JPH10144514A - Calcinated oxide powder, oxide magnetic material using it and their manufacture - Google Patents

Calcinated oxide powder, oxide magnetic material using it and their manufacture

Info

Publication number
JPH10144514A
JPH10144514A JP8318707A JP31870796A JPH10144514A JP H10144514 A JPH10144514 A JP H10144514A JP 8318707 A JP8318707 A JP 8318707A JP 31870796 A JP31870796 A JP 31870796A JP H10144514 A JPH10144514 A JP H10144514A
Authority
JP
Japan
Prior art keywords
oxide
less
mol
content
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8318707A
Other languages
Japanese (ja)
Inventor
Yoshitaka Yasuda
吉孝 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP8318707A priority Critical patent/JPH10144514A/en
Publication of JPH10144514A publication Critical patent/JPH10144514A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide oxide magnetic powder in narrow particle size distribution, an oxide magnetic material of high magnetic permeability and of low cost, and a method for manufacturing them. SOLUTION: To raw material powder, as a main component, comprising 20-30mol% manganese oxide (MnO), 20-30mol% zinc oxide (ZnO) and the other part of ferric oxide (Fe2 O3 ), bismuth oxide (Bi2 O3 ) of 0.05wt.% or less (not containing 0) is added as a sub-component, and they are calcinated at 600-1000 deg.C. Then in addition, zirconium oxide (ZrO2 ) of 0.04wt.% or less (not containing 0), chromium oxide (Cr2 O3 ) of 0.04wt.% of less (not containing 0), silicon oxide (SiO2 ) of 0.02wt.% or less (not containing 0) and calcium oxide (CaO) of 0.04wt.% or less (not containing 0) are added as sub-components, and they are mixed with binder, press-molded and burned, thereby a burned substance in which a value of standard deviation of crystal grain size divided by average crystal grain size is 55% or below is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物仮焼粉末、
それを用いた酸化物磁性材料及びそれらの製造方法に関
し、詳しくは、通信機等に搭載される高透磁率のスピネ
ル型Mn−Zn系フェライト材料、その製造方法及びそ
れに用いる酸化物仮焼粉末、その製造方法に関する。
The present invention relates to an oxide calcined powder,
Oxide magnetic materials using them and their manufacturing methods, in detail, high permeability spinel type Mn-Zn based ferrite material mounted on a communication device, its manufacturing method and its calcined oxide powder, It relates to the manufacturing method.

【0002】[0002]

【従来の技術】近年、ノイズ法規制による周波数帯の拡
大及び小型化の要求に伴い、広い周波数帯域で適用でき
る高透磁率酸化物磁性材料が必要となってきている。
2. Description of the Related Art In recent years, with the demand for expansion and miniaturization of a frequency band due to noise regulations, a high-permeability oxide magnetic material applicable in a wide frequency band has been required.

【0003】一般に、この種の酸化物磁性材料には、主
成分として、20〜30mol%のMnO、20〜30
mol%のZnO及び残部Fe23の組成のMn−Zn
系フェライトが用いられている。
In general, this type of oxide magnetic material contains, as a main component, 20 to 30 mol% of MnO and 20 to 30 mol%.
mol% of ZnO and the composition of the balance Fe 2 O 3 Mn-Zn
A system ferrite is used.

【0004】Mn−Zn系フェライトにおいて、高い初
透磁率μiを得るためには、組成が均一であること、焼
成体の結晶粒が均一で、しかも粒径の大きいこと、密度
が高いこと、焼成体中の空孔が少ないこと等が要求され
る。
In order to obtain a high initial magnetic permeability μi in a Mn—Zn ferrite, it is necessary that the composition is uniform, the crystal grains of the fired body are uniform, the grain size is large, the density is high, and It is required that there are few pores in the body.

【0005】このMn−Zn系フェライトは、通常、酸
化第二鉄、酸化マンガン、酸化亜鉛の原料粉末を秤量、
混合後、仮焼、粉砕、結合剤(バインダー)との混合、
プレス成形、焼成することにより製造されている。
[0005] This Mn-Zn ferrite is usually obtained by weighing raw material powders of ferric oxide, manganese oxide, and zinc oxide.
After mixing, calcining, pulverizing, mixing with a binder (binder),
It is manufactured by press molding and firing.

【0006】ここで、焼成工程によって、前述のように
組成を均一にし、結晶粒を均一に大きくしようとする
と、異常粒成長を伴った結晶粒の成長が起こり、均一な
組織制御を行うことが非常に困難である。また、密度を
高くし、結晶粒を均一に大きくするために、1300〜
1400℃の温度で焼成されるが、混合工程後、バイン
ダー混合、プレス成形、焼成した場合、原料の熱分解に
伴う重量の減少、ガスの発生に伴う体積の膨張、微粒子
である原料粉末の焼成に伴う著しい収縮等が起こり、製
品にひび割れや変形等の不具合が生じてしまう。また、
焼成条件により、ある程度の組織制御は可能であるが、
焼成条件の複雑化は避けられず、透磁率を根本的に改善
することはできない。また、焼成条件の複雑化は、焼成
炉の選定に十分な配慮が要求される上、コスト高の原因
にもなっている。
[0006] Here, when the composition is made uniform and the crystal grains are made to be uniformly large by the firing step as described above, crystal grains accompanied by abnormal grain growth occur, and uniform structure control can be performed. Very difficult. Further, in order to increase the density and uniformly increase the crystal grains, 1300
It is fired at a temperature of 1400 ° C. When the binder is mixed, pressed and fired after the mixing step, the weight is reduced due to the thermal decomposition of the raw material, the volume is expanded due to gas generation, and the raw material powder as fine particles is fired. , Resulting in a product having problems such as cracks and deformation. Also,
Depending on the firing conditions, a certain degree of structure control is possible,
Complicating the firing conditions is inevitable, and the permeability cannot be fundamentally improved. In addition, complicated firing conditions require sufficient consideration in selecting a firing furnace, and also cause high costs.

