JPH0761821A - Production of garnet-type magnetic material - Google Patents

Production of garnet-type magnetic material

Info

Publication number
JPH0761821A
JPH0761821A JP5225006A JP22500693A JPH0761821A JP H0761821 A JPH0761821 A JP H0761821A JP 5225006 A JP5225006 A JP 5225006A JP 22500693 A JP22500693 A JP 22500693A JP H0761821 A JPH0761821 A JP H0761821A
Authority
JP
Japan
Prior art keywords
raw material
garnet
magnetic material
type magnetic
peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5225006A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Akita
千芳 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP5225006A priority Critical patent/JPH0761821A/en
Publication of JPH0761821A publication Critical patent/JPH0761821A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/346[(TO4) 3] with T= Si, Al, Fe, Ga

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Abstract

PURPOSE:To increase the sintered density up to >=97% and reduce the insertion loss when used for a device for a non-reciprocal line by using a specified powdery raw material as the main component and adding a metal peroxide thereto. CONSTITUTION:Constituent raw material compounds respectively containing each element of the powdery raw material represented by the formula [A is yttrium or one or more kinds of rare earth metal elements; B is one or more kinds of metals including iron; (x) satisfies 2.98<=x<=3.06] are blended according to the dry method and calcined at 1000 to 1200 deg.C for 2 to 4hr in an atmosphere of 1 to 10atm and 40 to 100% oxygen concentration. Copper peroxide (CuO2) and a binder are admixed therewith and the amount of the copper peroxide is <=1.5mol% based on the calcined material. The resultant mixture is dried and granulated and the obtained granules are molded into a shape required for each special use. The shaped material is heated to about 500 deg.C to burn up the binder and subsequently sintered together with an inert gas of Ar, nitrogen, etc., having 10 to 100% partial pressure of oxygen at 1200 deg.C under 4 to 10atm for 3 to 8hr, thus producing the objective dense ferrite sintered material having <=0.01% porosity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特にアイソレータやサ
ーキュレータなどの高周波フェライトデバイスに好適と
されるガーネット型磁性材料の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a garnet type magnetic material manufacturing method suitable for high frequency ferrite devices such as isolators and circulators.

【0002】[0002]

【従来の技術】従来より高周波帯域におけるアイソレー
タやサーキュレータといった非可逆線路などのデバイス
用磁性材料として、YIGフェライトに代表されるガー
ネット型磁性材料が用いられている。これは、このガー
ネット型磁性材料が高周波において最も損失の少ない材
料であるからであるが、十分な飽和磁化と損失の低減を
達成するためには高密度な焼結体を得る必要がある。こ
のようなガーネット型磁性材料は一般に、酸化第二鉄と
酸化イットリウム及び微量の添加剤の粉末混合物を空気
中で仮焼してフェライト化させ、これを粉砕し所定の形
状に成型して得られる成型体を、常圧下酸素濃度10〜
100%となる雰囲気のもと1200℃以上の温度で焼
成し、フェライト粒子径や磁気特性を制御することによ
り製造されている。
2. Description of the Related Art Conventionally, a garnet type magnetic material typified by YIG ferrite has been used as a magnetic material for devices such as nonreciprocal lines such as isolators and circulators in a high frequency band. This is because this garnet-type magnetic material is the material with the least loss at high frequencies, but it is necessary to obtain a high-density sintered body in order to achieve sufficient saturation magnetization and loss reduction. Such a garnet-type magnetic material is generally obtained by calcining a powder mixture of ferric oxide, yttrium oxide, and a small amount of an additive in the air to form a ferrite, which is then crushed and molded into a predetermined shape. The molded body has an oxygen concentration of 10 to 10 under normal pressure.
It is manufactured by firing at a temperature of 1200 ° C. or higher in an atmosphere of 100% and controlling the ferrite particle size and magnetic characteristics.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ような焼成条件、特に空気中で焼成した場合には、焼成
密度は理論値の60〜97%であるに過ぎない。本発明
の目的は、焼成密度を97%より大きくできるガーネッ
ト型磁性材料を提供することにある。
However, under the above-mentioned firing conditions, particularly in the case of firing in air, the firing density is only 60 to 97% of the theoretical value. An object of the present invention is to provide a garnet-type magnetic material that can have a firing density of more than 97%.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題を解
決するために、一般式Ax 8-x 12( 式中、Aはイッ
トリウム又は希土類元素の1種又は2種以上、Bは鉄を
含む1種又は2種以上の金属)で表され、xが2.98
≦x≦3.06の範囲にあるガーネット型磁性材料の原
料粉末を主成分とし、該原料粉末に金属の過酸化物を添
加して焼成するガーネット型磁性材料の製造方法を提供
するものである。 この際、金属の過酸化物は過酸化銅
であり、その添加量は原料粉末に対して1.5モル%以
下であることが好ましい。
In order to solve the above-mentioned problems, the present invention has the general formula A x B 8-x O 12 (wherein A is yttrium or one or more of rare earth elements, and B Is one or more metals including iron), and x is 2.98.
Provided is a method for producing a garnet-type magnetic material, which comprises, as a main component, a raw material powder of a garnet-type magnetic material within a range of ≤x≤3.06 and adding a metal peroxide to the raw material powder and firing the raw material powder. . At this time, the metal peroxide is copper peroxide, and its addition amount is preferably 1.5 mol% or less with respect to the raw material powder.

