or less
was found to satisfy the thermal expansion coefficients of the A-axis and B-axis defined in the present invention. In addition, samples Nos. 1 and 7 whose talc particle size is outside the scope of the present invention,
Sample No. 8 with an alumina particle size outside the invention, sample No. 15 with a silica particle size outside the invention, and samples Nos. 17 and 19 using crystalline silica have thermal expansion along the A-axis and B-axis defined by the invention, respectively. It was also found that the coefficient was not satisfied. Furthermore, from FIG. 1 and FIG. 2, it can be seen that the thermal shock resistance temperature is inversely proportional to the coefficient of thermal expansion, and the correlation is remarkable with the coefficient of thermal expansion of the B axis. Although talc with the same particle size as the example used in Japanese Patent Publication No. 57-28390 was used, it was found that the coefficient of thermal expansion could be made extremely small by combining high-purity amorphous silica and fine alumina. Example 2 Several types of samples among the samples shown in Table 2 were prepared in the same manner as in Example 1, and the minimum domain major axis, average cordierite crystal length, crystal mass ratio with an aspect ratio of 1.5 or more, and honeycomb of each sample were prepared in the same manner as in Example 1. The ratio of cordierite crystals [(110)/{(110)+(002)}] on the wall surface (plane parallel to the honeycomb extrusion direction) was determined. The results are shown in Table 3. In Table 3, the minimum domain major axis of each sample is
It was determined from the length of the minimum domain that could be confirmed from the SEM photograph. In addition, the average length of cordierite crystals and the ratio of the amount of crystals with an aspect ratio of 1.5 or more were determined by randomly selecting cordierite crystals from the SEM photograph of each sample, measuring the length and width of each crystal, and calculating the aspect ratio. I asked for it.