【0007】このため、焼成工程の前段階として、前記
のように一度仮焼をして均質化及び粉末粒子径の制御を
行うという方法がとられている。仮焼は、一般にトンネ
ル式電気炉あるいはロータリーキルン等により700〜
1200℃の温度範囲で、大気中あるいは不活性雰囲気
中で行われている。この仮焼粉末の粒度分布は、一般に
電子顕微鏡による観察等により、広いことが知られてい
る。このような粒度分布の広い仮焼粉末は、後工程であ
る焼成工程による焼成体の組織制御が困難なため、結晶
粒径も均一に大きくすることができず、透磁率の低下を
招く。
Therefore, as a step prior to the sintering step, a method is employed in which calcination is performed once to homogenize and control the particle diameter of the powder as described above. The calcination is generally performed using a tunnel type electric furnace or a rotary kiln, etc.
It is performed in a temperature range of 1200 ° C. in the air or an inert atmosphere. It is generally known that the particle size distribution of the calcined powder is wide by observation with an electron microscope or the like. In such a calcined powder having a wide particle size distribution, it is difficult to control the structure of the fired body in the subsequent firing step, so that the crystal grain size cannot be uniformly increased, resulting in a decrease in magnetic permeability.

【0008】[0008]

【発明が解決しようとする課題】本発明は、粒度分布が
狭い酸化物磁性粉末及びそれを用いた、低コストでしか
も透磁率の高い酸化物磁性材料及びそれらの製造方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an oxide magnetic powder having a narrow particle size distribution, a low-cost oxide magnetic material having high magnetic permeability, and a method for producing the same using the same. .

【0009】[0009]

【課題を解決するための手段】本発明は、主成分が20
〜30mol%の酸化マンガン(MnO)、20〜30
mol%の酸化亜鉛(ZnO)、残部酸化第二鉄(Fe
23)よりなり、副成分として、0.05wt%以下
(0を含まず)の酸化ビスマス(Bi23)を含有する
ことを特徴とする酸化物仮焼粉末である。
According to the present invention, the main component is 20%.
~ 30 mol% manganese oxide (MnO), 20-30
mol% of zinc oxide (ZnO) and the balance of ferric oxide (Fe
2 O 3) made of, as a subcomponent, an oxide calcined powder characterized by containing bismuth oxide of less 0.05 wt% (0 not including) (Bi 2 O 3).

【0010】また、本発明は、主成分として、20〜3
0mol%の酸化マンガン(MnO)、20〜30mo
l%の酸化亜鉛(ZnO)、残部酸化第二鉄(Fe
23)となる原料粉末に、副成分として、0.05wt
%以下(0を含まず)の酸化ビスマス(Bi23)を添
加し、600〜1100℃で仮焼することを特徴とする
酸化物仮焼粉末の製造方法である。
[0010] The present invention also relates to the present invention in which
0 mol% manganese oxide (MnO), 20 to 30 mo
1% zinc oxide (ZnO), with the balance being ferric oxide (Fe
The raw material powder becomes 2 O 3), as a sub-component, 0.05 wt
% Or less was added bismuth oxide (not including 0) (Bi 2 O 3), a method of manufacturing an oxide calcined powder, which comprises calcining at 600 to 1100 ° C..

【0011】また、本発明は、主成分が20〜30mo
l%の酸化マンガン(MnO)、20〜30mol%の
酸化亜鉛(ZnO)、残部酸化第二鉄(Fe23)より
なり、副成分として、0.05wt%以下(0を含ま
ず)の酸化ビスマス(Bi23)、0.04wt%以下
(0を含まず)の酸化ジルコニウム(ZrO2)、0.0
4wt%以下(0を含まず)の酸化クロム(Cr
23)、0.02wt%以下(0を含まず)の酸化珪素
(SiO2)及び0.04wt%以下(0を含まず)の酸
化カルシウム(CaO)を含有することを特徴とする酸
化物磁性材料である。
In the present invention, the main component is 20 to 30 mo.
1% of manganese oxide (MnO), 20 to 30 mol% of zinc oxide (ZnO), and the balance of ferric oxide (Fe 2 O 3 ). Bismuth oxide (Bi 2 O 3 ), 0.04 wt% or less (excluding 0) of zirconium oxide (ZrO 2 ), 0.0
4 wt% or less (excluding 0) of chromium oxide (Cr
2 O 3 ), characterized by containing 0.02 wt% or less (excluding 0) of silicon oxide (SiO 2 ) and 0.04 wt% or less (excluding 0) of calcium oxide (CaO). It is a magnetic material.