【0005】本発明においては、一般式Ax 8-x 12
で表され、xが2.98≦x≦3.06の範囲にあるる
ガーネット型磁性材料の原料粉末を用いる。
In the present invention, the general formula A x B 8-x O 12
And the raw material powder of the garnet-type magnetic material having x in the range of 2.98 ≦ x ≦ 3.06 is used.

【0006】上記一般式中、Aはイットリウム又は希土
類元素の1種又は2種以上、Bは鉄を含む1種又は2種
以上の金属である。Aに含まれる元素としてイットリウ
ム以外の希土類元素としては、Gd、Bi、Dx、Yb
等が挙げられ、また、Bに含まれる鉄以外の元素として
はAl、Mn、Ga、Sc、In、Ti等が挙げられ
る。また、2.98≦x≦3.06であり、xがこれよ
り少ないと、後に得られる磁性材料がガーネット型単相
ではなくなり、これより多いと焼結密度が急激に減少す
る。
In the above general formula, A is one or more kinds of yttrium or rare earth elements, and B is one or more kinds of metals containing iron. The rare earth elements other than yttrium as elements contained in A include Gd, Bi, Dx, and Yb.
And the like. Examples of the element other than iron contained in B include Al, Mn, Ga, Sc, In, and Ti. Further, 2.98 ≦ x ≦ 3.06, and when x is less than this, the magnetic material obtained later is not a garnet type single phase, and when it is more than this, the sintered density sharply decreases.

【0007】上記一般式で表される化合物からなる原料
粉末は、それぞれの元素を含む構成原料化合物を通常の
セラミック法、すなわち乾式法で混合し、これを仮焼し
てガーネット型磁性材料の原料粉末としたものである。
その原料化合物としては、Y2 3 、Gd2 3 、Fe
2 3 、Al2 3 等が挙げられ、これらの混合比は磁
気特性のシリーズ化などで適正割合は変化する。
The raw material powder made of the compound represented by the above general formula is prepared by mixing the constituent raw material compounds containing the respective elements by a usual ceramic method, that is, a dry method, and calcining the mixture to obtain a raw material for the garnet type magnetic material. It is a powder.
As the raw material compound, Y 2 O 3 , Gd 2 O 3 , Fe
2 O 3 , Al 2 O 3 and the like can be mentioned. The proper ratio of these mixing ratios changes depending on the series of magnetic characteristics.