【表】 少い。
第3表の結果から、本発明の一部の試料におい
は、最小ドメイン長径は20μm以上、コージエラ
イト結晶の平均長さは1〜5μm、アスペクト比
1.5以上の結晶量比は80%以上の範囲にあること
がわかり、これらの範囲は本発明における好まし
い範囲であることがわかつた。さらに、ハニカム
壁面の比は0.78以上が好ましい範囲であること
がわかつた。 また、第5図a,bに試験No.32(本発明)の50
倍および2000倍のSEM写真を、第6図a,bに
試験No.36(参考例)の50倍および2000倍のSEM写
真を示した。さらに、第7図には第5図aに示し
たSEM写真の各領域を説明するための図を示し
た。 第5図a,bおよび第7図とから、本発明の試
料No.32のものにあつては、C軸方向に伸びた平均
長さ3.5μmの長柱状のコージエライト自形結晶が
非常に発達し、長形20μm以上のドメインを形成
していることがわかる。また、アスペクト比1.5
以上の結晶が全体の85%を占めており、マイクロ
クラツクもドメイン内結晶C軸方向にそつたもの
が多い。第5図aに示す50倍SEM写真で拡大す
れば、自形結晶及びドメインを確認することがで
きる。また、大きなドメインは長径が100μm以
上にもなり、SEMでの確認が困難となる。 これに対し、第6図a,bに示される試料No.36
の参考例にあつては、ほとんどの部分でコージエ
ライト自形結晶が認められず、確認できる自形結
晶の平均長さも0.8μmである。従つて、ドメイン
の形成も比較的小さいもの(長径10μm以上)が
ごく一部に認められるだけである。第6図bに示
す2000倍写真は自形結晶が比較的発達した部分で
あるが、ここでもアスペクト比が1.5以上の結晶
は少く、全体では30%しか認められない。また、
マイクロクラツクも存在するが、コージエライト
結晶との関係は明確でない。 さらに、第8図a,bに試験No.32(本発明)の
同一視野における常温及び800℃におけるSEM写
真を示す。第8図a,bの比較により、常温で開
いているマイクロクラツクが800℃ではほぼ完全
に閉じているのが確認でき、このことはマイクロ
クラツクがコージエライトハニカムの低膨脹化に
寄与していることを示している。 さらにまた、第9図に試験No.32(本発明)とNo.
36(参考例)の1200℃までの熱膨脹ヒステリシス
曲線を示す。第9図から、試験No.32の最大ヒステ
リシス量(加熱時膨脹曲線と冷却時収縮曲線の同
一温度での熱膨脹率差の最大値)が0.086%、試
験No.36の最大ヒステリシス量が0.068%である。
最大ヒステリシス量の大きさはマイクロクラツク
の量や低膨脹化への寄与の大きさを表わすと考え
られ、No.32とNo.36は微構造観察でマイクロクラツ
クの量に大きな差は認められないことから、低膨
脹化に対するマイクロクラツクの効果はNo.32の方
が大きいことを示している。 (発明の効果) 以上詳細に説明したところから明らかなよう
に、本発明によれば、気孔率30%を超え42%以下
であつて、40〜800℃の間の熱膨脹係数A軸:0.3
×10-6/℃以下、B軸:0.5×10-6/℃以下の耐
熱性、耐熱衝撃性に優れたハニカム構造体が得ら
れる。従つて本発明は、産業上極めて有用であ
り、特に高い耐熱性、耐熱衝撃性が要求されてい
る自動車排ガス浄化装置のマニホールド化、高速
運転に伴うセラミツク触媒担体に有用である。
[Table] Few.
From the results in Table 3, some samples of the present invention have a minimum domain major axis of 20 μm or more, an average cordierite crystal length of 1 to 5 μm, and an aspect ratio.
It was found that the crystal content ratio of 1.5 or more was in the range of 80% or more, and these ranges were found to be the preferred ranges in the present invention. Furthermore, it was found that a preferable range for the honeycomb wall ratio is 0.78 or more. In addition, Fig. 5 a and b show test No. 32 (this invention).
SEM photographs of Test No. 36 (reference example) are shown in Figures 6a and 6b. Furthermore, FIG. 7 shows a diagram for explaining each region of the SEM photograph shown in FIG. 5a. From Fig. 5a, b and Fig. 7, in the case of sample No. 32 of the present invention, long columnar cordierite euhedral crystals with an average length of 3.5 μm extending in the C-axis direction are extremely developed. It can be seen that domains with an elongated shape of 20 μm or more are formed. Also, the aspect ratio is 1.5
The above crystals account for 85% of the total, and many of the microcracks are also aligned in the C-axis direction of the crystal within the domain. If the SEM photograph shown in FIG. 5a is magnified 50 times, euhedral crystals and domains can be confirmed. In addition, large domains have a long axis of 100 μm or more, making it difficult to confirm with SEM. In contrast, sample No. 36 shown in Figure 6 a and b
In the reference example, cordierite euhedral crystals are not observed in most parts, and the average length of the euhedral crystals that can be confirmed is 0.8 μm. Therefore, the formation of relatively small domains (lengthwise diameter of 10 μm or more) is only observed in a small portion. The 2000x photograph shown in Figure 6b shows an area where euhedral crystals are relatively well-developed, but here too there are few crystals with an aspect ratio of 1.5 or more, and only 30% of the total are observed. Also,