【0012】また、本発明は、結晶粒径の標準偏差σを
平均結晶粒径で除した値が55%以下であることを特徴
とする上記酸化物磁性材料である。
The present invention also provides the above oxide magnetic material, wherein the value obtained by dividing the standard deviation σ of the crystal grain size by the average crystal grain size is 55% or less.

【0013】また、本発明は、主成分として、20〜3
0mol%の酸化マンガン(MnO)、20〜30mo
l%の酸化亜鉛(ZnO)、残部酸化第二鉄(Fe
23)となる原料粉末に、副成分として、0.05wt
%以下(0を含まず)の酸化ビスマス(Bi23)を添
加し、600〜1100℃で仮焼した後、さらに副成分
として、0.04wt%以下(0を含まず)の酸化ジル
コニウム(ZrO2)、0.04wt%以下(0を含ま
ず)の酸化クロム(Cr23)、0.02wt%以下
(0を含まず)の酸化珪素(SiO2)及び0.04wt
%以下(0を含まず)の酸化カルシウム(CaO)を添
加し、バインダー混合、プレス成形、焼成することを特
徴とする酸化物磁性材料の製造方法である。
[0013] The present invention also relates to the present invention, in which
0 mol% manganese oxide (MnO), 20 to 30 mo
1% zinc oxide (ZnO), with the balance being ferric oxide (Fe
The raw material powder becomes 2 O 3), as a sub-component, 0.05 wt
% (Not including 0) of bismuth oxide (Bi 2 O 3 ) and calcining at 600 to 1100 ° C., and further, as an auxiliary component, 0.04 wt% or less (excluding 0) of zirconium oxide (ZrO 2 ), 0.04 wt% or less (excluding 0) of chromium oxide (Cr 2 O 3 ), 0.02 wt% or less (excluding 0) of silicon oxide (SiO 2 ) and 0.04 wt%
% (Not including 0) of calcium oxide (CaO), a binder is mixed, press-molded, and fired.

【0014】本発明により得られた酸化物仮焼粉末は、
処理する粉末の量にかかわらず、均一な粒子径で粒度分
布の狭い粉末であるため、高い温度で焼成される場合で
も焼成体組織の制御を容易に行うことができ、結晶粒を
均一に大きくし、密度を高くすることができる。また、
焼成条件を簡略化することができるため、コストの大幅
な低減を図ることができる。さらに、ZrO2、Cr2
3、SiO2、CaOをそれぞれ所定量含有させることに
より、初透磁率の周波数特性の改善を図ることができ
る。また、これらを含有させることにより、結晶粒径を
均一にし、粒界相の電気抵抗を向上させることができる
ため、渦電流損失の低減を図ることができる。
The calcined oxide powder obtained according to the present invention comprises:
Regardless of the amount of powder to be processed, it is a powder with a uniform particle size and a narrow particle size distribution, so that even when fired at a high temperature, the structure of the fired body can be easily controlled and the crystal grains can be uniformly enlarged. And the density can be increased. Also,
Since the firing conditions can be simplified, the cost can be significantly reduced. Furthermore, ZrO 2 , Cr 2 O
3 , the frequency characteristics of the initial magnetic permeability can be improved by adding a predetermined amount of each of SiO 2 and CaO. Further, by containing these, the crystal grain size can be made uniform and the electric resistance of the grain boundary phase can be improved, so that the eddy current loss can be reduced.

【0015】本発明において、MnOが20〜30mo
l%、ZnOが20〜30mol%、残部Fe23とし
た理由は、この領域以外の場合、透磁率の低下を招き好
ましくないためである。
In the present invention, MnO is 20 to 30 mo.
The reason for using 1%, ZnO of 20 to 30 mol%, and the balance of Fe 2 O 3 is that, other than in this region, the magnetic permeability decreases, which is not preferable.

【0016】Bi23含有量が0.05wt%以下(0
を含まず)とした理由は、この範囲を越えると、急激に
μiが低下するからである。これは、空孔の数の増大に
伴う磁壁移動の妨げ、あるいは結晶粒子の歪みが原因と
考えられる。
The Bi 2 O 3 content is 0.05% by weight or less (0% by weight).
The reason is that μi sharply decreases when the value exceeds this range. This is considered to be caused by the hindrance of domain wall movement due to the increase in the number of vacancies or the distortion of crystal grains.

【0017】ZrO2含有量が0.04wt%以下(0を
含まず)、SiO2含有量が0.02wt%以下(0を含
まず)、CaO含有量が0.04wt%以下(0を含ま
ず)とした理由は、この範囲内であると、適度な高抵抗
の粒界相を形成し、渦電流損失が低減されるが、この範
囲を越えると、著しく結晶粒径が不均一となり、磁気特
性が劣化するからである。
The ZrO 2 content is 0.04 wt% or less (not including 0), the SiO 2 content is 0.02 wt% or less (not including 0), and the CaO content is 0.04 wt% or less (including 0). The reason for this is that if it is within this range, a moderately high-resistance grain boundary phase is formed and eddy current loss is reduced, but beyond this range, the crystal grain size becomes extremely non-uniform, This is because the magnetic characteristics deteriorate.