【0008】また、仮焼条件としては、原料粉末を空気
中で仮焼することもできるが、原料組成物を1〜10気
圧で酸素濃度40%以上、すなわち40〜100%の雰
囲気下において仮焼することも好ましい。この仮焼工程
における焼成温度としては例えば1000〜1200℃
が例示され、その焼成時間としては例えば2〜4時間が
例示される。温度が高過ぎると焼結が進行し過ぎ、低過
ぎると反応が進まない。時間が長すぎても反応が完結し
ておれば問題がないが、短過ぎると未反応物が残ってし
まう。
As the calcination conditions, the raw material powder may be calcinated in air, but the raw material composition is calcinated in an atmosphere having an oxygen concentration of 40% or more at 1 to 10 atm, that is, 40 to 100%. Baking is also preferable. The firing temperature in this calcination step is, for example, 1000 to 1200 ° C.
And the firing time is, for example, 2 to 4 hours. If the temperature is too high, the sintering will proceed too much, and if it is too low, the reaction will not proceed. There is no problem if the reaction is completed even if the time is too long, but unreacted substances remain if it is too short.

【0009】上記仮焼工程を経て得られた仮焼物は、粉
砕されてガーネット型磁性材料の原料粉末とすることも
できるが、この仮焼物に対し、金属の過酸化物を添加し
た後粉砕しても良い。金属の過酸化物としては例えばC
uO2 、BaO2 等が挙げられ、仮焼物に対してCuO
2 の場合には1.5モル%以下が好ましく、これ以上で
は後に行う焼成後2次相を生じ、ガーネット単相ではな
くなってしまうことがある。上記仮焼物のガーネット型
磁性材料の原料粉末と金属の過酸化物の混合物にはポリ
ビニルアルコール系等のバインダーを添加した後、その
混合物を乾燥し、造粒する。
The calcined product obtained through the above-mentioned calcining step can be crushed into a raw material powder for a garnet type magnetic material. To this calcined product, a metal peroxide is added and then crushed. May be. Examples of the metal peroxide include C
uO 2 , BaO 2 and the like are included, and CuO is used for the calcined product.
In the case of 2 , 1.5 mol% or less is preferable, and if it is more than this, a secondary phase may be formed after firing performed later, and the garnet may not be a single phase. A binder such as polyvinyl alcohol is added to the mixture of the raw powder of the garnet-type magnetic material of the calcined product and the peroxide of the metal, and then the mixture is dried and granulated.

【0010】それから、アイソレータやサーキュレータ
等の具体的用途に応じた形状に成型される。この成型体
を500℃程度で加熱処理してバインダーを焼失させ
る、いわゆる脱バイ処理を行った後、最終的には酸素分
圧が酸素濃度で10%以上、すなわち10〜100%と
なる雰囲気下において1200℃以上で焼成する。雰囲
気中の酸素以外の成分としてはHe、Arや窒素等の不
活性ガスが挙げられる。酸素濃度を10〜100%とす
ることは、最終的に気孔率(試料の任意の切断面におけ
る気孔の占める面積を百分率で表示したもの)を0.0
1%以下に低下させ、フェライトの結晶粒子径、磁気特
性を制御するために好ましく、また、1200℃以上と
することは、有効な焼結を進行させ、気孔率を効果的に
低下させた緻密なフェライト焼成体を得るために好まし
い。
Then, it is molded into a shape suitable for a specific application such as an isolator or a circulator. After heat-treating this molded body at about 500 ° C. to burn out the binder, that is, so-called debye treatment, finally, in an atmosphere in which the oxygen partial pressure is 10% or more, that is, 10 to 100% in terms of oxygen concentration. At 1200 ° C. or higher. Examples of components other than oxygen in the atmosphere include inert gases such as He, Ar and nitrogen. The oxygen concentration of 10 to 100% means that the porosity (the area occupied by the pores in any cut surface of the sample is expressed as a percentage) is 0.0.
1% or less, which is preferable in order to control the crystal grain size and magnetic properties of ferrite. Also, the temperature of 1200 ° C. or higher promotes effective sintering and effectively reduces the porosity. It is preferable to obtain a fired ferrite body.