Microcracks also exist, but their relationship with cordierite crystals is not clear. Further, FIGS. 8a and 8b show SEM photographs of Test No. 32 (invention) at room temperature and 800° C. in the same field of view. By comparing Figure 8a and b, it can be confirmed that the microcracks that are open at room temperature are almost completely closed at 800℃, which indicates that the microcracks contribute to the low expansion of the cordierite honeycomb. It shows that you are doing it. Furthermore, Fig. 9 shows Test No. 32 (present invention) and Test No.
The thermal expansion hysteresis curve of No. 36 (reference example) up to 1200℃ is shown. From Figure 9, the maximum hysteresis amount (the maximum value of the difference in coefficient of thermal expansion at the same temperature between the heating expansion curve and the cooling contraction curve) for Test No. 32 is 0.086%, and the maximum hysteresis amount for Test No. 36 is 0.068%. It is.
The magnitude of the maximum hysteresis amount is thought to represent the amount of microcracks and the magnitude of their contribution to low expansion, and no large difference in the amount of microcracks was observed in microstructure observation of No. 32 and No. 36. This shows that No. 32 has a greater effect of microcracks on reducing expansion. (Effects of the Invention) As is clear from the above detailed explanation, according to the present invention, the porosity is more than 30% and 42% or less, and the coefficient of thermal expansion A axis between 40 and 800°C is 0.3.
A honeycomb structure with excellent heat resistance and thermal shock resistance of 0.5× 10 -6 / °C or less on the B axis can be obtained. Therefore, the present invention is extremely useful industrially, and is particularly useful for manifolding of automobile exhaust gas purification devices, which require high heat resistance and thermal shock resistance, and for ceramic catalyst carriers used in high-speed operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はA軸の熱膨脹係数と耐熱衝撃温度との
関係を示すグラフ、第2図はB軸の熱膨脹係数と
耐熱衝撃温度との関係を示すグラフ、第3図はタ
ルク平均粒子径と熱膨脹係数との関係を示すグラ
フ、第4図はハニカム構造体の一例を示す斜視
図、第5図a,bは試験No.32の結晶の構造を示す
50倍および2000倍のSEM写真、第6図a,bは
試験No.36の結晶の構造を示す50倍および2000倍の
SEM写真、第7図は第5図aに示したSEM写真
の各領域を説明するための図、第8図a,bは試
験No.32の同一視野における常温および800℃の結
晶の構造を示すSEM写真、第9図は試験No.32と
No.36の1200℃までの熱膨脹ヒステリシス曲線を示
す図である。
Figure 1 is a graph showing the relationship between the A-axis thermal expansion coefficient and thermal shock resistance temperature, Figure 2 is a graph showing the B-axis relationship between the thermal expansion coefficient and thermal shock resistance temperature, and Figure 3 is the graph showing the relationship between the talc average particle diameter and thermal expansion. A graph showing the relationship with the coefficient, Fig. 4 is a perspective view showing an example of a honeycomb structure, and Fig. 5 a and b show the structure of the crystal of test No. 32.
50x and 2000x SEM photographs, Figure 6 a and b show the structure of the crystal of test No. 36.
SEM photographs. Figure 7 is a diagram for explaining each region of the SEM photograph shown in Figure 5 a. Figures 8 a and b show the crystal structures at room temperature and 800°C in the same field of view in Test No. 32. The SEM photo shown in Figure 9 is test No. 32.
It is a figure showing the thermal expansion hysteresis curve of No. 36 up to 1200°C.