【0018】一般に、Cr23は粒内に固溶するとされ
ている。Cr23含有量が0.04wt%以下(0を含
まず)とした理由は、この範囲内の場合、焼成時のぬれ
性が向上し、焼成体組織の均質化ができ、さらにこのぬ
れ性の改善により、粒界相への不純物の濃縮度合いの向
上及び粒内不純物量の低減により、渦電流損失の低減に
効果があり、この範囲を越えると、著しく結晶粒径が不
均一となり、磁気特性を劣化させてしまうからである。
Generally, it is said that Cr 2 O 3 forms a solid solution in the grains. The reason why the content of Cr 2 O 3 is 0.04 wt% or less (excluding 0) is that when the content is within this range, the wettability during firing is improved, the structure of the fired body can be homogenized, and the wettability can be further improved. By improving the properties, the degree of concentration of impurities in the grain boundary phase is improved and the amount of impurities in the grains is reduced, which has the effect of reducing eddy current loss. This is because magnetic properties are degraded.

【0019】また、本発明において、仮焼温度を600
〜1100℃とした理由は、600℃未満の場合、酸化
物仮焼粉末の粒度分布を狭くすることができず、組織制
御が困難となるからである。また、1100℃を越えた
場合、著しい粉末の粒成長が起こり、後工程の粉砕時に
時間がかかるだけでなく、粉末の粒度分布も広くなるた
め、上記のように組織制御が困難となるからである。
In the present invention, the calcination temperature is set to 600
The reason for setting the temperature to 11100 ° C. is that if the temperature is lower than 600 ° C., the particle size distribution of the calcined oxide powder cannot be narrowed, and it becomes difficult to control the structure. If the temperature exceeds 1100 ° C., remarkable powder grain growth occurs, which not only takes time during pulverization in the subsequent step, but also broadens the particle size distribution of the powder, which makes it difficult to control the structure as described above. is there.

【0020】また、その酸化物磁性材料のσをその酸化
物磁性材料の平均結晶粒径で除した値が55%以下とし
た理由は、この領域以外の場合、透磁率の低下を招き、
好ましくないためである。
The reason why the value obtained by dividing the σ of the oxide magnetic material by the average crystal grain size of the oxide magnetic material is 55% or less is that, outside of this range, the magnetic permeability decreases,
This is because it is not preferable.

【0021】[0021]

【発明の実施の形態】主成分として、Fe23、Mn
O、ZnO換算で所定の組成となるよう秤量した原料粉
末に、副成分として、所定量のBi23を添加、混合
し、所定の温度で仮焼した後、さらに、副成分として、
所定量のZrO2、Cr23、SiO2、CaOを添加
し、解砕、バインダー混合、造粒、プレス成形、焼成
し、結晶粒径の標準偏差を平均結晶粒径で除した値が5
5%以下である酸化物磁性材料を得る。
As DETAILED DESCRIPTION OF THE INVENTION The main component, Fe 2 O 3, Mn
O, a predetermined amount of Bi 2 O 3 is added as a sub-component to a raw material powder weighed to have a predetermined composition in terms of ZnO, mixed, calcined at a predetermined temperature, and further, as a sub-component,
Predetermined amounts of ZrO 2 , Cr 2 O 3 , SiO 2 , and CaO were added, and crushing, binder mixing, granulation, press molding, and firing were performed, and the value obtained by dividing the standard deviation of the crystal grain size by the average crystal grain size was obtained. 5
An oxide magnetic material having a content of 5% or less is obtained.

【0022】[0022]

【実施例】以下に、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0023】(実施例1)原料粉末を、主成分であるF
23、MnO、ZnOがそれぞれ52.6、24.2、
22.2mol%となるように秤量し、副成分としてB
23が0、0.01、0.03、0.05、0.07wt
%となるように添加し、これらを混合し、900℃にて
仮焼した。
(Example 1) The raw material powder was mixed with F as a main component.
e 2 O 3 , MnO, and ZnO are 52.6, 24.2,
It was weighed to 22.2 mol%, and B was
i 2 O 3 is 0.0, 0.01, 0.03, 0.05, 0.07 wt
%, And these were mixed and calcined at 900 ° C.

【0024】図1に、得られた酸化物仮焼粉末の粒度分
布を示した。図1より、Bi23を添加して仮焼したも
のは、Bi23を添加せずに仮焼したものと比較し、粒
度分布が狭くなっていることがわかる。
FIG. 1 shows the particle size distribution of the obtained calcined oxide powder. Than 1, which was calcined by adding Bi 2 O 3 is compared with those calcined without the addition of Bi 2 O 3, it can be seen that the particle size distribution is narrow.

【0025】この酸化物仮焼粉末に、ZrO2、Cr2
3、SiO2、CaOの含有量がそれぞれ0.01、0.0
2、0.01、0.02wt%となるように添加し、これ
らを解砕、造粒し、成形プレスした後、酸素分圧10.
0at%以下、温度1100〜1400℃において焼成
し、酸化物磁性材料を得た。
ZrO 2 , Cr 2 O was added to the calcined oxide powder.
3 , SiO 2 and CaO are 0.01 and 0.0, respectively.
2, 0.01 and 0.02% by weight, and these are crushed, granulated, and pressed by molding.
It was calcined at 0 at% or less at a temperature of 1100 to 1400 ° C. to obtain an oxide magnetic material.