【0011】上記の焼成工程において1200℃以上に
加熱する時間は3〜8時間、その雰囲気の圧力は問わな
いが、4〜10気圧が好ましい。時間が長過ぎても問題
ないが、短か過ぎたり、圧力が低すぎると気孔率の上昇
を招く。また、圧力が10気圧を越えても効果が10気
圧で頭打ちとなり、向上しない。1200℃に至るまで
は、上記の酸素濃度及びこの圧力の雰囲気下で段階的に
昇温させることも好ましい。得られた焼成体は冷却され
るが、上記焼成時と同じ雰囲気下で冷却しても良いが、
1000℃まではその雰囲気下で冷却し、それ以下では
大気中で冷却することもできる。
In the above firing step, the heating time to 1200 ° C. or higher is 3 to 8 hours, and the pressure of the atmosphere is not limited, but 4 to 10 atm is preferable. There is no problem if the time is too long, but if it is too short or the pressure is too low, the porosity increases. Further, even if the pressure exceeds 10 atm, the effect reaches the ceiling at 10 atm and does not improve. It is also preferable to raise the temperature stepwise under an atmosphere of the above oxygen concentration and this pressure up to 1200 ° C. Although the obtained fired body is cooled, it may be cooled in the same atmosphere as the above firing,
It is also possible to cool in that atmosphere up to 1000 ° C., and in the air below that.

【0012】このようにして高密度のガーネット型磁性
材料が得られるが、X線回折法により調べることにより
ほぼ100%ガーネット相であることが確かめられ、気
孔率も極めて小さいことが確かめられる。
Thus, a high-density garnet-type magnetic material can be obtained, but it is confirmed by an X-ray diffraction method that the garnet phase is almost 100%, and the porosity is also extremely small.

【0013】[0013]

【作用】ガーネット型磁性材料の原料粉末に金属の過酸
化物を添加して焼成するようにしたので、過酸化物の存
在により、その酸素が寄与することにより過剰の酸素の
影響下で焼成が行われる。これにより、酸素欠損による
格子欠陥を起こり難くし、これにともない結晶が成長し
易く、気孔率が低減され、高密度化されると考えられる
が、詳細は明らかでない。
[Function] Since the metal peroxide is added to the raw powder of the garnet-type magnetic material for firing, the presence of the peroxide contributes to the oxygen, and the firing is performed under the influence of excess oxygen. Done. As a result, it is considered that lattice defects due to oxygen deficiency are less likely to occur, crystals are likely to grow with this, and the porosity is reduced and the density is increased, but details are not clear.

【0014】[0014]

【実施例】次に本発明の実施例を説明する。 実施例1、比較例 上記一般式Ax 8-x 12のxが図1の横軸に示すそれ
ぞれの値になるようなモル比で酸化第二鉄Fe2
3 と、酸化イットリウムY2 3 を秤量し、ボールミル
で16時間湿式混合し、それぞれの混合物を製造した。
これらのそれぞれの混合物を乾燥した後、空気中110
0℃で4時間仮焼した。これらのそれぞれの仮焼物15
0gに過酸化物としてCuO2 を2モル%(390m
g)、1.5モル%、1.0モル%及び0モル%添加し
ボールミルで粉砕混合し、乾燥した。このそれぞれの乾
燥物に有機バインダー(ポリビニルアルコールなど)を
加えて造粒し、2000Kg/cm2 の圧力で直径20
mm、厚さ2mmの円板状ペレットを成形した。得られ
たそれぞれの成形体を酸素中、1400℃で6時間焼成
した。
EXAMPLES Examples of the present invention will be described below. Example 1 and Comparative Examples Ferric oxide Fe 2 O in molar ratios such that x in the above general formula A x B 8-x O 12 has respective values shown on the horizontal axis of FIG. 1.
3 and yttrium oxide Y 2 O 3 were weighed and wet-mixed in a ball mill for 16 hours to prepare respective mixtures.
After drying each of these mixtures, 110 in air
It was calcined at 0 ° C. for 4 hours. Calcination of each of these 15
2 mol% of CuO 2 as a peroxide in 0 g (390 m
g), 1.5 mol%, 1.0 mol% and 0 mol% were added, and the mixture was ground and mixed in a ball mill and dried. An organic binder (polyvinyl alcohol, etc.) is added to each of the dried products to granulate, and a diameter of 20 is applied at a pressure of 2000 Kg / cm 2.
A disk-shaped pellet having a thickness of 2 mm and a thickness of 2 mm was formed. Each of the obtained molded bodies was fired in oxygen at 1400 ° C. for 6 hours.