Claims (1)

【特許請求の範囲】 1 主成分の化学組成がSiO242〜56重量%、
Al2O330〜45重量%、MgO12〜16重量%となるよ
うに平均粒子径5〜100μmのタルク、平均粒子
径2μm以下のアルミナ、平均粒子径15μm以下の
高純度非晶質シリカ及び他のコージエライト化原
料を調合し、この調合物に可塑化剤及び有機結合
剤を加えて混合、混練して可塑化した変形可能な
バツチとし、この可塑化したバツチを押出し成形
法により成形後乾燥し、次いでこの乾燥物を1350
〜1440℃の温度にて焼成することにより、結晶相
の主成分がコージエライトから成るハニカム構造
体で、気孔率が30%を超え42%以下であつて、ハ
ニカム構造の流路方向の40〜800℃の間の熱膨脹
係数が0.3×10-6/℃以下、流路に垂直な方向の
40〜800℃の間の熱膨脹係数が0.5×10-6/℃以下
であるコージエライトハニカム構造体を得ること
を特徴とするコージエライトハニカム構造体の製
造方法。 2 コージエライト化原料のうちNa2Oが0.12重
量%以下であるアルミナを用いる特許請求の範囲
第1項記載のコージエライトハニカム構造体の製
造方法。 3 コージエライト化原料のうち平均粒子径2μ
m以下のカオリンを用いる特許請求の範囲第1項
記載のコージエライトハニカム構造体の製造方
法。 4 コージエライト化原料のうち平均粒子径7〜
50μmのタルクを用いる特許請求の範囲第1項記
載のコージエライトハニカム構造体の製造方法。 5 コージエライト化原料のうち高純度非晶質シ
リカの添加量が8〜20重量%である特許請求の範
囲第1項記載のコージエライトハニカム構造体の
製造方法。
[Claims] 1. The chemical composition of the main component is SiO 2 42 to 56% by weight,
Talc with an average particle size of 5-100 μm, alumina with an average particle size of 2 μm or less, high-purity amorphous silica with an average particle size of 15 μm or less, and others so that Al 2 O 3 30-45% by weight and MgO 12-16% by weight. A plasticizer and an organic binder are added to this mixture to form a plasticized and deformable batch by mixing and kneading, and this plasticized batch is formed by extrusion molding and then dried. , then this dried material was heated to 1350
By firing at a temperature of ~1440℃, a honeycomb structure whose main crystalline phase is cordierite, a porosity of more than 30% and 42% or less, and a porosity of 40 to 800% in the flow path direction of the honeycomb structure is produced. The coefficient of thermal expansion between ℃ and 0.3×10 -6 /℃ in the direction perpendicular to the flow path
A method for producing a cordierite honeycomb structure, the method comprising obtaining a cordierite honeycomb structure having a thermal expansion coefficient of 0.5×10 -6 /°C or less between 40 and 800°C. 2. The method for producing a cordierite honeycomb structure according to claim 1, which uses alumina containing 0.12% by weight or less of Na 2 O among the raw materials for forming cordierite. 3 Average particle size of cordierite raw materials: 2μ
2. The method for manufacturing a cordierite honeycomb structure according to claim 1, using kaolin having a molecular weight of 10 m or less. 4 Average particle size of cordierite raw materials: 7~
A method for manufacturing a cordierite honeycomb structure according to claim 1, using 50 μm talc. 5. The method for producing a cordierite honeycomb structure according to claim 1, wherein the amount of high-purity amorphous silica added to the cordierite-forming raw material is 8 to 20% by weight.
JP62283127A 1987-02-12 1987-11-11 Cordierite honeycomb structure and production thereof Granted JPS643067A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62283127A JPS643067A (en) 1987-02-12 1987-11-11 Cordierite honeycomb structure and production thereof
US07/151,995 US4869944A (en) 1987-02-12 1988-02-03 Cordierite honeycomb-structural body and a method for producing the same
DE8888301120T DE3861134D1 (en) 1987-02-12 1988-02-10 CORDIERITE BODY WITH HONEYCOMB STRUCTURE AND A METHOD FOR PRODUCING THE SAME.
EP88301120A EP0278749B1 (en) 1987-02-12 1988-02-10 Cordierite honeycomb-structural body and a method for producing the same
JP5139054A JPH0761892B2 (en) 1987-11-11 1993-05-17 Cordierite honeycomb structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP62-28364 1987-02-12
JP2836487 1987-02-12
JP62283127A JPS643067A (en) 1987-02-12 1987-11-11 Cordierite honeycomb structure and production thereof
JP5139054A JPH0761892B2 (en) 1987-11-11 1993-05-17 Cordierite honeycomb structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5139054A Division JPH0761892B2 (en) 1987-02-12 1993-05-17 Cordierite honeycomb structure

Publications (3)

Publication Number Publication Date
JPH013067A JPH013067A (en) 1989-01-06
JPS643067A JPS643067A (en) 1989-01-06
JPH0582343B2 true JPH0582343B2 (en) 1993-11-18

Family

ID=26366451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62283127A Granted JPS643067A (en) 1987-02-12 1987-11-11 Cordierite honeycomb structure and production thereof

Country Status (1)