【0026】図2に、得られた酸化物磁性材料における
Bi23含有量の変化に対するμiの周波数特性の変化
を示す。図2より、Bi23の含有量が0.05wt%
を越えた場合、μiが劣化していることがわかる。
FIG. 2 shows a change in the frequency characteristic of μi with respect to a change in the Bi 2 O 3 content in the obtained oxide magnetic material. 2, the content of Bi 2 O 3 is 0.05 wt%.
It can be seen that μi is degraded when it exceeds.

【0027】(実施例2)副成分として、ZrO2
0、0.01、0.02、0.04、0.06wt%、ま
た、Bi23、Cr23、SiO2、CaOがそれぞれ
0.02、0.02、0.01、0.02wt%となるよう
に添加した以外は、実施例1と同様にして、酸化物磁性
材料を得た。
(Example 2) ZrO 2 is contained as an auxiliary component in an amount of 0.0, 0.01, 0.02, 0.04, 0.06 wt%, Bi 2 O 3 , Cr 2 O 3 , SiO 2 , CaO Was added in the same manner as in Example 1 except that the amounts were 0.02, 0.02, 0.01, and 0.02 wt%, respectively, to obtain an oxide magnetic material.

【0028】図3に、得られた酸化物磁性材料における
ZrO2含有量の変化に対するμiの周波数特性の変化
を示す。図3より、ZrO2含有量が0.04wt%以下
(0を含まず)の場合、好ましくは、0.01〜0.02
wt%の場合に、μiの周波数特性が良好であることが
わかる。
FIG. 3 shows a change in the frequency characteristic of μi with respect to a change in the ZrO 2 content in the obtained oxide magnetic material. According to FIG. 3, when the ZrO 2 content is 0.04 wt% or less (excluding 0), preferably, 0.01 to 0.02.
It can be seen that in the case of wt%, the frequency characteristics of μi are good.

【0029】(実施例3)副成分として、Cr23
0、0.01、0.02、0.04、0.06wt%、ま
た、Bi23、ZrO2、SiO2、CaOがそれぞれ
0.02、0.01、0.01、0.02wt%となるよう
に添加した以外は、実施例1と同様にして、酸化物磁性
材料を得た。
(Example 3) Cr 2 O 3 is contained as an auxiliary component in an amount of 0.01, 0.02, 0.04, 0.06 wt%, Bi 2 O 3 , ZrO 2 , SiO 2 , CaO Was added in the same manner as in Example 1 except that the amounts were 0.02, 0.01, 0.01, and 0.02 wt%, respectively, to obtain an oxide magnetic material.

【0030】図4に、得られた酸化物磁性材料における
Cr23含有量の変化に対するμiの周波数特性の変化
を示す。図4より、Cr23含有量が0.04wt%以
下(0を含まず)の場合、好ましくは、0.01〜0.0
2wt%の場合に、μiの周波数特性が良好であること
がわかる。
FIG. 4 shows the change in the frequency characteristic of μi with respect to the change in the Cr 2 O 3 content in the obtained oxide magnetic material. According to FIG. 4, when the content of Cr 2 O 3 is 0.04 wt% or less (excluding 0), the content is preferably 0.01 to 0.0.
It can be seen that the frequency characteristics of μi are good in the case of 2 wt%.

【0031】(実施例4)副成分として、SiO2
0、0.01、0.02、0.04wt%、また、Bi2
3、ZrO2、Cr23、CaOがそれぞれ0.02、0.
01、0.02、0.02wt%となるように添加した以
外は、実施例1と同様にして、酸化物磁性材料を得た。
(Example 4) As subcomponents, SiO 2 is contained in an amount of 0.01, 0.01, 0.02, 0.04 wt%, and Bi 2 O
3 , ZrO 2 , Cr 2 O 3 , and CaO are 0.02 and 0.2, respectively.
An oxide magnetic material was obtained in the same manner as in Example 1, except that the addition was performed so as to be 0.01, 0.02, and 0.02 wt%.

【0032】図5に、得られた酸化物磁性材料における
SiO2含有量の変化に対するμiの周波数特性の変化
を示す。図5より、SiO2含有量が0.02wt%以下
(0を含まず)の場合、好ましくは、0.01〜0.02
wt%の場合に、μiの周波数特性が良好であることが
わかる。
FIG. 5 shows the change in the frequency characteristic of μi with respect to the change in the SiO 2 content in the obtained oxide magnetic material. According to FIG. 5, when the SiO 2 content is 0.02 wt% or less (not including 0), preferably, the content is 0.01 to 0.02.
It can be seen that in the case of wt%, the frequency characteristics of μi are good.