【0015】得られた焼成体の密度(理論密度に対する
相対焼成密度)及びX線回折によるガーネット相の最強
ピークを100としたときの異相(スピネル相)の強度
を図1、図2に示す。図1、2中、□はCuO2 なし、
×はCuO2 1.0モ%、○はCuO2 1.5モル%、
△はCuO2 2.0モル%の場合を示す。
The density of the obtained fired body (relative firing density to the theoretical density) and the strength of the different phase (spinel phase) when the strongest peak of the garnet phase by X-ray diffraction is 100 are shown in FIGS. 1 and 2. In Figures 1 and 2, □ does not include CuO 2 .
× indicates CuO 2 1.0 mol%, ○ indicates CuO 2 1.5 mol%,
Δ indicates the case where CuO 2 was 2.0 mol%.

【0016】図から、CuO2 を2モル%(比較例)添
加すると、xが3以上で異相が生じ、密度にも減少が見
られ、また、xが2.98より小さく、3.06より大
きい場合(いずれも比較例)にも異相が観察され、xが
2.98≦x≦3.06の範囲、CuO2 が1.5以下
0以上で異相のない高密度のガーネット型磁性材料が得
られることがわかる。
From the figure, when CuO 2 is added in an amount of 2 mol% (comparative example), a heterogeneous phase occurs when x is 3 or more and the density is also decreased, and x is smaller than 2.98 and 3.06. Even when they are large (all are comparative examples), a heterogeneous phase is observed, and x is in the range of 2.98 ≦ x ≦ 3.06, CuO 2 is 1.5 or less and 0 or more, and a high density garnet type magnetic material having no heterogeneous phase is obtained. You can see that you can get it.

【0017】実施例2 高純度のY2 3 、Gd2 3 、Fe2 3 、Al2
3 を実施例1と同様に混合した後、空気中、1200℃
で仮焼し、YーGdーFeーAl系のガーネット型磁性
材料の原料粉末を得た。この仮焼物150gにCuO2
を130mg加えて実施例1と同様に粉砕、混合し、乾
燥した。実施例1と同様にこの乾燥物に有機バインダー
を加えて造粒し、円板状ペレットの成形体を得た。これ
についても実施例1と同様に密度とX線回折による相を
調べたところ、実施例1と同様に異相がなく、高密度で
あった。
Example 2 High-purity Y 2 O 3 , Gd 2 O 3 , Fe 2 O 3 , and Al 2 O
3 was mixed in the same manner as in Example 1 and then in air at 1200 ° C.
Calcination was performed to obtain a raw material powder of a Y-Gd-Fe-Al-based garnet-type magnetic material. CuO 2 was added to 150 g of this calcined product.
Was added, and the mixture was pulverized, mixed and dried in the same manner as in Example 1. An organic binder was added to this dried product in the same manner as in Example 1 for granulation to obtain a disk-shaped pellet compact. As for this, the density and the phase by X-ray diffraction were examined in the same manner as in Example 1. As a result, as in Example 1, there was no different phase and the density was high.

【0018】実施例3 実施例2において、仮焼物の化合物が(Y1-x Gdx
w ( Fe1-y-z AlyMnz )8-w 12(但し、式中、0
≦x≦0.6、0 ≦y≦1.0、0 ≦z≦0.20、
2.98≦w≦3.06) で表される構成成分の酸化物
を用いた以外は同様にして成形体の焼成体を得たが、実
施例1と同様に異相はなく、高密度であった。
Example 3 In Example 2, the compound of the calcined product was (Y 1-x Gd x ).
w (Fe 1-yz Al y Mn z) 8-w O 12 ( In the formula, 0
≤x≤0.6, 0 ≤y≤1.0, 0 ≤z≤0.20,
2.98 ≦ w ≦ 3.06) A fired body of a molded body was obtained in the same manner except that the oxide of the constituent represented by the formula (2) ≦ w ≦ 3.06) was used. there were.