Country Link
JP (1) JPS643067A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2981107B2 (en) * 1994-03-07 1999-11-22 日本碍子株式会社 Method for producing cordierite honeycomb ceramics
JP4540025B2 (en) * 1998-12-07 2010-09-08 コーニング インコーポレイテッド Production of ultra-low thermal expansion cordierite structures
JP4046925B2 (en) * 1999-04-09 2008-02-13 株式会社日本自動車部品総合研究所 Ceramic body, ceramic carrier having catalyst supporting ability, ceramic catalyst body and method for producing the same
BR0001560B1 (en) 1999-04-09 2010-04-06 process for producing a ceramic catalyst body and a ceramic catalyst body.
CA2372368C (en) 2000-04-07 2007-06-12 Ngk Insulators, Ltd. Method for manufacturing cordierite ceramic honeycomb
JP4030320B2 (en) 2001-03-22 2008-01-09 株式会社デンソー Ceramic body and ceramic catalyst body
JP4434050B2 (en) 2005-03-17 2010-03-17 日本碍子株式会社 Manufacturing method of honeycomb structure
WO2006103963A1 (en) * 2005-03-29 2006-10-05 Ngk Insulators, Ltd. Honeycomb structure
US7744980B2 (en) * 2005-12-20 2010-06-29 Corning Incorporated Low CTE cordierite honeycomb article and method of manufacturing same
JP5478025B2 (en) 2008-03-21 2014-04-23 日本碍子株式会社 Cordierite ceramics and method for producing the same
JP5128989B2 (en) * 2008-03-25 2013-01-23 日本碍子株式会社 Cordierite ceramics manufacturing method
US8148297B2 (en) * 2009-11-30 2012-04-03 Corning Incorporated Reticular cordierite composition, article and manufacture thereof
US8999224B2 (en) * 2010-11-30 2015-04-07 Corning Incorporated Cordierite porous ceramic honeycomb articles with delayed microcrack evolution
CN110143825B (en) * 2019-05-13 2021-11-02 山东国瓷功能材料股份有限公司 Cordierite ceramic honeycomb filter body with narrow pore diameter distribution and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145169A (en) * 1980-04-04 1981-11-11 Nippon Soken Manufacture of cordierite body
JPS56145170A (en) * 1980-04-04 1981-11-11 Nippon Soken Manufacture of cordierite body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145169A (en) * 1980-04-04 1981-11-11 Nippon Soken Manufacture of cordierite body
JPS56145170A (en) * 1980-04-04 1981-11-11 Nippon Soken Manufacture of cordierite body

Also Published As

Publication number Publication date
JPS643067A (en) 1989-01-06

Similar Documents

Publication Publication Date Title
KR100236754B1 (en) Fabrication of low thermal expansion, high porosity cordierite body
US5409870A (en) Modified cordierite precursors
EP1133457B1 (en) Fabrication of low thermal expansion, high strength porous cordierite structures
US4001028A (en) Method of preparing crack-free monolithic polycrystalline cordierite substrates
JP5039554B2 (en) Ceramic body based on aluminum titanate and containing a glass phase
US6506336B1 (en) Fabrication of ultra-thinwall cordierite structures
US4869944A (en) Cordierite honeycomb-structural body and a method for producing the same
US7923093B2 (en) High porosity filters for 4-way exhaust gas treatment
US4772580A (en) Catalyst carrier of cordierite honeycomb structure and method of producing the same
JP4540025B2 (en) Production of ultra-low thermal expansion cordierite structures
JP3150928B2 (en) Method for manufacturing thin-walled cordierite-based honeycomb structure
KR20050026053A (en) Mullite-aluminum titanate diesel exhaust filter
EP1680206A1 (en) Ceramic body based on aluminum titanate
KR20040099329A (en) Strontium feldspar aluminum titanate for high temperature applications
EP0232621B1 (en) Catalyst carrier of cordierite honeycomb structure and method of producing the same
EP1027304A1 (en) Method for firing ceramic honeycomb bodies
JPH0582343B2 (en)
US5997984A (en) Cordierite honeycomb structural body and method for its production
JPWO2005005019A1 (en) Exhaust gas purification honeycomb filter and manufacturing method thereof
JPH013067A (en) Manufacturing method of cordierite honeycomb structure
JPH1157496A (en) Preparation of cordierite ceramic honeycomb structure body
JP2000226253A (en) Production of cordierite-based ceramic honeycomb structure
JP5128989B2 (en) Cordierite ceramics manufacturing method
JPH0558773B2 (en)
JPH0463023B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term