【0033】(実施例5)副成分として、CaOが0、
0.01、0.02、0.04、0.06wt%、また、B
23、ZrO2、Cr23、SiO2がそれぞれ0.0
2、0.01、0.02、0.01wt%となるように添
加した以外は、実施例1と同様にして、酸化物磁性材料
を得た。
(Example 5) CaO is 0 as a subcomponent,
0.01, 0.02, 0.04, 0.06 wt%, and B
i 2 O 3 , ZrO 2 , Cr 2 O 3 and SiO 2 are each 0.0
An oxide magnetic material was obtained in the same manner as in Example 1, except that the addition was performed so as to be 2, 0.01, 0.02, and 0.01 wt%.

【0034】図6に、得られた酸化物磁性材料における
CaO含有量の変化に対するμiの周波数特性の変化を
示す。図6より、CaO含有量が0.04wt%以下
(0を含まず)の場合、好ましくは、0.01〜0.02
wt%の場合に、μiの周波数特性が良好であることが
わかる。
FIG. 6 shows a change in the frequency characteristic of μi with respect to a change in the CaO content in the obtained oxide magnetic material. According to FIG. 6, when the CaO content is 0.04% by weight or less (excluding 0), preferably 0.01 to 0.02.
It can be seen that in the case of wt%, the frequency characteristics of μi are good.

【0035】(実施例6)副成分として、Bi23、Z
rO2、Cr23、SiO2、CaOがそれぞれ0.0
2、0.01、0.02、0.01、0.02wt%となる
ように添加し、仮焼温度を500〜1200℃の範囲で
100℃おきに変化させた以外は、実施例1と同様にし
て、酸化物磁性材料を得た。
(Example 6) Bi 2 O 3 , Z
Each of rO 2 , Cr 2 O 3 , SiO 2 and CaO is 0.0.
2, and 0.01, 0.02, 0.01, and 0.02 wt%, except that the calcination temperature was changed in the range of 500 to 1200 ° C. every 100 ° C. Similarly, an oxide magnetic material was obtained.

【0036】図7に、得られた酸化物磁性材料における
仮焼温度に対する10kHzでのμiの関係を示す。図
7より、仮焼温度が600〜1100℃の場合に、μi
特性が良好であることがわかる。
FIG. 7 shows the relationship of μi at 10 kHz to the calcining temperature in the obtained oxide magnetic material. From FIG. 7, when the calcination temperature is 600 to 1100 ° C., μi
It can be seen that the characteristics are good.

【0037】(実施例7)副成分として、Bi23、Z
rO2、Cr23、SiO2、CaOがそれぞれ0.0
2、0.01、0.02、0.01、0.02wt%となる
ように添加し、酸素分圧、焼成温度を変化させた以外
は、実施例1と同様にして、酸化物磁性材料を得た。
Example 7 Bi 2 O 3 , Z
Each of rO 2 , Cr 2 O 3 , SiO 2 and CaO is 0.0.
Oxide magnetic material was prepared in the same manner as in Example 1 except that it was added in an amount of 2, 0.01, 0.02, 0.01, and 0.02 wt%, and the oxygen partial pressure and the firing temperature were changed. I got

【0038】図8に、得られた酸化物磁性材料における
σ/平均結晶粒径の値に対する10kHzでのμiの関
係を示す。図8より、σ/平均結晶粒径の値が55%以
下の場合、好ましくは45%以下の場合に、μi特性が
良好であることがわかる。
FIG. 8 shows the relationship of μi at 10 kHz to the value of σ / average crystal grain size in the obtained oxide magnetic material. FIG. 8 shows that the μi characteristic is good when the value of σ / average crystal grain size is 55% or less, preferably 45% or less.

【0039】[0039]

【発明の効果】本発明によれば、粒度分布が狭い酸化物
磁性粉末及びそれを用いた、低コストで、しかも透磁率
の高い酸化物磁性材料及びそれらの製造方法を提供する
ことができた。
According to the present invention, it is possible to provide an oxide magnetic powder having a narrow particle size distribution, a low-cost oxide magnetic material having high magnetic permeability and a method for producing the same using the same. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の酸化物仮焼粉末におけるBi23
有量の変化に対する粒度分布の変化を示す図。
FIG. 1 is a diagram showing a change in particle size distribution with respect to a change in Bi 2 O 3 content in a calcined oxide powder of Example 1.

【図2】実施例1の酸化物磁性材料におけるBi23
有量の変化に対するμiの周波数特性の変化を示す図。
FIG. 2 is a diagram showing a change in μi frequency characteristic with respect to a change in Bi 2 O 3 content in the oxide magnetic material of Example 1.

【図3】実施例2の酸化物磁性材料におけるZrO2
有量の変化に対するμiの周波数特性の変化を示す図。
FIG. 3 is a diagram showing a change in frequency characteristics of μi with respect to a change in ZrO 2 content in the oxide magnetic material of Example 2.

【図4】実施例3の酸化物磁性材料におけるCr23
有量の変化に対するμiの周波数特性の変化を示す図。
FIG. 4 is a diagram showing a change in μi frequency characteristic with respect to a change in Cr 2 O 3 content in the oxide magnetic material of Example 3.

【図5】実施例4の酸化物磁性材料におけるSiO2
有量の変化に対するμiの周波数特性の変化を示す図。
FIG. 5 is a diagram showing a change in μi frequency characteristic with respect to a change in SiO 2 content in the oxide magnetic material of Example 4.