【0019】実施例4 実施例2において、仮焼物の化合物が(Y1-x Bix
w Fe8-w 12(但し、式中、0≦x≦0.3、2.9
8≦w≦3.06) で表される構成成分の酸化物を用い
た以外は同様にして成形体の焼成体を得たが、実施例1
と同様に異相はなく、高密度であった。
[0019] In Example 4 Example 2, the compound of precalcination is (Y 1-x Bi x)
w Fe 8-w O 12 (where, 0 ≦ x ≦ 0.3, 2.9
8 ≦ w ≦ 3.06) A fired body was obtained in the same manner except that the oxide of the constituent represented by 8 ≦ w ≦ 3.06) was used.
There was no out-of-phase as in the above, and the density was high.

【0020】実施例5 実施例2において、仮焼物の化合物がYw ( Fe1-y
y )8-w 12(但し、式中、0 ≦y≦1.0、2.98
≦w≦3.06) で表される構成成分の酸化物を用いた
以外は同様にして成形体の焼成体を得たが、実施例1と
同様に異相はなく、高密度であった。
Example 5 In Example 2, the compound of the calcined product was Y w (Fe 1 -y G 2
a y ) 8-w O 12 (wherein 0 ≤ y ≤ 1.0, 2.98
A burned body of a molded body was obtained in the same manner except that the oxide of the constituent component represented by ≦ w ≦ 3.06) was used, but as in Example 1, there was no different phase and the density was high.

【0021】[0021]

【発明の効果】本発明によれば、ガーネット型磁性材料
の原料粉末に過酸化物を添加し、焼成したので、過酸化
物の添加のないものに比べ、焼成密度を例えは98%以
上にできる高密度化したガーネット型磁性材料を得るこ
とができ、高周波数帯域のアイソレータやサーキュレー
タ等の非可逆線路用デバイスに用いれば挿入損失を少な
くすることができる。
According to the present invention, since peroxide was added to the raw material powder of the garnet type magnetic material and fired, the firing density was 98% or more as compared with the case where no peroxide was added. It is possible to obtain a high-density garnet-type magnetic material that can be obtained, and it is possible to reduce insertion loss when used in a device for nonreciprocal line such as an isolator or a circulator in a high frequency band.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の実施例及び比較例で得られた焼
成体の焼成密度を示すグラフである。
FIG. 1 is a graph showing firing densities of fired bodies obtained in Examples and Comparative Examples of the method of the present invention.

【図2】本発明の方法の実施例及び比較例で得られた焼
成体のX線回折による結果を示すグラフである。
FIG. 2 is a graph showing the results of X-ray diffraction of the fired bodies obtained in Examples and Comparative Examples of the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01P 1/36 A 1/38 11/00 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01P 1/36 A 1/38 11/00 H

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式Ax 8-x 12 ( 式中、Aはイットリウム又は希土類元素の1種又は2
種以上、Bは鉄を含む1種又は2種以上の金属)で表さ
れ、xが2.98≦x≦3.06の範囲にあるガーネッ
ト型磁性材料の原料粉末を主成分とし、該原料粉末に金
属の過酸化物を添加して焼成するガーネット型磁性材料
の製造方法。
1. A general formula A x B 8-x O 12 (wherein A is yttrium or one or two of rare earth elements).
Or more, and B is one or more metals including iron), and x is in the range of 2.98 ≦ x ≦ 3.06, the raw material powder of the garnet-type magnetic material being the main component, A method for producing a garnet-type magnetic material, which comprises adding a metal peroxide to powder and firing it.
【請求項2】 金属の過酸化物が過酸化銅であり、その
添加量が原料粉末に対して1.5モル%以下である請求
項1記載のガーネット型磁性材料の製造方法。
2. The method for producing a garnet-type magnetic material according to claim 1, wherein the metal peroxide is copper peroxide, and the addition amount thereof is 1.5 mol% or less based on the raw material powder.
JP5225006A 1993-08-19 1993-08-19 Production of garnet-type magnetic material Withdrawn JPH0761821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5225006A JPH0761821A (en) 1993-08-19 1993-08-19 Production of garnet-type magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5225006A JPH0761821A (en) 1993-08-19 1993-08-19 Production of garnet-type magnetic material

Publications (1)