【図6】実施例5の酸化物磁性材料におけるCaO含有
量の変化に対するμiの周波数特性の変化を示す図。
FIG. 6 is a diagram showing a change in the frequency characteristic of μi with respect to a change in the CaO content in the oxide magnetic material of Example 5.

【図7】実施例6の酸化物磁性材料における仮焼温度と
10kHzでのμiとの関係を示す図。
FIG. 7 is a graph showing the relationship between the calcination temperature and μi at 10 kHz in the oxide magnetic material of Example 6.

【図8】実施例7の酸化物磁性材料におけるσ/平均結
晶粒径と10kHzでのμiとの関係を示す図。
FIG. 8 is a graph showing the relationship between σ / average crystal grain size and μi at 10 kHz in the oxide magnetic material of Example 7.

【符号の説明】[Explanation of symbols]

1 Bi23含有量0wt% 2 Bi23含有量0.01wt% 3 Bi23含有量0.03wt% 4 Bi23含有量0.05wt% 5 Bi23含有量0.07wt% 11 ZrO2含有量、Cr23含有量、SiO2含有
量、またはCaO含有量0wt% 12 ZrO2含有量、Cr23含有量、SiO2含有
量、またはCaO含有量0.01wt% 13 ZrO2含有量、Cr23含有量、SiO2含有
量、またはCaO含有量0.02wt% 14 ZrO2含有量、Cr23含有量、SiO2含有
量、またはCaO含有量0.04wt% 15 ZrO2含有量、Cr23含有量、SiO2含有
量、またはCaO含有量0.06wt%
1 Bi 2 O 3 content 0 wt% 2 Bi 2 O 3 content 0.01 wt% 3 Bi 2 O 3 content 0.03 wt% 4 Bi 2 O 3 content 0.05 wt% 5 Bi 2 O 3 content 0 0.07 wt% 11 ZrO 2 content, Cr 2 O 3 content, SiO 2 content, or CaO content 0 wt% 12 ZrO 2 content, Cr 2 O 3 content, SiO 2 content, or CaO content 0 0.01 wt% 13 ZrO 2 content, Cr 2 O 3 content, SiO 2 content, or CaO content 0.02 wt% 14 ZrO 2 content, Cr 2 O 3 content, SiO 2 content, or CaO content The amount 0.04 wt% 15 ZrO 2 content, Cr 2 O 3 content, SiO 2 content, or CaO content 0.06 wt%

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 主成分が20〜30mol%の酸化マン
ガン(MnO)、20〜30mol%の酸化亜鉛(Zn
O)、残部酸化第二鉄(Fe23)よりなり、副成分と
して、0.05wt%以下(0を含まず)の酸化ビスマ
ス(Bi23)を含有することを特徴とする酸化物仮焼
粉末。
A manganese oxide (MnO) containing 20 to 30 mol% of a main component and a zinc oxide (Zn) containing 20 to 30 mol% of a main component.
O), the balance being ferric oxide (Fe 2 O 3 ), characterized in that it contains 0.05% by weight or less (not including 0) of bismuth oxide (Bi 2 O 3 ) as an auxiliary component. Calcium powder.
【請求項2】 主成分として、20〜30mol%の酸
化マンガン(MnO)、20〜30mol%の酸化亜鉛
(ZnO)、残部酸化第二鉄(Fe23)となる原料粉
末に、副成分として、0.05wt%以下(0を含ま
ず)の酸化ビスマス(Bi23)を添加し、600〜1
100℃で仮焼することを特徴とする酸化物仮焼粉末の
製造方法。
2. A sub-component is added to a raw material powder which is composed of 20 to 30 mol% of manganese oxide (MnO), 20 to 30 mol% of zinc oxide (ZnO), and the balance of ferric oxide (Fe 2 O 3 ) as a main component. Of bismuth oxide (Bi 2 O 3 ) of 0.05 wt% or less (not including 0)
A method for producing a calcined oxide powder, comprising calcining at 100 ° C.
【請求項3】 主成分が20〜30mol%の酸化マン
ガン(MnO)、20〜30mol%の酸化亜鉛(Zn
O)、残部酸化第二鉄(Fe23)よりなり、副成分と
して、0.05wt%以下(0を含まず)の酸化ビスマ
ス(Bi23)、0.04wt%以下(0を含まず)の
酸化ジルコニウム(ZrO2)、0.04wt%以下(0
を含まず)の酸化クロム(Cr23)、0.02wt%
以下(0を含まず)の酸化珪素(SiO2)及び0.04
wt%以下(0を含まず)の酸化カルシウム(CaO)
を含有することを特徴とする酸化物磁性材料。
3. A manganese oxide (MnO) containing 20 to 30 mol% of a main component and a zinc oxide (Zn) containing 20 to 30 mol% of a main component.
O) with the balance being ferric oxide (Fe 2 O 3 ), with bismuth oxide (Bi 2 O 3 ) of 0.05 wt% or less (not including 0) and 0.04 wt% or less (0 Zirconium oxide (ZrO 2 ), not more than 0.04 wt% (0
Chromium oxide (Cr 2 O 3 ), 0.02 wt%
The following (not including 0) silicon oxide (SiO 2 ) and 0.04
Calcium oxide (CaO) of wt% or less (excluding 0)
An oxide magnetic material comprising:
【請求項4】 結晶粒径の標準偏差を平均結晶粒径で除
した値が55%以下であることを特徴とする請求項3記
載の酸化物磁性材料。
4. The oxide magnetic material according to claim 3, wherein the value obtained by dividing the standard deviation of the crystal grain size by the average crystal grain size is 55% or less.
【請求項5】 主成分として、20〜30mol%の酸
化マンガン(MnO)、20〜30mol%の酸化亜鉛
(ZnO)、残部酸化第二鉄(Fe23)となる原料粉
末に、副成分として、0.05wt%以下(0を含ま
ず)の酸化ビスマス(Bi23)を添加し、600〜1
100℃で仮焼した後、さらに副成分として、0.04
wt%以下(0を含まず)の酸化ジルコニウム(ZrO
2)、0.04wt%以下(0を含まず)の酸化クロム
(Cr23)、0.02wt%以下(0を含まず)の酸
化珪素(SiO2)及び0.04wt%以下(0を含ま
ず)の酸化カルシウム(CaO)を添加し、バインダー
混合、プレス成形、焼成することを特徴とする酸化物磁
性材料の製造方法。
5. A raw material powder comprising 20 to 30 mol% of manganese oxide (MnO), 20 to 30 mol% of zinc oxide (ZnO) and the balance of ferric oxide (Fe 2 O 3 ) as a main component, Of bismuth oxide (Bi 2 O 3 ) of 0.05 wt% or less (not including 0)
After calcination at 100 ° C., 0.04
wt% or less (excluding 0) of zirconium oxide (ZrO
2 ), chromium oxide (Cr 2 O 3 ) of 0.04 wt% or less (excluding 0), silicon oxide (SiO 2 ) of 0.02 wt% or less (excluding 0) and 0.04 wt% or less (0 (2) excluding calcium oxide (CaO), mixing a binder, press molding, and firing.
JP8318707A 1996-11-13 1996-11-13 Calcinated oxide powder, oxide magnetic material using it and their manufacture Pending JPH10144514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8318707A JPH10144514A (en) 1996-11-13 1996-11-13 Calcinated oxide powder, oxide magnetic material using it and their manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8318707A JPH10144514A (en) 1996-11-13 1996-11-13 Calcinated oxide powder, oxide magnetic material using it and their manufacture

Publications (1)

Publication Number Publication Date
JPH10144514A true JPH10144514A (en) 1998-05-29

Family

ID=18102097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8318707A Pending JPH10144514A (en) 1996-11-13 1996-11-13 Calcinated oxide powder, oxide magnetic material using it and their manufacture

Country Status (1)

Country Link
JP (1) JPH10144514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091748A (en) * 2013-10-04 2015-05-14 Necトーキン株式会社 Ferrite core and production method thereof
JP2017149610A (en) * 2016-02-25 2017-08-31 株式会社トーキン Ferrite, ferrite core and method for producing ferrite core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091748A (en) * 2013-10-04 2015-05-14 Necトーキン株式会社 Ferrite core and production method thereof
JP2017149610A (en) * 2016-02-25 2017-08-31 株式会社トーキン Ferrite, ferrite core and method for producing ferrite core

Similar Documents

Publication Publication Date Title
JP2000351625A (en) PRODUCTION OF Mn-Zn FERRITE
JPH10144514A (en) Calcinated oxide powder, oxide magnetic material using it and their manufacture
JP2000095560A (en) Mn-Zn FERRITE HIGH IN MAGNETIC PERMEABILITY
JP2708160B2 (en) Ferrite manufacturing method
WO2022070634A1 (en) MnZn-BASED FERRITE AND METHOD OF MANUFACTURING SAME
JPH11307336A (en) Manufacture of soft magnetic ferrite
JP7117447B1 (en) Method for producing zirconia setter and MnZn ferrite
JPH09306718A (en) Ferrite magnetic material and method of fabricating the same
WO2023182133A1 (en) MnZn-BASED FERRITE
JP2006206384A (en) Ceramic material for non-reciprocal circuit element and its production method
JP3545438B2 (en) Method for producing Ni-Zn ferrite powder
JPH06325920A (en) Low-loss magnetic material and manufacture thereof
JPH0547540A (en) Oxide calcinated power, high-permeability magnetic material using the same and manufacture thereof
JPH0574623A (en) High permeability magnetic material and its manufacture
JP2007197253A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JPH1022113A (en) Method for manufacturing low power loss oxide magnetic material
JPH06140230A (en) Manufacture of low-loss oxide magnetic material
JP2005289667A (en) MnZn BASED FERRITE AND METHOD OF MANUFACTURING THE SAME
JPH05267038A (en) Manufacture of oxide magnetic material
JPH0529125A (en) Production of oxide magnetic material
JPH11255558A (en) Production of manganese-zinc-based ferrite core
JPH1074612A (en) High-permeability oxide magnetic material
JPH09180926A (en) Low loss oxide magnetic material
JP2706975B2 (en) Method for producing Mn-Zn ferrite material
JPH0971455A (en) Ferrite material and its production