Publication Number Publication Date
JPH0761821A true JPH0761821A (en) 1995-03-07

Family

ID=16822608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5225006A Withdrawn JPH0761821A (en) 1993-08-19 1993-08-19 Production of garnet-type magnetic material

Country Status (1)

Country Link
JP (1) JPH0761821A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0821426A1 (en) 1996-07-26 1998-01-28 Hitachi Metals, Ltd. Non-reciprocal circuit element
WO1999054255A1 (en) * 1998-04-14 1999-10-28 Tdk Corporation Method for controlling intermodulation product of non-reciprocal circuit element
FR2824553A1 (en) * 2001-05-11 2002-11-15 Thomson Csf Low magnetic loss ferrite material for hyperfrequency applications has a yttrium and iron based garnet structure conforming to a specified chemical formula
US6899819B2 (en) 2002-11-18 2005-05-31 Electronics And Telecommunications Research Institute YIG magnetic ceramic composition for microwave application and preparation method thereof
US6933799B1 (en) 1998-04-14 2005-08-23 Tdk Corporation Method of controlling intermodulation distortion of non-reciprocal device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0821426A1 (en) 1996-07-26 1998-01-28 Hitachi Metals, Ltd. Non-reciprocal circuit element
WO1999054255A1 (en) * 1998-04-14 1999-10-28 Tdk Corporation Method for controlling intermodulation product of non-reciprocal circuit element
JP2000001317A (en) * 1998-04-14 2000-01-07 Tdk Corp Controlling method of intermodulation product of irreversible circuit elements
US6933799B1 (en) 1998-04-14 2005-08-23 Tdk Corporation Method of controlling intermodulation distortion of non-reciprocal device
FR2824553A1 (en) * 2001-05-11 2002-11-15 Thomson Csf Low magnetic loss ferrite material for hyperfrequency applications has a yttrium and iron based garnet structure conforming to a specified chemical formula
WO2002092532A1 (en) * 2001-05-11 2002-11-21 Thales Ferrite material with low microwave losses and method for making same
US6899819B2 (en) 2002-11-18 2005-05-31 Electronics And Telecommunications Research Institute YIG magnetic ceramic composition for microwave application and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101904269B1 (en) Effective substitutions for rare earth metals in compositions and materials for electronic applications
GB2600643A (en) Ultra-high dielectric constant garnet
US9527776B2 (en) Effective substitutions for rare earth metals in compositions and materials for electronic applications
US11945753B2 (en) Low loss power ferrites and method of manufacture
EP1101736B1 (en) Mn-Zn ferrite and production thereof
CN112745122A (en) Preparation method of high-power high-dielectric-constant garnet and garnet
CN113896521A (en) Low-saturation narrow-linewidth gyromagnetic material and preparation method thereof
JPH0761821A (en) Production of garnet-type magnetic material
US3630912A (en) Lithium titanium bismuth ferrites
Peloschek et al. High-permeability MnZn ferrites with flat µ-T curves
JPH11307336A (en) Manufacture of soft magnetic ferrite
US6899819B2 (en) YIG magnetic ceramic composition for microwave application and preparation method thereof
JPH10233308A (en) Polycrystalline magnetic ceramic material preparation thereof, and nonrevesible circuit element using the same
US3644207A (en) Lithium-titanium-zinc ferrites
JPH0471323B2 (en)
JPH10144514A (en) Calcinated oxide powder, oxide magnetic material using it and their manufacture
JP2706975B2 (en) Method for producing Mn-Zn ferrite material
JP2760052B2 (en) Microwave / millimeter wave magnetic composition
JPS6389493A (en) Production of garnet ferrite single crystal
JP2003059711A (en) Oxide magnetic material
JPH06349625A (en) High-magnetic permeability oxide magnetic material and manufacure thereof
JPH07320925A (en) Manufacture of low-loss oxide magnetic material
JPH0547540A (en) Oxide calcinated power, high-permeability magnetic material using the same and manufacture thereof
JPH01212227A (en) Oxide superconducting material
JPH07196322A (en) Production of oxide powder for ferrite and multiple oxide powder for ferrite

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031